合成生物学 ›› 2020, Vol. 1 ›› Issue (5): 503-515.doi: 10.12211/2096-8280.2020-013
王会1,2, 戴俊彪1,2, 罗周卿2
收稿日期:
2020-02-29
修回日期:
2020-04-19
出版日期:
2020-10-31
发布日期:
2020-12-03
通讯作者:
戴俊彪,罗周卿
作者简介:
王会(1993—),女,硕士研究生,主要研究方向为合成生物学。E-mail:基金资助:
Hui WANG1,2, Junbiao DAI1,2, Zhouqing LUO2
Received:
2020-02-29
Revised:
2020-04-19
Online:
2020-10-31
Published:
2020-12-03
Contact:
Junbiao DAI,Zhouqing LUO
摘要:
基因组是生命系统的指令中枢,对基因组的研究是生命科学的核心内容,基因组研究相关技术的开发是深化对基因组序列和功能认识的重要推动力量。通过基因组测序获取基因组全序列,通过人工诱变、定点编辑研究基因组局部序列的功能与调控,通过对基因组的从头设计与化学再造实现对生命性状的定制,是基因组研究的三个不同层面。从一代测序到三代测序,基因组“读”技术极大地降低了成本和难度,提升了速度和精准度,引领着复杂基因组、大型基因组从草图走向完成图时代。通过人工诱变、定点编辑等技术可以改变野生型基因组的局部序列,研究基因组序列的功能与调控。从人工诱变到定点编辑,从ZFN到CRISPR,基因组“改”技术在效率、适用对象和简便性上有了显著的提高,为“基因型-表型”研究提供了有力工具,精准编辑、高通量编辑逐步走向应用。通过对基因组的从头设计与化学再造,书写人工基因组,可以获得对基因组全局的系统认识,实现对生命性状的定制。从病毒基因组合成、细菌基因组合成到酵母基因组合成,再到国际基因组写计划,基因组“写”技术在适用对象上不断拓展,人工设计、化学再造正成为复杂生物学问题研究和已有性状优化、新性状引入的一把利器。本文主要综述了基因组测序(读)、基因组编辑(改)和基因组合成(写)技术的发展历程、各自的特征、目前的研究进展及在基因组研究方面的一些应用,并对近期相关技术的可能突破点进行了总结和展望。“读-改-写”技术互为支撑,推动基因组研究在致知和致用领域两面开花。
中图分类号:
王会, 戴俊彪, 罗周卿. 基因组的“读-改-写”技术[J]. 合成生物学, 2020, 1(5): 503-515, doi: 10.12211/2096-8280.2020-013.
Hui WANG, Junbiao DAI, Zhouqing LUO. Reading, editing, and writing techniques for genome research[J]. Synthetic Biology Journal, 2020, 1(5): 503-515, doi: 10.12211/2096-8280.2020-013.
