Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (2): 260-278.DOI: 10.12211/2096-8280.2021-035

• Invited Review • Previous Articles     Next Articles

Synthetic nanobiology——fusion of synthetic biology and nanobiology

Qingqing FENG1, Tianjiao ZHANG1,2, Xiao ZHAO1, Guangjun NIE1   

  1. 1.CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology of China,Beijing 100190,China
    2.College of Pharmacy,Jilin University,Changchun 130021,Jilin,China
  • Received:2021-03-25 Revised:2021-07-05 Online:2022-05-11 Published:2022-04-30
  • Contact: Xiao ZHAO, Guangjun NIE

合成纳米生物学——合成生物学与纳米生物学的交叉前沿

冯晴晴1, 张天鲛1,2, 赵潇1, 聂广军1   

  1. 1.国家纳米科学中心,中国科学院纳米生物效应与安全性重点实验室,中国科学院纳米科学卓越创新中心,北京 100190
    2.吉林大学药学院,吉林 长春 130021
  • 通讯作者: 赵潇,聂广军
  • 作者简介:冯晴晴(1991—),女,博士,博士后。研究方向为细菌来源纳米材料在肿瘤免疫治疗中的应用研究。 E-mail:fengqq@nanoctr.cn
    张天鲛(1995—),女,博士研究生。研究方向为天然生物源纳米材料的加工合成与应用。 E-mail:zhangtj2018@nanoctr.cn
    赵潇(1988—),男,博士,研究员。研究方向为天然源纳米材料的合成与应用。 E-mail:zhaox@nanoctr.cn
    聂广军(1974—),男,博士,研究员。研究方向为纳米生物学与智能纳米药物。 E-mail:niegj@nanoctr.cn
  • 基金资助:
    国家重点研发计划(2018YFA0208900);国家自然科学基金(31800838);北京市自然科学基金(Z200020);北京市科技新星计划(Z201100006820031);中国科学院高层次人才引进计划

Abstract:

In recent years, nanomaterials have been widely used in biological research due to their unique particle size effect, large specific surface area and easy surface embellishment. These properties drive technological innovation in biotechnology. However, most of these nanomaterials are obtained through chemical synthesis, and their biological functions and compatibility are limited. Synthetic biology is an important emerging discipline, and the interdisciplinary study with nanomaterials is the inevitable result of scientific development, so as to produce a new research field, synthetic nanobiology: on the one hand, we can use the technology of synthetic biology to engineer bacteria or cells and obtain biogenic nanomaterials with special biological functions, thereby forming a novel biological technology-driven nanomaterial synthesis platform; on the other hand, nanomaterials can be used to enhance the functions of living organisms or simulate life activities, so as to expand the engineering design and construction concept for synthetic biology. Herein, according to the latest development, we divide synthetic nanobiology into three subclass fields: “pseudo-organism” research on genetically engineering-modified biogenic nanomaterials, “semi-organism” research on heterozygous biological systems based on functional enhancement with nanomaterials, and “organismoid” research on the simulation of life activities based on nanomaterials. Furthermore, the modification and functional research of biogenic nanomaterials, such as biomimetic cell membranes, exosomes, bacterial outer membrane vesicles, virus-like particles, and bacterial biofilms, as well as the construction and application of artificial heterozygous bacteria and cells and artificial photosynthetic systems are introduced. Moreover, the latest research progress in biomimetic artificial synthetic biology composed of nanomaterial components, such as nano-enzymes, artificial antigen presenting cells, motion nanorobots and DNA nanorobots, is also presented. Finally, development on the intersection of nanotechnology and synthetic biology is prospected, including its application potential in tumor therapy, environmental remediation and energy production.

Key words: nanomaterials, synthetic biology, synthetic nanobiology, pseudo-organism, semi-organism, organismoid

摘要:

近年来,纳米材料因独特的粒径效应、比表面积大、表面易修饰等优点被广泛应用于生物学研究领域。作为生物学中的重要新兴学科,合成生物学与纳米生物学的交叉研究是科学发展的必然结果,推动产生了一个全新的研究领域——合成纳米生物学:一方面,利用合成生物学的技术获取具有特殊生物功能的生物源纳米材料,形成以生物技术驱动的纳米材料合成理论;另一方面,利用纳米材料对生物体进行功能强化或者生命活动模拟,拓展合成生物学的工程化设计构建理念。本文根据本领域的最新进展,将合成纳米生物学分为基于基因工程化改造生物源纳米材料的“仿生命体”研究、基于纳米材料功能强化的杂合生物系统的“半生命体”研究和基于纳米材料模拟生命活动的“类生命体”研究三个细分领域。在此基础上,重点介绍了仿生细胞膜纳米颗粒、外泌体、细菌外膜囊泡、病毒样颗粒和细菌生物被膜等生物源纳米材料的改造及功能研究,以及纳米人工杂合细菌和细胞、人工光合系统的构建与应用。同时也介绍了纳米材料元件组装的纳米类酶、人工抗原递呈细胞、运动纳米机器人、DNA纳米机器人等仿生人工合成生物的最新研究进展。最后展望了纳米技术与合成生物学交叉领域的发展前景,分析了合成纳米生物学在肿瘤治疗、环境修复、能源工程等方面的应用潜力;剖析了当前“活细胞疗法”的优势与临床转化的局限性;对智能化药物输运平台的未来发展空间进行了展望。

关键词: 纳米材料, 合成生物学, 合成纳米生物学, 仿生命体, 半生命体, 类生命体

CLC Number: