合成生物学 ›› 2020, Vol. 1 ›› Issue (3): 337-357.DOI: 10.12211/2096-8280.2020-014
牛福星1, 杜云平2, 黄远斌1, 周荷田2, 刘建忠1
收稿日期:
2020-03-02
修回日期:
2020-04-14
出版日期:
2020-06-30
发布日期:
2020-09-29
通讯作者:
刘建忠
作者简介:
牛福星(1988—),男,博士,博士后。研究方向为微生物代谢工程与合成生物学。E-mail: 基金资助:
Fuxing NIU1, Yunping DU2, Yuanbin HUANG1, Hetian ZHOU2, Jianzhong LIU1
Received:
2020-03-02
Revised:
2020-04-14
Online:
2020-06-30
Published:
2020-09-29
Contact:
Jianzhong LIU
摘要:
苯丙酸类化合物是一类重要的苯丙素类化合物,是指含C6-C3单元的天然有机酸,包括苯丙烯酸类和苯乳酸类化合物。许多苯丙酸类化合物具有抗氧化、抑菌、增强免疫力、抗癌、抗病毒、抗炎、降血脂、治疗心血管疾病等生物学活性,广泛应用于食品、医药、香料、化妆品、农业等领域。苯丙酸类化合物是经由莽草酸合成途径合成的苯丙氨酸或酪氨酸衍生物。随着代谢工程和合成生物学的发展,成功构建了一些微生物以合成苯丙酸类化合物及其衍生物。为此,本文系统综述了工程微生物合成苯丙酸类化合物及其衍生物的进展,包括肉桂酸、苯乙烯、对香豆酸、对羟基苯乙烯、对香豆酸-莽草酸、咖啡酸、绿原酸、3,4-二羟基苯乙烯、阿魏酸、姜黄素、左旋多巴、苯乳酸、对羟基苯乳酸、丹参素和迷迭香酸。其后,归纳了应用于微生物合成芳香化合物的主要合成生物学策略。最后,对合成苯丙酸类化合物及其衍生物的工程微生物的发展趋势进行了展望。本文旨在为合成苯丙酸类化合物及其衍生物的人工微生物的创制提供指导。
中图分类号:
牛福星, 杜云平, 黄远斌, 周荷田, 刘建忠. 工程微生物合成苯丙酸类化合物及其衍生物的研究进展[J]. 合成生物学, 2020, 1(3): 337-357.
Fuxing NIU, Yunping DU, Yuanbin HUANG, Hetian ZHOU, Jianzhong LIU. Recent advances in the production of phenylpropanoic acids and their derivatives by genetically engineered microorganisms[J]. Synthetic Biology Journal, 2020, 1(3): 337-357.
1 | BANG Hyun Bae, Kyungsoo LEE, Yong Jae LEE, et al. High-level production of trans-cinnamic acid by fed-batch cultivation of Escherichia coli [J]. Process Biochemistry, 2018, 68: 30-36. |
2 | GOTTARDI M, GRUEN P, BODE H B, et al. Optimisation of trans-cinnamic acid and hydrocinnamyl alcohol production with recombinant Saccharomyces cerevisiae and identification of cinnamyl methyl ketone as a by-product [J]. FEMS Yeast Research, 2017, 17: 8. |
3 | MCKENNA R, NIELSEN D R. Styrene biosynthesis from glucose by engineered E. coli [J]. Metabolic Engineering, 2011, 13(5): 544-554. |
4 | MCKENNA R, MOYA L, MCDANIEL M, et al. Comparing in situ removal strategies for improving styrene bioproduction [J]. Bioprocess and Biosystems Engineering, 2015, 38(1): 165-174. |
5 | LIU Changqing, Xiao MEN, CHEN Hailin, et al. A systematic optimization of styrene biosynthesis in Escherichiacoli BL21(DE3) [J]. Biotechnology for Biofuels, 2018, 11: 14. |
6 | Kyungsoo LEE, BANG Hyun Bae, Yoon Hyeok LEE, et al. Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent [J]. Microbial Cell Factories, 2019, 18: 79. |
7 | LIANG Liya, LIU Rongming, FOSTER K E O, et al. Genome engineering of E. coli for improved styrene production [J]. Metabolic Engineering, 2020, 57: 74-84. |
8 | MCKENNA R, THOMPSON B, PUGH S, et al. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2014, 13: 123. |
9 | FUJIWARA R, NODA S, TANAKA T, et al. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants [J]. Journal of Bioscience and Bioengineering, 2016, 122(6): 730-735. |
10 | RODRIGUEZ A, KILDEGAARD K R, LI Mingji, et al. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis [J]. Metabolic engineering, 2015, 31: 181-188. |
11 | RODRIGUEZ A, CHEN Yun, KHOOMRUNG S, et al. Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains [J]. Metabolic Engineering, 2017, 44: 265-272. |
12 | LIU Quanli, YU Tao, LI Xiaowei, et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals [J]. Nature Communications, 2019, 10: 4976. |
13 | RODRIGUES J L, ARAUJO R G, PRATHER K L J, et al. Heterologous production of caffeic acid from tyrosine in Escherichia coli [J]. Enzyme and Microbial Technology, 2015, 71: 36-44. |