1 | MCKUSICK V A. Genomics: structural and functional studies of genomes[J]. Genomics, 1997, 45(2):244-249. |
2 | ALEXANDER R P, FANG G, ROZOWSKY J, et al. Annotating non-coding regions of the genome[J]. Nature Reviews Genetics, 2010, 11(8):559-571. |
3 | CRICK F. The double helix: a personal view[J]. Nature, 1974, 248(5451):766-769. |
4 | SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12):5463-5467. |
5 | JACKSON D A, SYMONS R H, BERG P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America,1972, 69(10):2904-2909. |
6 | CHANG A C, COHEN S N. Genome construction between bacterial species in vitro: replication and expression of Staphylococcus plasmid genes in Escherichia coli[J].Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(4):1030-1034. |
7 | VENTER J C, ADAMS M D, MYERS E W, et al. The sequence of the human genome[J]. Science, 2001, 291(5507):1304-1351. |
8 | International human genome sequencing C: finishing the euchromatic sequence of the human genome[J]. Nature, 2004, 431(7011):931-945. |
9 | CELLO J, PAUL A V, WIMMER E. Chemical synthesis of Poliovirus cDNA: generation of infectious virus in the absence of natural template[J]. Science, 2002, 297(5583):1016-1018. |
10 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. |
11 | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. |
12 | MARGULIES M, EGHOLM M, ALTMAN W E, et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437(7057):376-380. |
13 | LEVY S E, MYERS R M. Advancements in next-generation sequencing[J]. Annual Review of Genomics and Human Genetics, 2016, 17:95-115. |
14 | VALOUEV A, ICHIKAWA J, TONTHAT T, et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning[J]. Genome Research, 2008, 18(7):1051-1063. |
15 | GOODWIN S, MCPHERSON J D, MCCOMBIE W R. Coming of age: ten years of next-generation sequencing technologies[J].Nature Reviews Genetics, 2016, 17(6):333-351. |
16 | EID J, FEHR A, GRAY J, et al. Real-time DNA sequencing from single polymerase molecules[J]. Science, 2009, 323(5910):133-138. |
17 | ASHTON P M, NAIR S, DALLMAN T, et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island[J]. Nature Biotechnology, 2015, 33(3):296-300. |
18 | FLUSBERG B A, WEBSTER D R, LEE J H, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing[J]. Nature Methods, 2010, 7(6):461-465. |
19 | TRAVERS K J, CHIN C S, RANK D R, et al. A flexible and efficient template format for circular consensus sequencing and SNP detection[J]. Nucleic Acids Research, 2010, 38(15):e159. |
20 | DIJK E L VAN, JASZCZYZYN Y, NAQUIN D, et al. The third revolution in sequencing technology[J]. Trends in Genetics, 2018, 34(9):666-681. |
21 | MANRAO E A, DERRINGTON I M, LASZLO A H, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase[J]. Nature Biotechnology, 2012, 30(4):349-353. |
22 | JAIN M, KOREN S, MIGA K H, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads[J]. Nature Biotechnology, 2018, 36(4):338-345. |
23 | JAIN M, OLSEN H E, TURNER D J, et al. Linear assembly of a human centromere on the Y chromosome[J]. Nature Biotechnology, 2018, 36(4):321-323. |
24 | JAIN M, TYSON J R, LOOSE M, et al. MinION analysis and reference consortium: phase 2 data release and analysis of R9.0 chemistry[J]. F1000Research, 2017, 6:760. |
25 | FRIEDBERG E C. DNA damage and repair[J]. Nature, 2003, 421(6921):436-440. |
26 | ABREMSKI K, HOESS R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein[J]. Journal of Biological Chemistry, 1984, 259(3):1509-1514. |
27 | SENECOFF J F, BRUCKNER R C, COX M M. The FLP recombinase of the yeast 2-micron plasmid: characterization of its recombination site[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(21):7270-7274. |
