Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (4): 720-737.DOI: 10.12211/2096-8280.2022-053
• Invited Review • Previous Articles Next Articles
WANG Yannan, SUN Yuhui
Received:2022-09-28
															
							
																	Revised:2022-11-13
															
							
															
							
																	Online:2023-09-14
															
							
																	Published:2023-08-31
															
						Contact:
								SUN Yuhui   
													王雁南, 孙宇辉
通讯作者:
					孙宇辉
							作者简介:基金资助:CLC Number:
WANG Yannan, SUN Yuhui. Base editing technology and its application in microbial synthetic biology[J]. Synthetic Biology Journal, 2023, 4(4): 720-737.
王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023, 4(4): 720-737.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-053
| 碱基 编辑器 | 版本 | 组成 | PAM (5′-3′) | 特点 | 参考 文献 | 
|---|---|---|---|---|---|
| CBE | BE3 | rAPOBEC1-SpnCas9-UGI | NGG | 初代碱基编辑器,TC基序偏好性 | [ | 
| Target-AID | SpnCas9-CDA1-UGI | NGG | 初代碱基编辑器 | [ | |
| hA3A-BE3 | hAPOBEC3A-SpnCas9-UGI | NGG | 可编辑甲基化的C及GC基序的C | [ | |
| BE4-Max | rAPOBEC1-SpnCas9-UGI-UGI | NGG | 密码子优化,高活性 | [ | |
| dCpf1-BE | rAPOBEC1-dLbCpf1-UGI | TTTV | 识别富含T的PAM | [ | |
| Target-AID-NG | SpnCas9 (NG)-CDA1-UGI | NG | 识别NG PAM | [ | |
| A3A-PBE | hAPOBEC3A-SpnCas9-UGI | NGG | 1~17号位编辑窗口,几乎无基序偏好性 | [ | |
| BE-PLUS | SunTag-SpnCas9-scFv-rAPOBEC1-UGI | NGG | 4~16号位编辑窗口,高保真 | [ | |
| A3G-BEs | hAPOBEC3G-SpnCas9-UGI-UGI | NGG | 编辑CC基序中的第二个C | [ | |
| BE-PAPAPAP | rAPOBEC1-SpnCas9-UGI | NGG | 5~6号位编辑窗口,PAPAPAP替换XTEN linker | [ | |
| HF-BE3 | rAPOBEC1-HFnCas9-UGI | NGG | 减少sgRNA依赖的脱靶编辑 | [ | |
| YE1-BE4 | rAPOBEC1 (W90Y, R126E)-SpnCas9-UGI-UGI | NGG | 缩小编辑窗口,减少非sgRNA依赖的脱靶编辑 | [ | |
| SECURE BE3 | rAPOBEC1 (R33A, K34A)-SpnCas9-UGI | NGG | 减少RNA层面的脱靶编辑,缩小编辑窗口 | [ | |
| DdCBEs | TALE-split DddAtox-UGI | None | 同时编辑DNA双链,可编辑线粒体、叶绿体基因组 | [ | |
| ZFDs | ZFP-split DddAtox-UGI | None | 同时编辑DNA双链,可编辑线粒体、叶绿体基因组 | [ | |
| ABE | ABE7.10 | ecTadA-ecTadA*-SpnCas9 | NGG | 初代碱基编辑器 | [ | 
| ABEmax | ecTadA-ecTadA*-SpnCas9 | NGG | 密码子优化,高活性 | [ | |
| ABE8e | ecTadA-ecTadA*-SpnCas9 | NGG | 高活性,TadA-8e | [ | |
| TaC9-ABE | ecTadA-ecTadA*-TALE,SpnCas9 | NGG | 消除sgRNA依赖的脱靶编辑 | [ | |
| ABE-nSpCas9-DS | ecTadA*-ecTadA*-SpnCas9 (DS) | NGG | 拓宽编辑窗口,减少RNA层面的脱靶编辑 | [ | |
| ACBE | A&C-BEmax | rAPOBEC1/hAID-ecTadA-ecTadA*-SpnCas9-UGI-UGI | NGG | 可同时编辑A或C | [ | 
| sgBE | SpnCas9, MCP-cytosine/adenosine deaminase | NGG | 可同时编辑A或C | [ | |
| GBE | CGBE1 | eUNG-rAPOBEC1 (R33A)-SpnCas9-UGI-UGI | NGG | 可实现C变G的碱基颠换 | [ | 
| CGBE | rAPOBEC1-SpnCas9-rXRCC1 | NGG | 利用碱基切除修复通路实现C变G的碱基颠换 | [ | 
Table 1 Comparison of representative base editors
| 碱基 编辑器 | 版本 | 组成 | PAM (5′-3′) | 特点 | 参考 文献 | 
|---|---|---|---|---|---|
| CBE | BE3 | rAPOBEC1-SpnCas9-UGI | NGG | 初代碱基编辑器,TC基序偏好性 | [ | 
| Target-AID | SpnCas9-CDA1-UGI | NGG | 初代碱基编辑器 | [ | |
| hA3A-BE3 | hAPOBEC3A-SpnCas9-UGI | NGG | 可编辑甲基化的C及GC基序的C | [ | |
| BE4-Max | rAPOBEC1-SpnCas9-UGI-UGI | NGG | 密码子优化,高活性 | [ | |
| dCpf1-BE | rAPOBEC1-dLbCpf1-UGI | TTTV | 识别富含T的PAM | [ | |
| Target-AID-NG | SpnCas9 (NG)-CDA1-UGI | NG | 识别NG PAM | [ | |
| A3A-PBE | hAPOBEC3A-SpnCas9-UGI | NGG | 1~17号位编辑窗口,几乎无基序偏好性 | [ | |
| BE-PLUS | SunTag-SpnCas9-scFv-rAPOBEC1-UGI | NGG | 4~16号位编辑窗口,高保真 | [ | |
| A3G-BEs | hAPOBEC3G-SpnCas9-UGI-UGI | NGG | 编辑CC基序中的第二个C | [ | |