14 | XUE Yong, ZHANG Yan, CHENG Dan, et al. Genetically engineering Synechocystis sp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): 9449-9454. |
15 | CALERO P, JENSEN S I, NIELSEN A T. Broad-host-range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440 [J]. ACS Synthetic Biology, 2016, 5(7): 741-753. |
16 | QI Weiwei, VANNELLI T, BREINIG S, et al. Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene [J]. Metabolic Engineering, 2007, 9(3): 268-276. |
17 | KANG Sun‑Young, CHOI Oksik, Jae Kyoung LEE, et al. Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia coli strain [J]. Microbial Cell Factories, 2015, 14: 78. |
18 | NODA S, KAWAI Y, TANAKA T, et al. 4-Vinylphenol biosynthesis from cellulose as the sole carbon source using phenolic acid decarboxylase- and tyrosine ammonia lyase-expressing Streptomyces lividans [J]. Bioresource Technology, 2015, 180: 59-65. |
19 | FUJIWARA R, NODA S, KAWAI Y, et al. 4-Vinylphenol production from glucose using recombinant Streptomyces mobaraense expressing a tyrosine ammonia lyase from Rhodobacter sphaeroides [J]. Biotechnology Letters, 2016, 38(9): 1543-1549. |
20 | VERHOEF S, WIERCKX N, WESTERHOF R G M, et al. Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation [J]. Applied and Environmental Microbiology, 2009, 75(4): 931-936. |
21 | HERNANDEZ-CHAVEZ G, MARTINEZ A, GOSSET G. Metabolic engineering strategies for caffeic acid production in Escherichia coli [J]. Electronic Journal of Biotechnology, 2019, 38(1): 19-26. |
22 | LIN Yuheng, YAN Yajun. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex [J]. Microbial Cell Factories, 2012, 11: 42. |
23 | ZHANG Haoran, STEPHANOPOULOS G. Engineering E. coli for caffeic acid biosynthesis from renewable sugars [J]. Applied Microbiology and Biotechnology, 2013, 97(8): 3333-3341. |
24 | HUANG Qin, LIN Yuheng, YAN Yajun. Caffeic acid production enhancement by engineering a phenylalanine over‐producing Escherichia coli strain [J]. Biotechnology and Bioengineering, 2013, 110(12): 3188-3196. |
25 | KAWAGUCHI H, KATSUYAMA Y, DU Danyao, et al. Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli [J]. Applied Microbiology and Biotechnology, 2017, 101(13): 5279-5290. |
26 | LIU Lanqing, LIU Hong, ZHANG Wei, et al. Engineering the biosynthesis of caffeic acid in Saccharomyces cerevisiae with heterologous enzyme combinations [J]. Engineering, 2019, 5(2): 287-295. |
27 | FURUYA T, KINO K. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives [J]. Applied Microbiology and Biotechnology, 2014, 98(3): 1145-1154. |
28 | KIM Bong-Gyu, JUNG Woo Dam, Hyejung MOK, et al. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates [J]. Microbial Cell Factories, 2013, 12: 15. |
29 | Mi Na CHA, KIM Hyeon Jeong, KIM Bong-Gyu, et al. Synthesis of chlorogenic acid and p-coumaroyl shikimates from glucose using engineered Escherichia coli [J]. Journal of Microbiology and Biotechnology, 2014, 24(8): 1109-1117. |
30 | KANG Sun-Young, CHOI Oksik, Jae Kyoung LEE, et al. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain [J]. Microbial Cell Factories, 2012, 11: 53. |
31 | OVERHAGE J, STEINBUCHEL A, PRIEFERT H. Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16 [J]. Applied and Environmental Microbiology, 2002, 68(9): 4315-4321. |
