Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (1): 84-91.DOI: 10.12211/2096-8280.2020-005
• Invited Review • Previous Articles Next Articles
LIU Yanfeng1,2, ZHOU Jingwen2,3, LIU Long1,2, CHEN Jian2,3
Received:
2020-02-27
Revised:
2020-04-09
Online:
2020-07-07
Published:
2020-02-29
Contact:
CHEN Jian
刘延峰1,2, 周景文2,3, 刘龙1,2, 陈坚2,3
通讯作者:
陈坚
作者简介:
刘延峰(1987—),男,博士,副研究员,研究方向为微生物代谢工程。E-mail:yanfengliu@jiangnan.edu.cn基金资助:
CLC Number:
LIU Yanfeng, ZHOU Jingwen, LIU Long, CHEN Jian. Synthetic biology and food manufacturing[J]. Synthetic Biology Journal, 2020, 1(1): 84-91.
刘延峰, 周景文, 刘龙, 陈坚. 合成生物学与食品制造[J]. 合成生物学, 2020, 1(1): 84-91.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-005
1 | 陈坚. 中国食品科技:从2020到2035[J]. 中国食品学报, 2019, 19(12): 1-5. |
CHEN J. Food Science and technology in China: from 2020 to 2035 [J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(12):1-5 | |
2 | ZHANG G, ZHAO X, LI X, et al. Challenges and possibilities for bio-manufacturing cultured meat[J]. Trends in Food Science & Technology, 2020, 97: 443-450. |
3 | STEPHENS N, DI SILVIO L, DUNSFORD I, et al. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture[J]. Trends in Food Science & Technology, 2018. 78: 155-166. |
4 | SPECHT E A, WELCH D R, REES CLAYTON E M, et al. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry[J]. Biochemical Engineering Journal, 2018, 132: 161-168. |
5 | TUOMISTO H L, TEIXEIRA De Mattos M J. Environmental impacts of cultured meat production[J]. Environmental Science & Technology, 2011, 45(14): 6117-6123. |
6 | ESHEL G, SHEPON A, MAKOV T, et al. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States[J]. PNAS, 2014, 111(33): 11996-12001. |
7 | BHAT Z F, KUMAR S, FAYAZ H. In vitro meat production: challenges and benefits over conventional meat production[J]. Journal of Integrative Agriculture, 2015, 14(2): 241-248. |
8 | POST M J. Cultured meat from stem cells: Challenges and prospects[J]. Meat Science, 2012, 92(3):297-301. |
9 | LIU S, WANG M, DU G, et al. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization[J]. BMC Biotechnology, 2016, 16:75. |
10 | LIU S, WAN D, WANG M, et al. Overproduction of pro-transglutaminase from Streptomyces hygroscopicus in Yarrowia lipolytica and its biochemical characterization[J]. BMC Biotechnology, 2015, 15:75. |
11 | CALLEJON S, SENDRA R, FERRER S, et al. Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine[J]. PLoS One, 2017, 12(10). DOI: 10.1371/journal.pone.0186019 . |
12 | BHOKISHAM N, PAKHCHANIAN H, QUAN D, et al. Modular construction of multi-subunit protein complexes using engineered tags and microbial transglutaminase[J]. Metabolic Engineering, 2016. 38: 1-9. |
13 | VIDYA J, SAJITHA S, USHASREE M V, et al. Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: an overview[J]. Bioresource Technology, 2017, 245: 1775-1781. |
14 | FENG Y, LIU S, JIAO Y, et al. Improvement of L-asparaginase thermal stability by regulating enzyme kinetic and thermodynamic states[J]. Process Biochemistry, 2018, 71: 45-52. |
15 | FENG Y, LIU S, JIAO Y, et al. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B.subtilis WB600 through a combined strategy[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1509-1520. |
16 | NATARAJAN C, JIANG X B, FAGO A, et al. Expression and purification of recombinant hemoglobin in Escherichia coli [J]. PLoS One, 2011, 6(5):e20176. |
17 | LIU L F, MARTÍNEZ J L, LIU Z H, et al. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2014, 21: 9-16. |
18 | MARTÍNEZ J L, LIU L, PETRANOVIC D, et al. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2015, 112(1): 181-188. |
19 | JIN Y, HE X, ANDOH‐KUMI K, et al. Evaluating potential risks of food allergy and toxicity of soy leghemoglobin expressed in Pichia pastoris [J]. Molecular Nutrition & Food Research, 2018, 62(1): 1700297. |
20 | ZHAO X, CHOI K R, LEE S Y. Metabolic engineering of Escherichia coli for secretory production of free haem[J]. Nat. Catal., 2018, 1: 720-728. |
21 | ZHANG J, WENG H, ZHOU Z,et al. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli [J]. Bioresource Technology, 2019, 274, 353-360. |
22 | ZHANG J L, KANG Z, DING W W, et al. Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production[J]. Applied Biochemistry and Biotechnology, 2016, 178(6): 1252-1262. |
23 | ZHANG J, KANG Z, CHEN J, et al. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli [J]. Sci. Rep., 2015, 5:8584. |