| BE-PAPAPAP | rAPOBEC1-SpnCas9-UGI | NGG | 5~6号位编辑窗口,PAPAPAP替换XTEN linker | [ | |
| HF-BE3 | rAPOBEC1-HFnCas9-UGI | NGG | 减少sgRNA依赖的脱靶编辑 | [ | |
| YE1-BE4 | rAPOBEC1 (W90Y, R126E)-SpnCas9-UGI-UGI | NGG | 缩小编辑窗口,减少非sgRNA依赖的脱靶编辑 | [ | |
| SECURE BE3 | rAPOBEC1 (R33A, K34A)-SpnCas9-UGI | NGG | 减少RNA层面的脱靶编辑,缩小编辑窗口 | [ | |
| DdCBEs | TALE-split DddAtox-UGI | None | 同时编辑DNA双链,可编辑线粒体、叶绿体基因组 | [ | |
| ZFDs | ZFP-split DddAtox-UGI | None | 同时编辑DNA双链,可编辑线粒体、叶绿体基因组 | [ | |
| ABE | ABE7.10 | ecTadA-ecTadA*-SpnCas9 | NGG | 初代碱基编辑器 | [ | 
| ABEmax | ecTadA-ecTadA*-SpnCas9 | NGG | 密码子优化,高活性 | [ | |
| ABE8e | ecTadA-ecTadA*-SpnCas9 | NGG | 高活性,TadA-8e | [ | |
| TaC9-ABE | ecTadA-ecTadA*-TALE,SpnCas9 | NGG | 消除sgRNA依赖的脱靶编辑 | [ | |
| ABE-nSpCas9-DS | ecTadA*-ecTadA*-SpnCas9 (DS) | NGG | 拓宽编辑窗口,减少RNA层面的脱靶编辑 | [ | |
| ACBE | A&C-BEmax | rAPOBEC1/hAID-ecTadA-ecTadA*-SpnCas9-UGI-UGI | NGG | 可同时编辑A或C | [ | 
| sgBE | SpnCas9, MCP-cytosine/adenosine deaminase | NGG | 可同时编辑A或C | [ | |
| GBE | CGBE1 | eUNG-rAPOBEC1 (R33A)-SpnCas9-UGI-UGI | NGG | 可实现C变G的碱基颠换 | [ | 
| CGBE | rAPOBEC1-SpnCas9-rXRCC1 | NGG | 利用碱基切除修复通路实现C变G的碱基颠换 | [ | 
| 1 | JANSEN R, VAN EMBDEN J D A, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6): 1565-1575. | 
| 2 | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. | 
| 3 | MALI P, YANG L H, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. | 
| 4 | LANDRUM M J, LEE J M, BENSON M, et al. ClinVar: public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Research, 2016, 44(D1): D862-D868. | 
| 5 | HAAPANIEMI E, BOTLA S, PERSSON J, et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nature Medicine, 2018, 24(7): 927-930. | 
| 6 | IHRY R J, WORRINGER K A, SALICK M R, et al. p53 Inhibits CRISPR-Cas9 engineering in human pluripotent stem cells[J]. Nature Medicine, 2018, 24(7): 939-946. | 
| 7 | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. | 
| 8 | NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305): aaf8729. | 
| 9 | WANG X, LI J N, WANG Y, et al. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion[J]. Nature Biotechnology, 2018, 36(10): 946-949. | 
| 10 | KOBLAN L W, DOMAN J L, WILSON C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nature Biotechnology, 2018, 36(9): 843-846. | 
| 11 | LI X S, WANG Y, LIU Y J, et al. Base editing with a Cpf1-cytidine deaminase fusion[J]. Nature Biotechnology, 2018, 36(4): 324-327. | 
| 12 | NISHIMASU H, SHI X, ISHIGURO S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408): 1259-1262. | 
| 126 | ZHAO Y W, TIAN J Z, ZHENG G S, et al. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces [J]. Science China Life Sciences, 2020, 63(7): 1053-1062. | 
| 127 | SUN J, LU L B, LIANG T X, et al. CRISPR-assisted multiplex base editing system in Pseudomonas putida KT2440[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 905. | 
| 128 | WANG Y, LIU Y, LIU J, et al. MACBETH: multiplex automated Corynebacterium glutamicum base editing method[J]. Metabolic Engineering, 2018, 47: 200-210. | 
| 129 | WANG Y, CHENG H J, LIU Y, et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing[J]. Nature Communications, 2021, 12: 678. | 
| 130 | PAN Y J, XIA S Y, DONG C, et al. Random base editing for genome evolution in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2021, 10(10): 2440-2446. | 
