Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (1): 195-208.DOI: 10.12211/2096-8280.2021-095
• Invited Review • Previous Articles Next Articles
Yadong CHU, Zongbao ZHAO
Received:
2021-09-27
Revised:
2021-10-20
Online:
2022-03-14
Published:
2022-02-28
Contact:
Zongbao ZHAO
褚亚东, 赵宗保
通讯作者:
赵宗保
作者简介:
基金资助:
CLC Number:
Yadong CHU, Zongbao ZHAO. Designing and application of small-scale integrated automated liquid handling system[J]. Synthetic Biology Journal, 2022, 3(1): 195-208.
褚亚东, 赵宗保. 小型集成化自动移液工作站系统及应用[J]. 合成生物学, 2022, 3(1): 195-208.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-095
1 | NAJAFI M. Bacterial mutation; types, mechanisms and mutant detection methods: a review[J]. European Scientific Journal, 2013, 4(4): 628-638. |
2 | 朱晁谊, 朱牧孜, 李爽. 微生物实验室进化的研究进展[J]. 生物加工过程, 2019, 17(1): 8-14, 22. |
ZHU C Y, ZHU M Z, LI S. Research progress in microbial laboratory evolution[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(1): 8-14, 22. | |
3 | COBB R E, CHAO R, ZHAO H M. Directed evolution: past, present and future[J]. AIChE Journal, 2013, 59(5): 1432-1440. |
4 | 曲戈, 赵晶, 郑平, 等. 定向进化技术的最新进展[J]. 生物工程学报, 2018, 34(1): 1-11. |
QU G, ZHAO J, ZHENG P, et al. Recent advances in directed evolution[J]. Chinese Journal of Biotechnology, 2018, 34(1): 1-11. | |
5 | 蒋迎迎, 曲戈, 孙周通. 机器学习助力酶定向进化[J]. 生物学杂志, 2020, 37(4): 1-11. |
JIANG Y Y, QU G, SUN Z T. Machine learning-assisted enzyme directed evolution[J]. Journal of Biology, 2020, 37(4): 1-11. | |
6 | REETZ M T, CARBALLEIRA J D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes[J]. Nature Protocols, 2007, 2(4): 891-903. |
7 | KONG F W, YUAN L, ZHENG Y F, et al. Automatic liquid handling for life science: a critical review of the current state of the art[J]. Journal of Laboratory Automation, 2012, 17(3): 169-185. |
8 | HANSON K L, CARTWRIGHT C P. Evaluation of an automated liquid-handling system (Tecan Genesis RSP 100) in the Abbott LCx assay for Chlamydia trachomatis [J]. Journal of Clinical Microbiology, 2001, 39(5): 1975-1977. |
9 | LEHMANN R, SEVERITT J C, RODDELKOPF T, et al. Biomek cell workstation: a variable system for automated cell cultivation[J]. Journal of Laboratory Automation, 2016, 21(3): 439-450. |
10 | LEHMANN R, GALLERT C, RODDELKOPF T, et al. 3 Dimensional cell cultures: a comparison between manually and automatically produced alginate beads[J]. Cytotechnology, 2016, 68(4): 1049-1062. |
11 | ROLLER D G, AXELROD M, CAPALDO B J, et al. Synthetic lethal screening with small-molecule inhibitors provides a pathway to rational combination therapies for melanoma[J]. Molecular Cancer Therapeutics, 2012, 11(11): 2505-2515. |
12 | GOMEZ DE SANTOS P, CAÑELLAS M, TIEVES F, et al. Selective synthesis of the human drug metabolite 5'-hydroxypropranolol by an evolved self-sufficient peroxygenase[J]. ACS Catalysis, 2018, 8(6): 4789-4799. |
13 | SEIPP M T, HERRMANN M, WITTWER C T. Automated DNA extraction, quantification, dilution, and PCR preparation for genotyping by high-resolution melting[J]. Journal of Biomolecular Techniques, 2010, 21(4): 163-166. |
14 | SI T, CHAO R, MIN Y H, et al. Automated multiplex genome-scale engineering in yeast[J]. Nature Communications, 2017, 8: 15187. |
15 | CARBONELL P, JERVIS A J, ROBINSON C J, et al. An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals[J]. Communications Biology, 2018, 1: 66. |
16 | HILLSON N, CADDICK M, CAI Y Z, et al. Building a global alliance of biofoundries[J]. Nature Communications, 2019, 10: 2040. |
17 | ZHANG J Z, CHEN Y C, FU L H, et al. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology[J]. Current Opinion in Biotechnology, 2021, 67: 88-98. |
18 | MARKEL U, ESSANI K D, BESIRLIOGLU V, et al. Advances in ultrahigh-throughput screening for directed enzyme evolution[J]. Chemical Society Reviews, 2020, 49(1): 233-262. |
