Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (5): 503-515.DOI: 10.12211/2096-8280.2020-013
• Invited Review • Previous Articles Next Articles
Hui WANG1,2, Junbiao DAI1,2, Zhouqing LUO2
Received:
2020-02-29
Revised:
2020-04-19
Online:
2020-12-03
Published:
2020-10-31
Contact:
Junbiao DAI,Zhouqing LUO
王会1,2, 戴俊彪1,2, 罗周卿2
通讯作者:
戴俊彪,罗周卿
作者简介:
王会(1993—),女,硕士研究生,主要研究方向为合成生物学。E-mail:基金资助:
CLC Number:
Hui WANG, Junbiao DAI, Zhouqing LUO. Reading, editing, and writing techniques for genome research[J]. Synthetic Biology Journal, 2020, 1(5): 503-515.
王会, 戴俊彪, 罗周卿. 基因组的“读-改-写”技术[J]. 合成生物学, 2020, 1(5): 503-515.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-013
1 | MCKUSICK V A. Genomics: structural and functional studies of genomes[J]. Genomics, 1997, 45(2):244-249. |
2 | ALEXANDER R P, FANG G, ROZOWSKY J, et al. Annotating non-coding regions of the genome[J]. Nature Reviews Genetics, 2010, 11(8):559-571. |
3 | CRICK F. The double helix: a personal view[J]. Nature, 1974, 248(5451):766-769. |
4 | SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12):5463-5467. |
5 | JACKSON D A, SYMONS R H, BERG P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America,1972, 69(10):2904-2909. |
6 | CHANG A C, COHEN S N. Genome construction between bacterial species in vitro: replication and expression of Staphylococcus plasmid genes in Escherichia coli[J].Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(4):1030-1034. |
7 | VENTER J C, ADAMS M D, MYERS E W, et al. The sequence of the human genome[J]. Science, 2001, 291(5507):1304-1351. |
8 | International human genome sequencing C: finishing the euchromatic sequence of the human genome[J]. Nature, 2004, 431(7011):931-945. |
9 | CELLO J, PAUL A V, WIMMER E. Chemical synthesis of Poliovirus cDNA: generation of infectious virus in the absence of natural template[J]. Science, 2002, 297(5583):1016-1018. |
10 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. |
11 | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. |
12 | MARGULIES M, EGHOLM M, ALTMAN W E, et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437(7057):376-380. |
13 | LEVY S E, MYERS R M. Advancements in next-generation sequencing[J]. Annual Review of Genomics and Human Genetics, 2016, 17:95-115. |
14 | VALOUEV A, ICHIKAWA J, TONTHAT T, et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning[J]. Genome Research, 2008, 18(7):1051-1063. |
15 | GOODWIN S, MCPHERSON J D, MCCOMBIE W R. Coming of age: ten years of next-generation sequencing technologies[J].Nature Reviews Genetics, 2016, 17(6):333-351. |
16 | EID J, FEHR A, GRAY J, et al. Real-time DNA sequencing from single polymerase molecules[J]. Science, 2009, 323(5910):133-138. |
17 | ASHTON P M, NAIR S, DALLMAN T, et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island[J]. Nature Biotechnology, 2015, 33(3):296-300. |
18 | FLUSBERG B A, WEBSTER D R, LEE J H, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing[J]. Nature Methods, 2010, 7(6):461-465. |
19 | TRAVERS K J, CHIN C S, RANK D R, et al. A flexible and efficient template format for circular consensus sequencing and SNP detection[J]. Nucleic Acids Research, 2010, 38(15):e159. |
20 | DIJK E L VAN, JASZCZYZYN Y, NAQUIN D, et al. The third revolution in sequencing technology[J]. Trends in Genetics, 2018, 34(9):666-681. |
21 | MANRAO E A, DERRINGTON I M, LASZLO A H, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase[J]. Nature Biotechnology, 2012, 30(4):349-353. |
22 | JAIN M, KOREN S, MIGA K H, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads[J]. Nature Biotechnology, 2018, 36(4):338-345. |
23 | JAIN M, OLSEN H E, TURNER D J, et al. Linear assembly of a human centromere on the Y chromosome[J]. Nature Biotechnology, 2018, 36(4):321-323. |
24 | JAIN M, TYSON J R, LOOSE M, et al. MinION analysis and reference consortium: phase 2 data release and analysis of R9.0 chemistry[J]. F1000Research, 2017, 6:760. |
25 | FRIEDBERG E C. DNA damage and repair[J]. Nature, 2003, 421(6921):436-440. |