28 | GAJ T, GERSBACH C A, C F 3rd BARBAS. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31(7):397-405. |
29 | KIM Y G, CHA J, CHANDRASEGARAN S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(3):1156-1160. |
30 | URNOV F D, REBAR E J, HOLMES M C, et al. Genome editing with engineered zinc finger nucleases[J]. Nature Reviews Genetics, 2010, 11(9):636-646. |
31 | GUILLINGER J P, PATTANAYAK V, REYONN D, et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity[J]. Nature Methods, 2014, 11(4):429-435. |
32 | CHANDRASEGARAN S, CARROLL D. Origins of programmable nucleases for genome engineering[J]. Journal of Molecular Biology, 2016, 428(5PtB):963-989. |
33 | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712. |
34 | RAN F A, CONG L, YAN W X, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546):186-191. |
35 | LEE C M, CRADICK T J, BAO G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells[J]. Molecular Therapy : the Journal of the American Society of Gene Therapy, 2016, 24(3):645-654. |
36 | KIM E, KOO T, PARK S W, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J]. Nature Communications, 2017, 8:14500. |
37 | HU J H, MILLER S M, GEURTSS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699):57-63. |
38 | NISHIMASU H, SHI X, ISHIGURO S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408):1259-1262. |
39 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771. |
40 | TENG F, CUI T, FENG G, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering[J]. Cell Discovery, 2018, 4:1-15. |
41 | STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications, 2019, 10(1):212. |
42 | ADUDAYYEH O O, GOOTENBERGG J S, KONERMAN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(2699):aaf5573. |
43 | BARRANGOU R, GERSBACH C A. Expanding the CRISPR toolbox: targeting RNA with Cas13b[J]. Molecular Cell, 2017, 65:582-584. |
44 | HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839-842. |
45 | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183. |
46 | KOMER A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. |
47 | GAUDELLI N M, KOMER A C, REES H A, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. |
48 | GRUNEWALD J, ZHOU R, GARCIA S P, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756):433-437. |
49 | JIN S, ZONG Y, GAO Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437):292-295. |
50 | ZHOU C, SUN Y, YAN R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764):275-278. |
51 | ZUO E, SUN Y, WEI W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437):289-292. |
52 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7758):149-157. |
53 | WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296. |
54 | BEAUCAGE S, CARUTHERS M. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis[J]. Tetrahedron Letters, 1981, 22(20):1859-1862. |
55 | CARUTHERS M, BARONE A, BEAUCAGE S, et al. Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method[J]. Method Enzymol, 1987, 154: 287-313. |
56 | LEPROUST E M, PECK B J, SPIRIN K, et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process[J]. Nucleic Acids Research, 2010, 38(8):2522-2540. |
57 | KOSURI S, CHURCH G M. Large-scale de novo DNA synthesis: technologies and applications[J]. Nature Methods, 2014, 11(5):499-507. |
58 | BOLLUM F J. Oligodeoxyribonucleotide-primed reactions catalyzed by calf thymus polymerase[J]. Journal of Biological Chemistry, 1962, 237(6):1945-1949. |
59 | JENSEN M A, DAVIS R W. Template-independent Enzymatic Oligonucleotide Synthesis (TiEOS): its history, prospects, and challenges[J]. Biochemistry, 2018, 57(12):1821-1832. |