19 | MA F Q, CHUNG M T, YAO Y, et al. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform[J]. Nature Communications, 2018, 9: 1030. |
20 | JIAN X J, GUO X J, WANG J, et al. Microbial microdroplet culture system (MMC): An integrated platform for automated, high-throughput microbial cultivation and adaptive evolution[J]. Biotechnology and Bioengineering, 2020, 117(6): 1724-1737. |
21 | GIELEN F, HOURS R, EMOND S, et al. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): E7383-E7389. |
22 | ZINCHENKO A, DEVENISH S R A, KINTSES B, et al. One in a million: Flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution[J]. Analytical Chemistry, 2014, 86(5): 2526-2533. |
23 | WANG X X, XIN Y, REN L H, et al. Positive dielectrophoresis-based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo [J]. Science Advances, 2020, 6(32): eabb3521. |
24 | FU L H, ZHANG J Z, SI T. Recent advances in high-throughput mass spectrometry that accelerates enzyme engineering for biofuel research[J]. BMC Energy, 2020, 2: 1. |
25 | CHEN B, LIM S, KANNAN A, et al. High-throughput analysis and protein engineering using microcapillary arrays[J]. Nature Chemical Biology, 2016, 12(2): 76-81. |
26 | ZHANG H, LIU C, HUA W Y, et al. Acoustic ejection mass spectrometry for high-throughput analysis[J]. Analytical Chemistry, 2021, 93(31): 10850-10861. |
27 | ZHANG C, LI M, ZHAO G-R, et al. Alpha-terpineol production from an engineered Saccharomyces cerevisiae cell factory[J]. Microbial Cell Factories, 2019, 18(1): 160. |
28 | HU M S, WANG J, GAO Q Q, et al. Converting lignin derived phenolic aldehydes into microbial lipid by Trichosporon cutaneum [J]. Journal of Biotechnology, 2018, 281: 81-86. |
29 | GUO X J, LIU Y X, WANG Q, et al. Non‐natural cofactor and formate-driven reductive carboxylation of pyruvate[J]. Angewandte Chemie International Edition, 2020, 59(8): 3143-3146. |
30 | 叶质强, 冯露, 王心洁, 等. 转氨酶高效表达重组工程菌的培养基及诱导条件优化[J]. 生物化工, 2019, 5(2): 23-27. |
YE Z Q, FENG L, WANG X J, et al. Optimization of culture conditions of recombinant engineered bacteria with high expression of transaminase[J]. Biological Chemical Engineering, 2019, 5(2): 23-27. | |
31 | 吴蓉, 曹佳睿, 曹君, 等. 南极假丝酵母脂肪酶B基因在大肠杆菌中的表达和发酵优化[J]. 生物技术通报, 2021, 37(2): 138-148. |
WU R, CAO J R, CAO J, et al. Expression and fermentation optimization of Candida antarctica lipase B in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(2): 138-148. | |
32 | ENGVALL E, PERLMANN P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G[J]. Immunochemistry, 1971, 8(9): 871-874. |
33 | AYDIN S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA[J]. Peptides, 2015, 72: 4-15. |
34 | CORPORATION PROMEGA. Wizard® SV 96 plasmid DNA purification system automated protocol [EB/OL].[2021-07-21]. . |
35 | SMITH D, WHITE D. Automated purification of plasmid DNA using paramagnetic particles[J]. JALA: Journal of the Association for Laboratory Automation, 2003, 8(3): 50-54. |
36 | 李晶, 李增, 魏翱翔. 全自动液体工作站移液模块设计与分析[J]. 分析仪器, 2019(3): 14-18. |
LI J, LI Z, WEI A X. Design and analysis of pipetting pump module for automatic liquid processing workstation[J]. Analytical Instrumentation, 2019(3): 14-18. | |
37 | COULTER BECKMAN. Biomek software[EB/OL]. [2021-06-10]. . |
38 | TECAN TRADING AG. FluentControl[EB/OL]. [2021-07-10]. . |
39 | COULTER BECKMAN. SAMI process management[EB/OL]. [2021-06-10]. . |
40 | 谢艳姣, 吴荣顺, 苑婷婷, 等. 液体工作站在蔬菜农药残留快速检测中的应用[J]. 现代农业科技, 2015(16): 267-268, 272. |
XIE Y J, WU R S, YUAN T T, et al. Application of automatic liquid handing system for rapid detecting pesticide residue in vegetables[J]. Modern Agricultural Science and Technology, 2015(16): 267-268, 272. | |