26 | ABREMSKI K, HOESS R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein[J]. Journal of Biological Chemistry, 1984, 259(3):1509-1514. |
27 | SENECOFF J F, BRUCKNER R C, COX M M. The FLP recombinase of the yeast 2-micron plasmid: characterization of its recombination site[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(21):7270-7274. |
28 | GAJ T, GERSBACH C A, C F 3rd BARBAS. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31(7):397-405. |
29 | KIM Y G, CHA J, CHANDRASEGARAN S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(3):1156-1160. |
30 | URNOV F D, REBAR E J, HOLMES M C, et al. Genome editing with engineered zinc finger nucleases[J]. Nature Reviews Genetics, 2010, 11(9):636-646. |
31 | GUILLINGER J P, PATTANAYAK V, REYONN D, et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity[J]. Nature Methods, 2014, 11(4):429-435. |
32 | CHANDRASEGARAN S, CARROLL D. Origins of programmable nucleases for genome engineering[J]. Journal of Molecular Biology, 2016, 428(5PtB):963-989. |
33 | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712. |
34 | RAN F A, CONG L, YAN W X, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546):186-191. |
35 | LEE C M, CRADICK T J, BAO G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells[J]. Molecular Therapy : the Journal of the American Society of Gene Therapy, 2016, 24(3):645-654. |
36 | KIM E, KOO T, PARK S W, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J]. Nature Communications, 2017, 8:14500. |
37 | HU J H, MILLER S M, GEURTSS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699):57-63. |
38 | NISHIMASU H, SHI X, ISHIGURO S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408):1259-1262. |
39 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771. |
40 | TENG F, CUI T, FENG G, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering[J]. Cell Discovery, 2018, 4:1-15. |
41 | STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications, 2019, 10(1):212. |
42 | ADUDAYYEH O O, GOOTENBERGG J S, KONERMAN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(2699):aaf5573. |
43 | BARRANGOU R, GERSBACH C A. Expanding the CRISPR toolbox: targeting RNA with Cas13b[J]. Molecular Cell, 2017, 65:582-584. |
44 | HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839-842. |
45 | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183. |
46 | KOMER A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. |
47 | GAUDELLI N M, KOMER A C, REES H A, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. |
48 | GRUNEWALD J, ZHOU R, GARCIA S P, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756):433-437. |
49 | JIN S, ZONG Y, GAO Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437):292-295. |
50 | ZHOU C, SUN Y, YAN R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764):275-278. |
51 | ZUO E, SUN Y, WEI W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437):289-292. |
52 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7758):149-157. |
53 | WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296. |
54 | BEAUCAGE S, CARUTHERS M. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis[J]. Tetrahedron Letters, 1981, 22(20):1859-1862. |
55 | CARUTHERS M, BARONE A, BEAUCAGE S, et al. Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method[J]. Method Enzymol, 1987, 154: 287-313. |
56 | LEPROUST E M, PECK B J, SPIRIN K, et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process[J]. Nucleic Acids Research, 2010, 38(8):2522-2540. |
57 | KOSURI S, CHURCH G M. Large-scale de novo DNA synthesis: technologies and applications[J]. Nature Methods, 2014, 11(5):499-507. |
58 | BOLLUM F J. Oligodeoxyribonucleotide-primed reactions catalyzed by calf thymus polymerase[J]. Journal of Biological Chemistry, 1962, 237(6):1945-1949. |
59 | JENSEN M A, DAVIS R W. Template-independent Enzymatic Oligonucleotide Synthesis (TiEOS): its history, prospects, and challenges[J]. Biochemistry, 2018, 57(12):1821-1832. |
60 | PALLUK S, ARLOW D H, DE ROND T, et al. De novo DNA synthesis using polymerase-nucleotide conjugates[J]. Nature Biotechnology, 2018, 36(7):645. |