60 | PALLUK S, ARLOW D H, DE ROND T, et al. De novo DNA synthesis using polymerase-nucleotide conjugates[J]. Nature Biotechnology, 2018, 36(7):645. |
61 | SMITH H O, C A 3rd HUTCHISON, PFANNKOCH C, et al. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26):15440-15445. |
62 | ENGLER C, KANDZIA R, MARILLONNET S. A one pot, one step, precision cloning method with high throughput capability[J]. PLoS One, 2008, 3(11):e3647. |
63 | GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5):343-345. |
64 | GIDSON D G, BENDERS G A, ANDERWS-PFANNKOCH C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome[J]. Science, 2008, 319(5867):1215-1220. |
65 | GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987):52-56. |
66 | C A 3rd HUTCHISON, CHUANG R Y, NOSKOV V N, et al. Design and synthesis of a minimal bacterial genome[J]. Science, 2016, 351(6280):aad6253. |
67 | FRASER C M, GOCAYNE J D, WHITE O, et al. The minimal gene complement of Mycoplasma genitalium[J]. Science, 1995, 270(5235):397-403. |
68 | HUTCHISON C A, PETERSON S N, GILL S R, et al. Global transposon mutagenesis and a minimal Mycoplasma genome[J]. Science, 1999, 286(5447):2165-2169. |
69 | GIBSON D G, BENDERS G A, AXELROD K C, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome[J]. Proceedings of the National Academy of Sciences, 2008, 105(51):20404-20409. |
70 | LARTIGUE C, VASHEE S, ALGIRE M A, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast[J]. Science, 2009, 325(5948):1693-1696. |
71 | FREDENS J, WANG K, DE LA TORRE D, et al. Total synthesis of Escherichia coli with a recoded genome[J]. Nature, 2019, 569(7757):514-518. |
72 | DYMOND J S, RICHARDSON S M, COOMDES C E, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design[J]. Nature, 2011, 477(7365):471-476. |
73 | ANNALURU N, MULLER H, MITCHELL LA, et al. Total synthesis of a functional designer eukaryotic chromosome[J]. Science, 2014, 344(6179):55-58. |
74 | MITCHELL L A, WANG A, STRACQUADANIO G, et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond[J]. Science, 2017, 355(6322):aaf4831. |
75 | RICHARDSON S M, MITCHELL L A, STRACQUADANIO G, et al. Design of a synthetic yeast genome[J]. Science, 2017, 355(6329):1040-1044. |
76 | SHEN Y, WANG Y, CHEN T, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome[J]. Science, 2017, 355(6322):aaf4791. |
77 | WU Y, LI B Z, ZHAO M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X[J]. Science, 2017, 355(6322):aaf4706. |
78 | XIE Z X, LI B Z, MITCHELL L A, et al. "Perfect" designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6322):aaf4704. |
79 | ZHANG W, ZHAO G, LUO Z, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome[J]. Science, 2017, 355(6322):aaf3981. |
80 | LUO Z, YANG Q, GENG B, et al. Whole genome engineering by synthesis[J]. Science China Life Sciences, 2018, 61(12):1515-1527. |
81 | BOEKE J D, CHURCH G, HESSEL A, et al. Genome Engineering. The Genome Project-Write[J]. Science, 2016, 353(6295):126-127. |
82 | MERCY G, MOZZICONACCI J, SCOLARI V F, et al. 3D organization of synthetic and scrambled chromosomes[J]. Science, 2017, 355(6322):aaf4597. |
83 | SHEN Y, STRACQUADANIO G, WANG Y, et al. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes[J]. Genome Research, 2016, 26(1):36-49. |
84 | BLOUNT B A, GOWERS G F, HO J C H, et al. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome[J]. Nature Communications, 2018, 9(1):1932. |
85 | HOCHREIN L, MITCHELL L A, SCHULZ K, et al. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast[J]. Nature Communications, 2018, 9(1):1931. |
86 | JIA B, WU Y, LI B Z, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast[J]. Nature Communications, 2018, 9(1):1933. |