| 131 | WANG J, ZHAO D D, LI J, et al. Helicase-AID: a novel molecular device for base editing at random genomic loci[J]. Metabolic Engineering, 2021, 67: 396-402. | 
| 13 | ZONG Y, SONG Q N, LI C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nature Biotechnology, 2018, 36(10): 950–953. | 
| 14 | JIANG W, FENG S J, HUANG S S, et al. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity[J]. Cell Research, 2018, 28(8): 855-861. | 
| 15 | LEE S S, DING N, SUN Y D, et al. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects[J]. Science Advances, 2020, 6(29): eaba1773. | 
| 16 | TAN J J, ZHANG F, KARCHER D, et al. Engineering of high-precision base editors for site-specific single nucleotide replacement[J]. Nature Communications, 2019, 10: 439. | 
| 17 | REES H A, KOMOR A C, YEH W H, et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery[J]. Nature Communications, 2017, 8: 15790. | 
| 18 | DOMAN J L, RAGURAM A, NEWBY G A, et al. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors[J]. Nature Biotechnology, 2020, 38(5): 620-628. | 
| 19 | GRÜNEWALD J, ZHOU R H, GARCIA S P, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756): 433-437. | 
| 20 | MOK B Y, DE MORAES M H, ZENG J, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing[J]. Nature, 2020, 583(7817): 631-637. | 
| 21 | LIM K, CHO S I, KIM J S. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases[J]. Nature Communications, 2022, 13(1): 366. | 
| 22 | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. | 
| 23 | RICHTER M F, ZHAO K T, ETON E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nature Biotechnology, 2020, 38(7): 883-891. | 
| 24 | LIU Y, ZHOU J Z, LAN T, et al. Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to target sites[J]. Cell Discovery, 2022, 8: 28. | 
| 25 | LI S, YUAN B, CAO J X, et al. Docking sites inside Cas9 for adenine base editing diversification and RNA off-target elimination[J]. Nature Communications, 2020, 11: 5827. | 
| 26 | ZHANG X H, ZHU B Y, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7): 856-860. | 
| 27 | WANG Y H, ZHOU L F, TAO R, et al. sgBE: a structure-guided design of sgRNA architecture specifies base editing window and enables simultaneous conversion of cytosine and adenosine[J]. Genome Biology, 2020, 21(1): 222. | 
| 28 | KURT I C, ZHOU R H, IYER S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature Biotechnology, 2021, 39(1): 41-46. | 
| 29 | CHEN L W, PARK J E, PAA P, et al. Programmable C∶G to G∶C genome editing with CRISPR-Cas9-directed base excision repair proteins[J]. Nature Communications, 2021, 12: 1384. | 
| 30 | KOMOR A C, ZHAO K T, PACKER M S, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: A base editors with higher efficiency and product purity[J]. Science Advances, 2017, 3(8): eaao4774. | 
| 31 | GRÜNEWALD J, ZHOU R H, LAREAU C A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nature Biotechnology, 2020, 38(7): 861-864. | 
| 32 | LI C, ZHANG R, MENG X B, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nature Biotechnology, 2020, 38(7): 875-882. | 
| 33 | SAKATA R C, ISHIGURO S, MORI H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J]. Nature Biotechnology, 2020, 38(7): 865-869. | 