61 | SMITH H O, C A 3rd HUTCHISON, PFANNKOCH C, et al. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26):15440-15445. |
62 | ENGLER C, KANDZIA R, MARILLONNET S. A one pot, one step, precision cloning method with high throughput capability[J]. PLoS One, 2008, 3(11):e3647. |
63 | GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5):343-345. |
64 | GIDSON D G, BENDERS G A, ANDERWS-PFANNKOCH C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome[J]. Science, 2008, 319(5867):1215-1220. |
65 | GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987):52-56. |
66 | C A 3rd HUTCHISON, CHUANG R Y, NOSKOV V N, et al. Design and synthesis of a minimal bacterial genome[J]. Science, 2016, 351(6280):aad6253. |
67 | FRASER C M, GOCAYNE J D, WHITE O, et al. The minimal gene complement of Mycoplasma genitalium[J]. Science, 1995, 270(5235):397-403. |
68 | HUTCHISON C A, PETERSON S N, GILL S R, et al. Global transposon mutagenesis and a minimal Mycoplasma genome[J]. Science, 1999, 286(5447):2165-2169. |
69 | GIBSON D G, BENDERS G A, AXELROD K C, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome[J]. Proceedings of the National Academy of Sciences, 2008, 105(51):20404-20409. |
70 | LARTIGUE C, VASHEE S, ALGIRE M A, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast[J]. Science, 2009, 325(5948):1693-1696. |
71 | FREDENS J, WANG K, DE LA TORRE D, et al. Total synthesis of Escherichia coli with a recoded genome[J]. Nature, 2019, 569(7757):514-518. |
72 | DYMOND J S, RICHARDSON S M, COOMDES C E, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design[J]. Nature, 2011, 477(7365):471-476. |
73 | ANNALURU N, MULLER H, MITCHELL LA, et al. Total synthesis of a functional designer eukaryotic chromosome[J]. Science, 2014, 344(6179):55-58. |
74 | MITCHELL L A, WANG A, STRACQUADANIO G, et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond[J]. Science, 2017, 355(6322):aaf4831. |
75 | RICHARDSON S M, MITCHELL L A, STRACQUADANIO G, et al. Design of a synthetic yeast genome[J]. Science, 2017, 355(6329):1040-1044. |
76 | SHEN Y, WANG Y, CHEN T, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome[J]. Science, 2017, 355(6322):aaf4791. |
77 | WU Y, LI B Z, ZHAO M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X[J]. Science, 2017, 355(6322):aaf4706. |
78 | XIE Z X, LI B Z, MITCHELL L A, et al. "Perfect" designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6322):aaf4704. |
79 | ZHANG W, ZHAO G, LUO Z, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome[J]. Science, 2017, 355(6322):aaf3981. |
80 | LUO Z, YANG Q, GENG B, et al. Whole genome engineering by synthesis[J]. Science China Life Sciences, 2018, 61(12):1515-1527. |
81 | BOEKE J D, CHURCH G, HESSEL A, et al. Genome Engineering. The Genome Project-Write[J]. Science, 2016, 353(6295):126-127. |
82 | MERCY G, MOZZICONACCI J, SCOLARI V F, et al. 3D organization of synthetic and scrambled chromosomes[J]. Science, 2017, 355(6322):aaf4597. |
83 | SHEN Y, STRACQUADANIO G, WANG Y, et al. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes[J]. Genome Research, 2016, 26(1):36-49. |
84 | BLOUNT B A, GOWERS G F, HO J C H, et al. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome[J]. Nature Communications, 2018, 9(1):1932. |
85 | HOCHREIN L, MITCHELL L A, SCHULZ K, et al. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast[J]. Nature Communications, 2018, 9(1):1931. |
86 | JIA B, WU Y, LI B Z, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast[J]. Nature Communications, 2018, 9(1):1933. |
87 | LIU W, LUO Z, WANG Y, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods[J]. Nature Communications, 2018, 9(1):1936. |
88 | LUO Z, WANG L, WANG Y, et al. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES[J]. Nature Communications, 2018, 9(1):1930. |
89 | SHEN M J, WU Y, YANG K, et al. Heterozygous diploid and interspecies SCRaMbLEing[J]. Nature Communications, 2018, 9(1):1934. |
90 | WANG J, XIE Z X, MA Y, et al. Ring synthetic chromosome V SCRaMbLE[J]. Nature Communications, 2018, 9(1): 3783. |