32 | OVERHAGE J, STEINBUCHEL A, PRIEFERT H. Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli [J]. Applied and Environmental Microbiology, 2003, 69(11): 6569-6576. |
33 | RODRIGUES J L, ARAÚJO R G, PRATHER K L J, et al. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate [J]. Biotechnology Journal, 2015, 10(4): 599-609. |
34 | COUTO M R, RODRIGUES J L, RODRIGUES L R. Optimization of fermentation conditions for the production of curcumin by engineered Escherichia coli [J]. Journal of the Royal Society Interface, 2017, 14(133): 20170470. |
35 | KANG Sun Young, Kyung Taek HEO, HONG Young-Soo. Optimization of artificial curcumin biosynthesis in E. coli by randomized 5'-UTR sequences to control the multienzyme pathway [J]. ACS Synthetic Biology, 2018, 7(9): 2054-2062. |
36 | MIN Kyoungseon, PARK Kyungmoon, PARK Don-Hee, et al. Overview on the biotechnological production of L-DOPA [J]. Applied Microbiology and Biotechnology, 2015, 99(2): 575-584. |
37 | MUNOZ A J, HERNANDEZ-CHAVEZ G, DE ANDA R, et al. Metabolic engineering of Escherichia coli for improving L-3,4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(11): 1845-1852. |
38 | WEI Tao, CHENG Biyan, LIU Jianzhong. Genome engineering Escherichia coli for L-DOPA overproduction from glucose [J]. Scientific Reports, 2016, 6: 30080. |
39 | DAS A, TYAGI N, VERMA A, et al. Metabolic engineering of Escherichia coli W3110 strain by incorporating genome-level modifications and synthetic plasmid modules to enhance L-DOPA production from glycerol [J]. Preparative Biochemistry & Biotechnology, 2018, 48(8): 671-682. |
40 | FORDJOUR E, ADIPAH F K, ZHOU S H, et al. Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of L-DOPA from D-glucose [J]. Microbial Cell Factories, 2019, 18: 74. |
41 | ZHU Yibo, WANG Ying, XU Jiayuzi, et al. Enantioselective biosynthesis of L-phenyllactic acid by whole cells of recombinant Escherichia coli [J]. Molecules, 2017, 22(11): 1966. |
42 | ZHANG Jianzhi, LI Xi. Novel strategy for phenyllactic acid biosynthesis from phenylalanine by whole cell recombinant Escherichia coli coexpressing L-phenylalanine oxidase and L-lactate dehydrogenase [J]. Biotechnology Letters, 2018, 40(1): 165-171. |
43 | HOU Ying, GAO Bo, CUI Jiandong, et al. Combination of multi-enzyme expression fine-tuning and co-substrates addition improves phenyllactic acid production with an Escherichia coli whole-cell biocatalyst [J]. Bioresource Technology, 2019, 287: 121423. |
44 | KOMA D, YAMANAKA H, MORIYOSHI K, et al. Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway [J]. Applied and Environmental Microbiology, 2012, 78(17): 6203-6216. |
45 | FUJITA T, NGUYEN H D, ITO T, et al. Microbial monomers custom-synthesized to build true bio-derived aromatic polymers [J]. Applied Microbiology and Biotechnology, 2013, 97(20): 8887-8894. |
46 | YAO Yuanfeng, WANG Changsong, QIAO Jianjun, et al. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway [J]. Metabolic Engineering, 2013, 19: 79-87. |
47 | ZHOU Liang, DING Qi, JIANG Guozhen, et al. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A [J]. Microbial Cell Factories, 2017, 16: 84. |
48 | LI Chao, ZHANG Chao, WANG Jian. A thermophilic biofunctional multienzyme cascade reaction for cell-free synthesis of salvianic acid a and 3,4-dihydroxymandelic acid [J]. ACS Sustainable Chemistry and Engineering, 2019, 7: 18247-18253. |