87 | LIU W, LUO Z, WANG Y, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods[J]. Nature Communications, 2018, 9(1):1936. |
88 | LUO Z, WANG L, WANG Y, et al. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES[J]. Nature Communications, 2018, 9(1):1930. |
89 | SHEN M J, WU Y, YANG K, et al. Heterozygous diploid and interspecies SCRaMbLEing[J]. Nature Communications, 2018, 9(1):1934. |
90 | WANG J, XIE Z X, MA Y, et al. Ring synthetic chromosome V SCRaMbLE[J]. Nature Communications, 2018, 9(1): 3783. |
91 | WU Y, ZHU R Y, MITCHELL L A, et al. In vitro DNA SCRaMbLE[J]. Nature Communications, 2018, 9(1):1935. |
92 | GOWERS G F, CHEE S M, BELL D, et al. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening[J]. Nature Communications, 2020, 11(1):868. |
93 | GARAJ S, HUBBARD W, REINA A, et al. Graphene as a subnanometre trans-electrode membrane[J]. Nature, 2010, 467:190-193. |
94 | GOTO Y, AKAHORI R, YANAGI I, et al. Solid-state nanopores towards single-molecule DNA sequencing[J]. Journal of Human Genetics, 2020, 65(1):69-77. |
95 | KOLMOGOROV M, KENNEDY E, DONG Z X, et al. Single-molecule protein identification by sub-nanopore sensors[J]. PLoS Computational Biology, 2017, 13(5):e1005356. |
96 | MASCHER M, GUNDLACH H, HIMMELBACH A, et al. A chromosome conformation capture ordered sequence of the barley genome[J]. Nature, 2017, 544(7651):427-433. |
97 | SEO J S, RHIE A, KIM J, et al. De novo assembly and phasing of a Korean human genome[J]. Nature, 2016, 538(7624):243-247. |
98 | CAMPA C C, WEISBACH N R, SANTINHA A J, et al. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts[J]. Nature Methods, 2019, 16(9):887-893. |
99 | ISAACS F J, CARR P A, WANG H H, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement[J]. Science, 2011, 333(6040):348-353. |
100 | LAJOIE M J, ROVNER A J, GOODMAN D B, et al. Genomically recoded organisms expand biological functions[J]. Science, 2013, 342(6156):357-360. |
101 | PERKEL J M. The race for enzymatic DNA synthesis heats up[J]. Nature, 2019, 566(7745):565. |
102 | JUHAS M, AJIOKA J W. High molecular weight DNA assembly in vivo for synthetic biology applications[J]. Critical Reviews in Biotechnology, 2017, 37(3):277-286. |
103 | OSTROV N, BEAL J, ELLIS T, et al. Technological challenges and milestones for writing genomes[J]. Science, 2019, 366(6463):310-312. |
104 | BROWN D M, CHAN Y A, DESAI P J, et al. Efficient size-independent chromosome delivery from yeast to cultured cell lines[J]. Nucleic Acids Research, 2017, 45(7):e50. |
[1] | 卞佳豪, 杨广宇. 人工智能辅助的蛋白质工程[J]. 合成生物学, 2022, 3(3): 429-444. |
[2] | 冯晴晴, 张天鲛, 赵潇, 聂广军. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿[J]. 合成生物学, 2022, 3(2): 260-278. |
[3] | 施茜, 吴园园, 杨洋. DNA纳米技术与合成生物学[J]. 合成生物学, 2022, 3(2): 302-319. |
[4] | 胥欣欣, 匡华. 基于合成受体的食品污染物生物检测进展[J]. 合成生物学, 2022, 3(2): 399-414. |
[5] | 武伟红, 李炜, 张先恩, 崔宗强. 合成生物学与荧光成像技术[J]. 合成生物学, 2022, 3(2): 369-384. |
[6] | 郑涵奇, 吴晴, 李洪军, 顾臻. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301. |
[7] | 任师超, 孙秋艳, 冯旭东, 李春. 微生物细胞工厂合成五环三萜皂苷类化合物[J]. 合成生物学, 2022, 3(1): 168-183. |
[8] | 赵晓宇, 张浩, 李雪飞, 胡政. 进化视角下的定量生物学规律与人工生命合成[J]. 合成生物学, 2022, 3(1): 6-21. |
[9] | 褚亚东, 赵宗保. 小型集成化自动移液工作站系统及应用[J]. 合成生物学, 2022, 3(1): 195-208. |
[10] | 何博, 付宗恒, 吴毅, 赵广荣. 哺乳动物合成基因组学研究进展[J]. 合成生物学, 2022, 3(1): 78-97. |
[11] | 张亭, 冷梦甜, 金帆, 袁海. 合成生物研究重大科技基础设施概述[J]. 合成生物学, 2022, 3(1): 184-194. |
[12] | 郭思敏, 叶斌, 徐飞. 美德伦理视角下的合成生物学技术伦理治理[J]. 合成生物学, 2022, 3(1): 224-237. |
[13] | 郭亮, 高聪, 柳亚迪, 陈修来, 刘立明. 大肠杆菌生产饲用氨基酸的研究进展[J]. 合成生物学, 2021, 2(6): 964-981. |
[14] | 陈久洲, 王钰, 蒲伟, 郑平, 孙际宾. 5-氨基乙酰丙酸生物合成技术的发展及展望[J]. 合成生物学, 2021, 2(6): 1000-1016. |
[15] | 任杰, 曾安平. 基于二氧化碳的生物制造:从基础研究到工业应用的挑战[J]. 合成生物学, 2021, 2(6): 854-862. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||