24 | ZHOU J W, DU G C, CHEN J. Novel fermentation processes for manufacturing plant natural products[J]. Current Opinion in Biotechnology, 2014, 25: 17-23. |
25 | ENGELS B, DAHM P, JENNEWEIN S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production[J]. Metabolic Engineering, 2008, 10:201-206. |
26 | GAZAK R, FUKSOVA K, MARHOL P, et al. Preparative method for isosilybin isolation based on enzymatic kinetic resolution of silymarin mixture[J]. Process Biochemistry, 2013, 48:184-189. |
27 | MAVEL S, DIKIC B, PALAKAS S, et al. Synthesis and biological evaluation of a series of flavone derivatives as potential radioligands for imaging the multidrug resistance-associated protein 1 (ABCC1/MRP1) [J]. Bioorg. Med. Chem., 2006, 14:1599-1607. |
28 | PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532 |
29 | MUCHIRI R, WALKER K D. Taxol biosynthesis: tyrocidine synthetase A catalyzes the production of phenylisoserinyl CoA and other amino phenylpropanoyl thioesters[J]. Chem. Biol., 2012, 19:679-685. |
30 | ZHAO J, LI Q Y, SUN T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metabolic Engineering, 2013, 17:42-50. |
31 | WANG C, YOON S H, JANG H J, et al. Metabolic engineering of Escherichia coli for a-farnesene production[J]. Metabolic Engineering, 2011, 13:648-655. |
32 | ASADOLLAHI M A, MAURY J, SCHALK M, et al. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae [J]. Biotechnology Bioengineering, 2010, 106:86-96. |
33 | RICO J, PARDO E, OREJAS M. Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme a reductase catalytic domain in Saccharomyces cerevisiae [J]. Appl. Environ. Microbiol., 2010, 76:6449-6454. |
34 | IGNEA C, TRIKKA F, KOURTZELIS I, et al. Positive genetic interactors of HMG2 identify a new set of genetic perturbations for improving sesquiterpene production in Saccharomyces cerevisiae [J]. Microbial Cell Factory, 2012, 11:162. |
35 | IGNEA C, CVETKOVIC I, LOUPASSAKI S, et al. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids[J]. Microbial Cell Factory, 2011, 10:4-22. |
36 | FISCHER M J C, MEYER S, CLAUDEL P, et al. Metabolic engineering of monoterpene synthesis in yeast[J]. Biotechnology Bioengineering, 2011, 108:1883-1892. |
37 | SCALCINATI G, KNUF C, PARTOW S, et al. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene a-santalene in a fed-batch mode[J]. Metabolic Engineering, 2012, 14:91-103. |
38 | ZHOU Y J J, GAO W, RONG Q X, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J. Am. Chem. Soc., 2012, 134:3234-3241. |
39 | LYU Y B, ZENG W Z, DU G C, et al. Efficient bioconversion of epimedin C to icariin by a glycosidase from Aspergillus nidulans [J]. Bioresource Technology, 2019, 289: 121612. |
40 | LV Y K, XU S, LYU Y B, et al. Engineering enzymatic cascades for the efficient biotransformation of eugenol and taxifolin to silybin and isosilybin[J]. Green Chemistry, 2019, 21(7): 1660-1667. |
41 | XIU Y, JANG S, JONES J A, et al. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures[J]. Biotechnology and Bioengineering, 2017, 114(10). DOI: 10.1002/bit. 26340 . |
42 | LV Y K, GAO S, XU S, et al. Spatial organization of silybin biosynthesis in milk thistle Silybum marianum (L.) Gaertn[J]. Plant Journal, 2017, 92(6): 995-1004. |
43 | LUO Y, LI B Z, LIU D, et al. Engineered biosynthesis of natural products in heterologous hosts[J]. Chemical Society Reviews, 2015, 44(15): 5265-5290. |
44 | SIEDLER S, STAHLHUT S G, MALLA S, et al. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli [J]. Metabolic Engineering, 2014, 21:2-8. |
45 | CHARBONNEAU M R, O’DONNELL D, BLANTON L V, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition[J]. Cell, 2016, 164(5): 859-871. |
46 | ZHANG X, LIU Y, LIU L, et al. Microbial production of sialic acid and sialylated human milk oligosaccharides: advances and perspectives[J]. Biotechnology Advances, 2019, 37(5): 787-800. |
47 | FAIJES M, CASTEJÓN-VILATERSANA M, VAL-CID C, et al. Enzymatic and cell factory approaches to the production of human milk oligosaccharides[J]. Biotechnology Advances, 2019, 37(5): 667-697. |
48 | BYCH K, MIKŠ MH, JOHANSON T, et al. Production of HMOs using microbial hosts-from cell engineering to large scale production[J]. Current Opinion in Biotechnology, 2019. 56: 130-137. |
49 | SPRENGER G A, BAUMGÄRTNER F, ALBERMANN C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations[J]. Journal of Biotechnology, 2017, 258:79-91. |
50 | BODE L, CONTRACTOR N, BARILE D, et al. Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application[J]. Nutrition Reviews, 2016, 74(10): 635-644. |