49 | BLOCH S E, SCHMIDT-DANNERT C. Construction of a chimeric biosynthetic pathway for the de novo biosynthesis of rosmarinic acid in Escherichia coli [J]. Chembiochem, 2014, 15(16): 2393-2401. |
50 | JIANG Jingjie, BI Huiping, ZHUANG Yibin, et al. Engineered synthesis of rosmarinic acid in Escherichia coli resulting production of a new intermediate, caffeoyl-phenyllactate [J]. Biotechnology Letters, 2016, 38(1): 81-88. |
51 | LI Zhenghong, WANG Xiaonan, ZHANG Haoran. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering [J]. Metabolic Engineering, 2019, 54: 1-11. |
52 | YAN Yi, JIA Pu, BAI Yajun, et al. Production of rosmarinic acid with ATP and CoA double regenerating system [J]. Enzyme and Microbial Technology, 2019, 131: 109392. |
53 | LIU Yongfei, XU Yiran, DING Dongqin, et al. Genetic engineering of Escherichia coli to improve L-phenylalanine production [J]. BMC Biotechnology, 2018, 18: 5. |
54 | KIM BYOUNGJIN, BINKLEY R, KIM Hyun Uk, et al. Metabolic engineering of Escherichia coli for the enhanced production of L-tyrosine [J]. Biotechnology and Bioengineering, 2018, 115(10): 2554-2564. |
55 | SOMA Y, TSURUNO K, WADA M, et al. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch [J]. Metabolic Engineering, 2014, 23: 175-184. |
56 | GU Pengfei, SU Tianyuan, WANG Qian, et al. Tunable switch mediated shikimate biosynthesis in an engineered non-auxotrophic Escherichia coli [J]. Scientific Reports, 2016, 6: 29745. |
57 | SHEN Yuping, FONG Lai San, YAN Zhibo, et al. Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in Escherichia coli [J]. Biotechnology for Biofuels, 2019, 12: 94. |
58 | DINH C V, PRATHER K L J. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(51): 25562-25568. |
59 | SHI Shuobo, Ee Lui ANG, ZHAO Huimin. In vivo biosensors: mechanisms, development, and applications [J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(7): 491-516. |
60 | XUE Haoran, SHI Hailing, YU Zhou, et al. Design, construction, and characterization of a set of biosensors for aromatic compounds [J]. ACS Synthetic Biology, 2014, 3(12): 1011-1014. |
61 | LI Heng, LIANG Chaoning, CHEN Wei, et al. Monitoring in vivo metabolic flux with a designed whole-cell metabolite biosensor of shikimic acid [J]. Biosensors & Bioelectronics, 2017, 98: 457-465. |
62 | XIONG Dandan, LU Shikun, WU Jieyuan, et al. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor [J]. Metabolic Engineering, 2017, 40: 115-123. |
63 | LIANG Chaoning, ZHANG Xuanxuan, WU Jieyuan, et al. Dynamic control of toxic natural product biosynthesis by an artificial regulatory circuit [J]. Metabolic Engineering, 2020, 57: 239-246. |
64 | 何馨. 运用ARTP诱变育种技术和CRISPRi提高工程大肠杆菌的莽草酸产量[D]. 广州: 中山大学, 2019. |
HE Xin. Improving the production of shikimic acid of engineered E. coli via ARTP and CRISPRi [D]. Guangzhou: Sun Yat-Sen University, 2019. | |
65 | SIEDLER S, KHATRI N K, ZSOHAR A, et al. Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production [J]. ACS Synthetic Biology, 2017, 6(10): 1860-1869. |
66 | MAHR R, BOESELAGER R F VON, WIECHERT J, et al. Screening of an Escherichia coli promoter library for a phenylalanine biosensor [J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6739-6753. |
67 | WU Jie, LIU Yongfei, ZHAO Sheng, et al. Application of dynamic regulation to increase L-phenylalanine production in Escherichia coli [J]. Journal of Microbiology and Biotechnology, 2019, 29(6): 923-932. |