| 34 | TAO W Y, LIU Q, HUANG S S, et al. CABE-RY: a PAM-flexible dual-mutation base editor for reliable modeling of multi-nucleotide variants[J]. Molecular Therapy-Nucleic Acids, 2021, 26: 114-121. | 
| 35 | XIE J K, HUANG X Y, WANG X, et al. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems[J]. BMC Biology, 2020, 18(1): 131. | 
| 36 | ARBAB M, SHEN M W, MOK B, et al. Determinants of base editing outcomes from target library analysis and machine learning[J]. Cell, 2020, 182(2): 463-480.e30. | 
| 37 | KIM H S, JEONG Y K, HUR J K, et al. Adenine base editors catalyze cytosine conversions in human cells[J]. Nature Biotechnology, 2019, 37(10): 1145-1148. | 
| 38 | MA Y Q, ZHANG J Y, YIN W J, et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells[J]. Nature Methods, 2016, 13(12): 1029-1035. | 
| 39 | ZHAO D D, LI J, LI S W, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology, 2021, 39(1): 35-40. | 
| 40 | KOBLAN L W, ARBAB M, SHEN M W, et al. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning[J]. Nature Biotechnology, 2021, 39(11): 1414-1425. | 
| 41 | YUAN T L, YAN N N, FEI T Y, et al. Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods[J]. Nature Communications, 2021, 12: 4902. | 
| 42 | LI R Q, CHAR S N, LIU B, et al. High-efficiency plastome base editing in rice with TAL cytosine deaminase[J]. Molecular Plant, 2021, 14(9): 1412-1414. | 
| 43 | WEI Y H, LI Z F, XU K, et al. Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos[J]. Cell Discovery, 2022, 8: 27. | 
| 44 | CHO S I, LEE S H, MOK Y G, et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases[J]. Cell, 2022, 185(10): 1764-1776.e12. | 
| 45 | BASS B L. RNA editing by adenosine deaminases that act on RNA[J]. Annual Review of Biochemistry, 2002, 71: 817-846. | 
| 46 | BAZAK L, HAVIV A, BARAK M, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes[J]. Genome Research, 2014, 24(3): 365-376. | 
| 47 | MONTIEL-GONZALEZ M F, VALLECILLO-VIEJO I, YUDOWSKI G A, et al. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(45): 18285-18290. | 
| 48 | MONTIEL-GONZÁLEZ M F, VALLECILLO-VIEJO I C, ROSENTHAL J J C. An efficient system for selectively altering genetic information within mRNAs[J]. Nucleic Acids Research, 2016, 44(21): e157. | 
| 49 | SCHNEIDER M F, WETTENGEL J, HOFFMANN P C, et al. Optimal guideRNAs for re-directing deaminase activity of hADAR1 and hADAR2 in trans[J]. Nucleic Acids Research, 2014, 42(10): e87. | 
| 50 | STAFFORST T, SCHNEIDER M F. An RNA-deaminase conjugate selectively repairs point mutations[J]. Angewandte Chemie International Edition, 2012, 51(44): 11166-11169. | 
| 51 | VOGEL P, MOSCHREF M, LI Q, et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs[J]. Nature Methods, 2018, 15(7): 535-538. | 
| 52 | VOGEL P, SCHNEIDER M F, WETTENGEL J, et al. Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA[J]. Angewandte Chemie International Edition, 2014, 53(24): 6267-6271. | 
| 53 | WETTENGEL J, REAUTSCHNIG P, GEISLER S, et al. Harnessing human ADAR2 for RNA repair-recoding a PINK1 mutation rescues mitophagy[J]. Nucleic Acids Research, 2017, 45(5): 2797-2808. | 
| 54 | QU L, YI Z Y, ZHU S Y, et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs[J]. Nature Biotechnology, 2019, 37(9): 1059-1069. | 