51 | CHOI Y H, PARK B S, SEO J H, et al. Biosynthesis of the human milk oligosaccharide 3-fucosyllactose in metabolically engineered Escherichia coli via the salvage pathway through increasing GTP synthesis and β-galactosidase modification[J]. Biotechnology and Bioengineering, 2019,116: 3324-3332. |
52 | DROUILLARD S, MINE T, KAJIWARA H, et al. Efficient synthesis of 6'-sialyllactose, 6,6'-disialyllactose, and 6'-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224[J]. Carbohydr. Res., 2010, 345, 1394-1399. |
53 | FIERFORT N, SAMAIN E. Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides[J]. J. Biotechnol., 2008, 134, 261-265. |
54 | GUO Y, JERS C, MEYER A S, et al. A Pasteurella multocida sialyltransferase displaying dual trans-sialidase activities for production of 3’-sialyl and 6’-sialyl glycans[J]. J. Biotechnol., 2014, 170: 60-67. |
55 | HUANG D, YANG K, LIU J, et al. Metabolic engineering of Escherichia coli for the production of 2’-fucosyllactose and 3-fucosyllactose through modular pathway enhancement[J]. Metabolic Engineering, 2017, 41: 23-38. |
56 | LIU Y F, LIU L, LI J H, et al. Synthetic biology toolbox and chassis development in Bacillus subtilis [J]. Trends in Biotechnology, 2019, 37(5): 548-562. |
57 | GU Y, XU X H, WU Y K, et al. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications[J]. Metabolic Engineering, 2018, 50: 109-121. |
58 | LIU Y F, LI J H, DU G C, et al. Metabolic engineering of Bacillus subtilis fueled by systems biology: recent advances and future directions[J]. Biotechnology Advances, 2017, 35(1): 20-30. |
59 | ŸZTÜRK S, ŸALIK P, ÖZDAMAR T H. Fed-batch biomolecule production by Bacillus subtilis: a state of the art review[J]. Trends in Biotechnology, 2016, 34(4): 329-345. |
60 | DIJL J M VAN, HECKER M. Bacillus subtilis: from soil bacterium to super-secreting cell factory[J]. Microbial Cell Factories, 2013, 12(1): 3. |
61 | DENG J Y, GU L Y, CHEN T C, et al. Engineering the substrate transport and cofactor regeneration systems for enhancing 2'-fucosyllactose synthesis in Bacillus subtilis [J]. ACS Synthetic Biology, 2019, 28(10): 2418-2427. |
62 | DENG J, CHEN C, GU Y, et al. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis [J]. Metabolic Engineering, 2019, 55: 179-190. |
63 | DONG X, LI N, LIU Z, et al. CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis [J]. Journal of Agricultural and Food Chemistry, 2020, 68(8): 2477-2484. |
[1] | GAO Ge, BIAN Qi, WANG Baojun. Synthetic genetic circuit engineering: principles, advances and prospects [J]. Synthetic Biology Journal, 2025, 6(1): 45-64. |
[2] | LI Jiyuan, WU Guosheng. Two hypothesises for the origins of organisms from the synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(1): 190-202. |
[3] | JIAO Hongtao, QI Meng, SHAO Bin, JIANG Jinsong. Legal issues for the storage of DNA data [J]. Synthetic Biology Journal, 2025, 6(1): 177-189. |
[4] | TANG Xinghua, LU Qianneng, HU Yilin. Philosophical reflections on synthetic biology in the Anthropocene [J]. Synthetic Biology Journal, 2025, 6(1): 203-212. |
[5] | XU Huaisheng, SHI Xiaolong, LIU Xiaoguang, XU Miaomiao. Key technologies for DNA storage: encoding, error correction, random access, and security [J]. Synthetic Biology Journal, 2025, 6(1): 157-176. |
[6] | SHI Ting, SONG Zhan, SONG Shiyi, ZHANG Yi-Heng P. Job. In vitro BioTransformation (ivBT): a new frontier of industrial biomanufacturing [J]. Synthetic Biology Journal, 2024, 5(6): 1437-1460. |
[7] | CHAI Meng, WANG Fengqing, WEI Dongzhi. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. |
[8] | SHAO Mingwei, SUN Simian, YANG Shimao, CHEN Guoqiang. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, 5(6): 1419-1436. |
[9] | CHEN Yu, ZHANG Kang, QIU Yijing, CHENG Caiyun, YIN Jingjing, SONG Tianshun, XIE Jingjing. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168. |
[10] | ZHENG Haotian, LI Chaofeng, LIU Liangxu, WANG Jiawei, LI Hengrun, NI Jun. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[11] | CHEN Ziling, XIANG Yangfei. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[12] | CAI Bingyu, TAN Xiangtian, LI Wei. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[13] | XIE Huang, ZHENG Yilei, SU Yiting, RUAN Jingyi, LI Yongquan. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[14] | ZHA Wenlong, BU Lan, ZI Jiachen. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[15] | HUI Zhen, TANG Xiaoyu. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||