68 | NA Dokyun, Seung Min YOO, CHUNG Hannah, et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs [J]. Nature Biotechnology, 2013, 31(2): 170-174. |
69 | YAN Dongsoo, KIM Won Jun, Seung Min YOO, et al. Repurposing type Ⅲ polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): 9835-9844. |
70 | WU Junjun, DU Guocheng, CHEN Jian, et al. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli [J]. Scientific Reports, 2015, 5: 13477. |
71 | 沈玉平. 代谢工程大肠杆菌生产对羟基苯乙酸[D]. 广州: 中山大学, 2019. |
SHEN Y P. Metabolic engineering of Escherichia coli for 4-hydroxyphenylacetic acid production [D]. Guangzhou: Sun Yat-Sen University, 2019. | |
72 | NIU Fuxing, HE Xin, WU Yaqin, et al. Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering [J]. Frontiers in Microbiology, 2018, 9: 1623. |
73 | GONG Zhiwei, NIELSEN J, ZHOU Yongjin J. Engineering robustness of microbial cell factories [J]. Biotechnology Journal, 2017, 12(10): 1700014. |
74 | LU Qian, LIU Jianzhong. Enhanced astaxanthin production in Escherichia colivia morphology and oxidative stress engineering [J]. Journal of Agricultural and Food Chemistry, 2019, 67(42): 11703-11709. |
75 | LIU Xue, LI Xiaobo, JIANG Jianlan, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides [J]. Metabolic Engineering, 2018, 47: 243-253. |
76 | CAMACHO-ZARAGOZA J M, HERNANDEZ-CHAVEZ G, MORENO-AVITIA F, et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol [J]. Microbial Cell Factories, 2016, 15: 163. |
77 | NIU Fuxing, HUANG Yuanbin, JI Liangnian, et al. Genomic and transcriptional changes in response to pinene tolerance and overproduction in evolved Escherichia coli [J]. Synthetic and Systems Biotechnology, 2019, 4(3): 113-119. |
78 | LI Zhen, LIU Jianzhong. Transcriptomic Changes in response to putrescine production in metabolically engineered Corynebacterium glutamicum [J]. Frontiers in Microbiology, 2017, 8: 1987. |
79 | SHEN Hongjie, CHENG Biyan, ZHANG Yanmei, et al. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis [J]. Metabolic Engineering, 2016, 38: 180-190. |
[1] | 刁志钿, 王喜先, 孙晴, 徐健, 马波. 单细胞拉曼光谱测试分选装备研制及应用进展[J]. 合成生物学, 2023, 4(5): 1020-1035. |
[2] | 卢挥, 张芳丽, 黄磊. 合成生物学自动化装置iBioFoundry的构建与应用[J]. 合成生物学, 2023, 4(5): 877-891. |
[3] | 白仲虎, 任和, 聂简琪, 孙杨. 高通量平行发酵技术的发展与应用[J]. 合成生物学, 2023, 4(5): 904-915. |
[4] | 吴玉洁, 刘欣欣, 刘健慧, 杨开广, 随志刚, 张丽华, 张玉奎. 基于高通量液相色谱质谱技术的菌株筛选与关键分子定量分析研究进展[J]. 合成生物学, 2023, 4(5): 1000-1019. |
[5] | 胡哲辉, 徐娟, 卞光凯. 自动化高通量技术在天然产物生物合成中的应用[J]. 合成生物学, 2023, 4(5): 932-946. |
[6] | 刘欢, 崔球. 原位电离质谱技术在微生物菌株筛选中的应用进展[J]. 合成生物学, 2023, 4(5): 980-999. |
[7] | 王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023, 4(4): 720-737. |
[8] | 刘晚秋, 季向阳, 许慧玲, 卢屹聪, 李健. 限制性内切酶的无细胞快速制备研究[J]. 合成生物学, 2023, 4(4): 840-851. |
[9] | 孙美莉, 王凯峰, 陆然, 纪晓俊. 解脂耶氏酵母底盘细胞的工程改造及应用[J]. 合成生物学, 2023, 4(4): 779-807. |
[10] | 张凡忠, 相长君, 张骊駻. 进化与大数据导向生物信息学在天然产物研究中的发展及应用[J]. 合成生物学, 2023, 4(4): 629-650. |
[11] | 程真真, 张健, 高聪, 刘立明, 陈修来. 代谢工程改造微生物利用甲酸研究进展[J]. 合成生物学, 2023, 4(4): 756-778. |
[12] | 曾涛, 巫瑞波. 数据驱动的酶反应预测与设计[J]. 合成生物学, 2023, 4(3): 535-550. |
[13] | 孙智, 杨宁, 娄春波, 汤超, 杨晓静. 功能拓扑的理性设计及其在合成生物学中的应用[J]. 合成生物学, 2023, 4(3): 444-463. |
[14] | 赖奇龙, 姚帅, 查毓国, 白虹, 宁康. 微生物组生物合成基因簇发掘方法及应用前景[J]. 合成生物学, 2023, 4(3): 611-627. |
[15] | 孟巧珍, 郭菲. “可折叠性”在酶智能设计改造中的应用研究——以AlphaFold2为例[J]. 合成生物学, 2023, 4(3): 571-589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||