| 55 | COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13[J]. Science, 2017, 358(6366): 1019-1027. | 
| 56 | ABUDAYYEH O O, GOOTENBERG J S, FRANKLIN B, et al. A cytosine deaminase for programmable single-base RNA editing[J]. Science, 2019, 365(6451): 382-386. | 
| 57 | HUANG X X, LV J J, LI Y Q, et al. Programmable C-to-U RNA editing using the human APOBEC3A deaminase [J]. The EMBO Journal, 2020, 39(22): e104741. | 
| 58 | TANG G Y, XIE B R, HONG X N, et al. Creating RNA specific C-to-U editase from APOBEC3A by separation of its activities on DNA and RNA substrates[J]. ACS Synthetic Biology, 2021, 10(5): 1106-1115. | 
| 59 | KIM Y B, KOMOR A C, LEVY J M, et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J]. Nature Biotechnology, 2017, 35(4): 371-376. | 
| 60 | HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. | 
| 61 | MILLER S M, WANG T N, RANDOLPH P B, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs[J]. Nature Biotechnology, 2020, 38(4): 471-481. | 
| 62 | WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296. | 
| 63 | CHATTERJEE P, JAKIMO N, JACOBSON J M. Minimal PAM specificity of a highly similar SpCas9 ortholog[J]. Science Advances, 2018, 4(10): eaau0766. | 
| 64 | CHATTERJEE P, LEE J, NIP L, et al. A Cas9 with PAM recognition for adenine dinucleotides[J]. Nature Communications, 2020, 11(1): 2474. | 
| 65 | LIU Z Q, SHAN H H, CHEN S Y, et al. Efficient base editing with expanded targeting scope using an engineered Spy-mac Cas9 variant[J]. Cell Discovery, 2019, 5: 58. | 
| 66 | KLEINSTIVER B P, SOUSA A A, WALTON R T, et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing[J]. Nature Biotechnology, 2019, 37(3): 276-282. | 
| 67 | GAUDELLI N M, LAM D K, REES H A, et al. Directed evolution of adenine base editors with increased activity and therapeutic application[J]. Nature Biotechnology, 2020, 38(7): 892-900. | 
| 68 | HUANG T P, ZHAO K T, MILLER S M, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors[J]. Nature Biotechnology, 2019, 37(6): 626-631. | 
| 69 | OAKES B L, FELLMANN C, RISHI H, et al. CRISPR-Cas9 circular permutants as programmable scaffolds for genome modification[J]. Cell, 2019, 176(1/2): 254-267.e16. | 
| 70 | THURONYI B W, KOBLAN L W, LEVY J M, et al. Continuous evolution of base editors with expanded target compatibility and improved activity[J]. Nature Biotechnology, 2019, 37(9): 1070-1079. | 
| 71 | YU W X, LI J N, HUANG S S, et al. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences[J]. BMC Biology, 2021, 19(1): 34. | 
| 72 | LIU Z Q, SHAN H H, CHEN S Y, et al. Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID-Cas9 fusion[J]. FASEB Journal, 2019, 33(8): 9210-9219. | 
| 73 | CHENG T L, LI S, YUAN B, et al. Expanding C-T base editing toolkit with diversified cytidine deaminases[J]. Nature Communications, 2019, 10: 3612. | 
| 74 | TANENBAUM M E, GILBERT L A, QI L S, et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging[J]. Cell, 2014, 159(3): 635-646. | 
| 75 | GEHRKE J M, CERVANTES O, CLEMENT M K, et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J]. Nature Biotechnology, 2018, 36(10): 977-982. | 
| 76 | ZHANG X H, CHEN L, ZHU B Y, et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain[J]. Nature Cell Biology, 2020, 22(6): 740-750. | 