41 | 张琼予, 丁梅, 王保捷, 等. DNA提取自动化工作站在法医学领域的应用[J]. 中国法医学杂志, 2010, 25(1): 40-42. |
ZHANG Q Y, DING M, WANG B J, et al. Application of DNA extraction automation workstation in the forensic area[J]. Chinese Journal of Forensic Medicine, 2010, 25(1): 40-42. | |
42 | GOME G, WAKSBERG J, GRISHKO A, et al. OpenLH: open liquid-handling system for creative experimentation with biology[C]// TEI '19: Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction. 2019: 55-64. |
43 | COUNCILL E E A W, AXTELL N B, TRUONG T, et al. Adapting a low-cost and open-source commercial pipetting robot for nanoliter liquid handling[J]. SLAS Technology, 2021, 26(3): 311-319. |
44 | 张圆.移液工作站行业处于初步发展阶段未来市场发展前景广阔[EB/OL]. [2021-07-12]. . |
ZHANG Y. Liquid handling workstation industry is in its infant stage but its market is quite promising in the future[EB/OL]. [2021-07-12]. . | |
45 | 重庆微浪生物. 实验员福音!“重庆造”实验机器人诞生[EB/OL]. [2021-07-13]. .php?lang=cn&id=49. |
BioWavelet Chongqing. The gospel for experimenters! The birth of laboratory robot “Made in Chongqing” [EB/OL]. [2021-07-13]. . | |
46 | Robotic Biology Consortium, YACHIE N, NATSUME T. Robotic crowd biology with Maholo LabDroids[J]. Nature Biotechnology, 2017, 35(4): 310-312. |
47 | ABB. ABB's collaborative robot takes the strain out of sampling at karolinska university laboratory[EB/OL]. [2021-07-16]. . |
48 | NIKO M C. One lab in Germany is using robots to advance computer-aided synthetic biology[EB/OL]. [2021-07-16]. computer-aided-synthetic-biology. |
49 | BURGER B, MAFFETTONE P M, GUSEV V V, et al. A mobile robotic chemist[J]. Nature, 2020, 583(7815): 237-241. |
50 | 郑钧天. 基于深度强化学习的机械臂轨迹规划仿真[D]. 成都: 电子科技大学, 2020. |
ZHENG J T. Simulation for manipulator trajectory planning based on deep reinforcement learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
51 | 卢彬鹏. 基于模仿学习和强化学习的机械臂运动技能获取[D]. 大连: 大连理工大学, 2019. |
LU B P. Robot skill acquisition based on imitation learning and reinforcement learning[D]. Dalian: Dalian University of Technology, 2019. | |
52 | 陈偕权. 基于增强现实及自然人机交互的机器人示教再现技术研究[D]. 广州: 华南理工大学, 2018. |
CHEN X Q. Research on robot teaching-playback technology based on augmented reality and natural human-robot interaction[D]. Guangzhou: South China University of Technology, 2018. | |
53 | 吕佳.《中国制造2025》解读之:推动机器人发展[EB/OL]. [2021-07-10]. . |
LÜ J. China Manufacturing 2025 decoding: Promoting robot development[EB/OL]. [2021-07-10]. . | |
54 | 段宝岩, 李耀平. 中国制造2025亟须自主工业软件[N/OL]. 中国科学报, 2016-11-24[2021-07-23]. htmlnews/2016/11/361805.shtm. |
DUAN B Y, LI Y P. China Manufacturing 2025 desiderates independent industry-oriented software [N/OL]. China Science Daily, 2016-11-24[2021-07-23]. . | |
55 | 吴朝晖. 以学科交叉融合服务国家战略需求(新语)[N]. 人民日报, 2020-11-04(12). |
WU Z H. To serve strategic demands of our country with disciplinary intersection and integration[N]. Peoples' Daily (New story), 2020-11-04(12). |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[3] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[4] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[5] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[7] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[8] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[9] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[10] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[11] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[12] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[13] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[14] | Guomiao ZHAO, Xin YANG, Yuan ZHANG, Jing WANG, Jian TAN, Chao WEI, Nana ZHOU, Fan LI, Xiaoyan WANG. Biofoundry and its industrial application [J]. Synthetic Biology Journal, 2023, 4(5): 892-903. |
[15] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||