91 | WU Y, ZHU R Y, MITCHELL L A, et al. In vitro DNA SCRaMbLE[J]. Nature Communications, 2018, 9(1):1935. |
92 | GOWERS G F, CHEE S M, BELL D, et al. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening[J]. Nature Communications, 2020, 11(1):868. |
93 | GARAJ S, HUBBARD W, REINA A, et al. Graphene as a subnanometre trans-electrode membrane[J]. Nature, 2010, 467:190-193. |
94 | GOTO Y, AKAHORI R, YANAGI I, et al. Solid-state nanopores towards single-molecule DNA sequencing[J]. Journal of Human Genetics, 2020, 65(1):69-77. |
95 | KOLMOGOROV M, KENNEDY E, DONG Z X, et al. Single-molecule protein identification by sub-nanopore sensors[J]. PLoS Computational Biology, 2017, 13(5):e1005356. |
96 | MASCHER M, GUNDLACH H, HIMMELBACH A, et al. A chromosome conformation capture ordered sequence of the barley genome[J]. Nature, 2017, 544(7651):427-433. |
97 | SEO J S, RHIE A, KIM J, et al. De novo assembly and phasing of a Korean human genome[J]. Nature, 2016, 538(7624):243-247. |
98 | CAMPA C C, WEISBACH N R, SANTINHA A J, et al. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts[J]. Nature Methods, 2019, 16(9):887-893. |
99 | ISAACS F J, CARR P A, WANG H H, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement[J]. Science, 2011, 333(6040):348-353. |
100 | LAJOIE M J, ROVNER A J, GOODMAN D B, et al. Genomically recoded organisms expand biological functions[J]. Science, 2013, 342(6156):357-360. |
101 | PERKEL J M. The race for enzymatic DNA synthesis heats up[J]. Nature, 2019, 566(7745):565. |
102 | JUHAS M, AJIOKA J W. High molecular weight DNA assembly in vivo for synthetic biology applications[J]. Critical Reviews in Biotechnology, 2017, 37(3):277-286. |
103 | OSTROV N, BEAL J, ELLIS T, et al. Technological challenges and milestones for writing genomes[J]. Science, 2019, 366(6463):310-312. |
104 | BROWN D M, CHAN Y A, DESAI P J, et al. Efficient size-independent chromosome delivery from yeast to cultured cell lines[J]. Nucleic Acids Research, 2017, 45(7):e50. |
[1] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[2] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
[3] | Zhonghu BAI, He REN, Jianqi NIE, Yang SUN. The recent progresses and applications of in-parallel fermentation technology [J]. Synthetic Biology Journal, 2023, 4(5): 904-915. |
[4] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[5] | Zhehui HU, Juan XU, Guangkai BIAN. Application of automated high-throughput technology in natural product biosynthesis [J]. Synthetic Biology Journal, 2023, 4(5): 932-946. |
[6] | Huan LIU, Qiu CUI. Advances and applications of ambient ionization mass spectrometry in screening of microbial strains [J]. Synthetic Biology Journal, 2023, 4(5): 980-999. |
[7] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. |
[8] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[9] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[10] | Zhi SUN, Ning YANG, Chunbo LOU, Chao TANG, Xiaojing YANG. Rational design for functional topology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2023, 4(3): 444-463. |
[11] | Qilong LAI, Shuai YAO, Yuguo ZHA, Hong BAI, Kang NING. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials [J]. Synthetic Biology Journal, 2023, 4(3): 611-627. |
[12] | Qiaozhen MENG, Fei GUO. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example [J]. Synthetic Biology Journal, 2023, 4(3): 571-589. |
[13] | Sheng WANG, Zechen WANG, Weihua CHEN, Ke CHEN, Xiangda PENG, Fafen OU, Liangzhen ZHENG, Jinyuan SUN, Tao SHEN, Guoping ZHAO. Design of synthetic biology components based on artificial intelligence and computational biology [J]. Synthetic Biology Journal, 2023, 4(3): 422-443. |
[14] | Hailong LV, Jian WANG, Hao LV, Jin WANG, Yong XU, Dayong GU. Synthetic biology for next-generation genetic diagnostics [J]. Synthetic Biology Journal, 2023, 4(2): 318-332. |
[15] | Zhaoling SHEN, Yanling WU, Tianlei YING. Synthetic biology and viral vaccine development [J]. Synthetic Biology Journal, 2023, 4(2): 333-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||