| 77 | WANG Y H, ZHOU L F, LIU N, et al. BE-PIGS: a base-editing tool with deaminases inlaid into Cas9 PI domain significantly expanded the editing scope[J]. Signal Transduction and Targeted Therapy, 2019, 4: 36. | 
| 78 | VILLIGER L, SCHMIDHEINI L, MATHIS N, et al. Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope[J]. Molecular Therapy Nucleic Acids, 2021, 26: 502-510. | 
| 79 | RYU S M, KOO T, KIM K, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy[J]. Nature Biotechnology, 2018, 36(6): 536-539. | 
| 80 | BANNO S, NISHIDA K, ARAZOE T, et al. Deaminase-mediated multiplex genome editing in Escherichia coli [J]. Nature Microbiology, 2018, 3(4): 423-429. | 
| 81 | HAO W L, CUI W J, CHENG Z Y, et al. Development of a base editor for protein evolution via in situ mutation in vivo [J]. Nucleic Acids Research, 2021, 49(16): 9594-9605. | 
| 82 | WANG Y, LIU Y, LI J W, et al. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum [J]. Biotechnology and Bioengineering, 2019, 116(11): 3016-3029. | 
| 83 | LIU Z Q, CHEN S Y, SHAN H H, et al. Efficient base editing with high precision in rabbits using YFE-BE4max[J]. Cell Death & Disease, 2020, 11: 36. | 
| 84 | TAN J J, ZHANG F, KARCHER D, et al. Expanding the genome-targeting scope and the site selectivity of high-precision base editors[J]. Nature Communications, 2020, 11: 629. | 
| 85 | ZHAO D D, JIANG G, LI J, et al. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE[J]. Nucleic Acids Research, 2022, 50(7): 4161-4170. | 
| 86 | KIM D, LIM K, KIM S T, et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases[J]. Nature Biotechnology, 2017, 35(5): 475-480. | 
| 87 | KIM D, KIM D E, LEE G, et al. Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J]. Nature Biotechnology, 2019, 37(4): 430-435. | 
| 88 | LIANG P P, XIE X W, ZHI S Y, et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq[J]. Nature Communications, 2019, 10(1): 67. | 
| 89 | JIN S, ZONG Y, GAO Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437): 292-295. | 
| 90 | ZUO E W, SUN Y D, WEI W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437): 289-292. | 
| 91 | YU Y, LEETE T C, BORN D A, et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity[J]. Nature Communications, 2020, 11(1): 2052. | 
| 92 | LEI Z X, MENG H W, LV Z C, et al. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors[J]. Nature Methods, 2021, 18(6): 643-651. | 
| 93 | LEI L Q, CHEN H Q, XUE W, et al. APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks[J]. Nature Structural & Molecular Biology, 2018, 25(1): 45-52. | 
| 94 | JEONG Y K, LEE S, HWANG G H, et al. Adenine base editor engineering reduces editing of bystander cytosines[J]. Nature Biotechnology, 2021, 39(11): 1426-1433. | 
| 95 | WANG Q, YANG J, ZHONG Z C, et al. A general theoretical framework to design base editors with reduced bystander effects[J]. Nature Communications, 2021, 12: 6529. | 
| 96 | LEE J K, JEONG E, LEE J, et al. Directed evolution of CRISPR-Cas9 to increase its specificity[J]. Nature Communications, 2018, 9: 3048. | 
| 97 | ZHOU J Z, LIU Y, WEI Y H, et al. Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE[J]. Molecular Therapy, 2022, 30(7): 2443-2451. | 
| 98 | FU Y F, SANDER J D, REYON D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nature Biotechnology, 2014, 32(3): 279-284. | 
| 99 | HU Z W, WANG Y N, LIU Q, et al. Improving the precision of base editing by bubble hairpin single guide RNA[J]. mBio, 2021, 12(2): e00342-21. | 
| 100 | MCGRATH E, SHIN H, ZHANG L Y, et al. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing[J]. Nature Communications, 2019, 10: 5353. | 
| 101 | ZUO E W, SUN Y D, YUAN T L, et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects[J]. Nature Methods, 2020, 17(6): 600-604. | 
| 102 | GRÜNEWALD J, ZHOU R H, IYER S, et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities[J]. Nature Biotechnology, 2019, 37(9): 1041-1048. | 
| 103 | REES H A, WILSON C, DOMAN J L, et al. Analysis and minimization of cellular RNA editing by DNA adenine base editors[J]. Science Advances, 2019, 5(5): eaax5717. | 
| 104 | ZHOU C Y, SUN Y D, YAN R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764): 275-278. | 
| 105 | JANG H K, JO D H, LEE S N, et al. High-purity production and precise editing of DNA base editing ribonucleoproteins[J]. Science Advances, 2021, 7(35): eabg2661. | 
| 106 | YEH W H, CHIANG H, REES H A, et al. In vivo base editing of post-mitotic sensory cells[J]. Nature Communications, 2018, 9: 2184. | 
| 107 | JIANG T T, HENDERSON J M, COOTE K, et al. Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope[J]. Nature Communications, 2020, 11(1): 1979. | 
| 108 | BANSKOTA S, RAGURAM A, SUH S, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins[J]. Cell, 2022, 185(2): 250-265. | 
| 109 | LIANG M M, SUI T T, LIU Z Q, et al. AcrⅡA5 suppresses base editors and reduces their off-target effects[J]. Cells, 2020, 9(8): 1786. | 
| 110 | LIU Z Q, CHEN S Y, LAI L X, et al. Inhibition of base editors with anti-deaminases derived from viruses[J]. Nature Communications, 2022, 13: 597. | 
| 111 | COLLANTES J C, TAN V M, XU H T, et al. Development and characterization of a modular CRISPR and RNA aptamer mediated base editing system[J]. The CRISPR Journal, 2021, 4(1): 58-68. | 
| 112 | GANGOPADHYAY S A, COX K J, MANNA D, et al. Precision control of CRISPR-Cas9 using small molecules and light[J]. Biochemistry, 2019, 58(4): 234-244. | 
| 113 | ZETSCHE B, VOLZ S E, ZHANG F. A split-Cas9 architecture for inducible genome editing and transcription modulation[J]. Nature Biotechnology, 2015, 33(2): 139-142. | 
| 114 | BERRÍOS K N, EVITT N H, DEWEERD R A, et al. Controllable genome editing with split-engineered base editors[J]. Nature Chemical Biology, 2021, 17(12): 1262-1270. | 
| 115 | WANG L J, XUE W, ZHANG H X, et al. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations[J]. Nature Cell Biology, 2021, 23(5): 552-563. | 
| 116 | BILLON P, BRYANT E E, JOSEPH S A, et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons[J]. Molecular Cell, 2017, 67(6): 1068-1079. | 
| 117 | KUSCU C, PARLAK M, TUFAN T R, et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations[J]. Nature Methods, 2017, 14(7): 710-712. | 
| 118 | WANG X J, LIU Z W, LI G L, et al. Efficient gene silencing by adenine base editor-mediated start codon mutation[J]. Molecular Therapy, 2020, 28(2): 431-440. | 
| 119 | LEE C I, JO D H, HWANG G H, et al. CRISPR-Pass: gene rescue of nonsense mutations using adenine base editors[J]. Molecular Therapy, 2019, 27(8): 1364-1371. | 
| 120 | LI Q, SEYS F M, MINTON N P, et al. CRISPR-Cas9D10A nickase-assisted base editing in the solvent producer Clostridium beijerinckii [J]. Biotechnology and Bioengineering, 2019, 116(6): 1475-1483. | 
| 121 | LUO Y F, GE M, WANG B L, et al. CRISPR/Cas9-deaminase enables robust base editing in Rhodobacter sphaeroides 2.4.1[J]. Microbial Cell Factories, 2020, 19(1): 93. | 
| 122 | ZHONG Z Y, GUO J H, DENG L, et al. Base editing in Streptomyces with Cas9-deaminase fusions[EB/OL]. bioRxiv, 2019[2022-09-01]. . | 
| 123 | LI S C, LIU Q, ZHONG Z Y, et al. Exploration of hygromycin B biosynthesis utilizing CRISPR-Cas9-associated base editing[J]. ACS Chemical Biology, 2020, 15(6): 1417-1423. | 
| 124 | CHENG L, MIN D, HE R L, et al. Developing a base-editing system to expand the carbon source utilization spectra of Shewanella oneidensis MR-1 for enhanced pollutant degradation[J]. Biotechnology and Bioengineering, 2020, 117(8): 2389-2400. | 
| 125 | ABDULLAH, WANG P J, HAN T R, et al. Adenine base editing system for Pseudomonas and prediction workflow for protein dysfunction via ABE[J]. ACS Synthetic Biology, 2022, 11(4): 1650-1657. | 
| [1] | GAO Ge, BIAN Qi, WANG Baojun. Synthetic genetic circuit engineering: principles, advances and prospects [J]. Synthetic Biology Journal, 2025, 6(1): 45-64. | 
| [2] | LI Jiyuan, WU Guosheng. Two hypothesises for the origins of organisms from the synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(1): 190-202. | 
| [3] | JIAO Hongtao, QI Meng, SHAO Bin, JIANG Jinsong. Legal issues for the storage of DNA data [J]. Synthetic Biology Journal, 2025, 6(1): 177-189. | 
| [4] | TANG Xinghua, LU Qianneng, HU Yilin. Philosophical reflections on synthetic biology in the Anthropocene [J]. Synthetic Biology Journal, 2025, 6(1): 203-212. | 
| [5] | XU Huaisheng, SHI Xiaolong, LIU Xiaoguang, XU Miaomiao. Key technologies for DNA storage: encoding, error correction, random access, and security [J]. Synthetic Biology Journal, 2025, 6(1): 157-176. | 
| [6] | SHI Ting, SONG Zhan, SONG Shiyi, ZHANG Yi-Heng P. Job. In vitro BioTransformation (ivBT): a new frontier of industrial biomanufacturing [J]. Synthetic Biology Journal, 2024, 5(6): 1437-1460. | 
| [7] | CHAI Meng, WANG Fengqing, WEI Dongzhi. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. | 
| [8] | SHAO Mingwei, SUN Simian, YANG Shimao, CHEN Guoqiang. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, 5(6): 1419-1436. | 
| [9] | CHEN Yu, ZHANG Kang, QIU Yijing, CHENG Caiyun, YIN Jingjing, SONG Tianshun, XIE Jingjing. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168. | 
| [10] | ZHENG Haotian, LI Chaofeng, LIU Liangxu, WANG Jiawei, LI Hengrun, NI Jun. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. | 
| [11] | CHEN Ziling, XIANG Yangfei. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. | 
| [12] | CAI Bingyu, TAN Xiangtian, LI Wei. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. | 
| [13] | XIE Huang, ZHENG Yilei, SU Yiting, RUAN Jingyi, LI Yongquan. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. | 
| [14] | ZHA Wenlong, BU Lan, ZI Jiachen. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. | 
| [15] | HUI Zhen, TANG Xiaoyu. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||