合成生物学 ›› 2022, Vol. 3 ›› Issue (2): 260-278.doi: 10.12211/2096-8280.2021-035
冯晴晴1, 张天鲛1,2, 赵潇1, 聂广军1
收稿日期:
2021-03-25
修回日期:
2021-07-05
出版日期:
2022-04-30
发布日期:
2022-05-11
通讯作者:
赵潇,聂广军
作者简介:
基金资助:
Qingqing FENG1, Tianjiao ZHANG1,2, Xiao ZHAO1, Guangjun NIE1
Received:
2021-03-25
Revised:
2021-07-05
Online:
2022-04-30
Published:
2022-05-11
Contact:
Xiao ZHAO,Guangjun NIE
摘要:
近年来,纳米材料因独特的粒径效应、比表面积大、表面易修饰等优点被广泛应用于生物学研究领域。作为生物学中的重要新兴学科,合成生物学与纳米生物学的交叉研究是科学发展的必然结果,推动产生了一个全新的研究领域——合成纳米生物学:一方面,利用合成生物学的技术获取具有特殊生物功能的生物源纳米材料,形成以生物技术驱动的纳米材料合成理论;另一方面,利用纳米材料对生物体进行功能强化或者生命活动模拟,拓展合成生物学的工程化设计构建理念。本文根据本领域的最新进展,将合成纳米生物学分为基于基因工程化改造生物源纳米材料的“仿生命体”研究、基于纳米材料功能强化的杂合生物系统的“半生命体”研究和基于纳米材料模拟生命活动的“类生命体”研究三个细分领域。在此基础上,重点介绍了仿生细胞膜纳米颗粒、外泌体、细菌外膜囊泡、病毒样颗粒和细菌生物被膜等生物源纳米材料的改造及功能研究,以及纳米人工杂合细菌和细胞、人工光合系统的构建与应用。同时也介绍了纳米材料元件组装的纳米类酶、人工抗原递呈细胞、运动纳米机器人、DNA纳米机器人等仿生人工合成生物的最新研究进展。最后展望了纳米技术与合成生物学交叉领域的发展前景,分析了合成纳米生物学在肿瘤治疗、环境修复、能源工程等方面的应用潜力;剖析了当前“活细胞疗法”的优势与临床转化的局限性;对智能化药物输运平台的未来发展空间进行了展望。
中图分类号:
冯晴晴, 张天鲛, 赵潇, 聂广军. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿[J]. 合成生物学, 2022, 3(2): 260-278, doi: 10.12211/2096-8280.2021-035.
Qingqing FENG, Tianjiao ZHANG, Xiao ZHAO, Guangjun NIE. Synthetic nanobiology——fusion of synthetic biology and nanobiology[J]. Synthetic Biology Journal, 2022, 3(2): 260-278, doi: 10.12211/2096-8280.2021-035.
图1
通过合成纳米生物学对“仿生命体”进行工程化改造(Through the technology of synthetic biology, bacteria or cells are engineered to isolate and obtain biogenic nanomaterials with special biological functions, which are called “pseudo-organism”, including biomimetic cell membrane, exosomes, bacterial outer membrane vesicles, virus-like particles, and bacterial biofilm.)
1 | SCOTT E A, KARABIN N B, AUGSORNWORAWAT P. Overcoming immune dysregulation with immunoengineered nanobiomaterials[J]. Annual Review of Biomedical Engineering, 2017, 19: 57-84. |
2 | AN J, CHUA C K, YU T, et al. Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs[J]. Nanomedicine, 2013, 8(4): 591-602. |
3 | SAHLE F F, KIM S, NILOY K K, et al. Nanotechnology in regenerative ophthalmology[J]. Advanced Drug Delivery Reviews, 2019, 148: 290-307. |
4 | RILEY R S, JUNE C H, LANGER R, et al. Delivery technologies for cancer immunotherapy[J]. Nature Reviews Drug Discovery, 2019, 18(3): 175-196. |
5 | GAO W W, CHEN Y J, ZHANG Y, et al. Nanoparticle-based local antimicrobial drug delivery[J]. Advanced Drug Delivery Reviews, 2018, 127: 46-57. |
6 | XIE J N, GONG L J, ZHU S, et al. Emerging strategies of nanomaterial-mediated tumor radiosensitization[J]. Advanced Materials, 2019, 31(3): 1802244. |
7 | CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews Microbiology, 2014, 12(5): 381-390. |
8 | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342. |
9 | ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338. |
10 | BECSKEI A, SERRANO L. Engineering stability in gene networks by autoregulation[J]. Nature, 2000, 405(6786): 590-593. |
11 | ISAACS F J, DWYER D J, DING C, et al. Engineered riboregulators enable post-transcriptional control of gene expression[J]. Nature Biotechnology, 2004, 22(7): 841-847. |
12 | ANDERSON J C, VOIGT C A, ARKIN A P. Environmental signal integration by a modular AND gate[J]. Molecular Systems Biology, 2007, 3: 133. |
13 | YOU L, COX R S 3rd, WEISS R, et al. Programmed population control by cell-cell communication and regulated killing[J]. Nature, 2004, 428 (6985): 868-871. |
14 | RO D K, PARADISE E M, OUELLET M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
15 | ANDERSON J C, CLARKE E J, ARKIN A P, et al. Environmentally controlled invasion of cancer cells by engineered bacteria[J]. Journal of Molecular Biology, 2006, 355(4): 619-627. |
16 | VOIGT C A. Synthetic biology 2020-2030: six commercially-available products that are changing our world[J]. Nature Communications, 2020, 11: 6379. |
17 | TAY P K R, NGUYEN P Q, JOSHI N S. A synthetic circuit for mercury bioremediation using self-assembling functional amyloids[J]. ACS Synthetic Biology, 2017, 6(10): 1841-1850. |
18 | AN B L, WANG Y Y, JIANG X Y, et al. Programming living glue systems to perform autonomous mechanical repairs[J]. Matter, 2020, 3(6): 2080-2092. |
19 | GAO C, XU P, YE C, et al. Genetic circuit-assisted smart microbial engineering[J]. Trends in Microbiology, 2019, 27(12): 1011-1024. |
20 | AUSLÄNDER S, AUSLÄNDER D, FUSSENEGGER M. Synthetic biology - the synthesis of biology[J]. Angewandte Chemie International Edition, 2017, 56(23): 6396-6419. |
21 | TANG T C, AN B, HUANG Y, et al. Materials design by synthetic biology[J]. Nature Reviews Materials, 2021, 6(4): 332-350. |
22 | LUO G F, CHEN W H, ZENG X, et al. Cell primitive-based biomimetic functional materials for enhanced cancer therapy[J]. Chemical Society Reviews, 2021, 50(2): 945-985. |
23 | DODGE J T, MITCHELL C, HANAHAN D J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes[J]. Archives of Biochemistry and Biophysics, 1963, 100(1): 119-130. |
24 | DÉSILETS J, LEJEUNE A, MERCER J, et al. Nanoerythrosomes, a new derivative of erythrocyte ghost (IV): Fate of reinjected nanoerythrosomes[J]. Anticancer Research, 2001, 21(3B): 1741-1747. |
25 | HU C M J, ZHANG L, ARYAL S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10980-10985. |
26 | MERKEL T J, JONES S W, HERLIHY K P, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2): 586-591. |
27 | SEVENCAN C, MCCOY R S A, RAVISANKAR P, et al. Cell membrane nanotherapeutics: from synthesis to applications emerging tools for personalized cancer therapy[J]. Advanced Therapeutics, 2020, 3(3): 1900201. |
28 | ZHANG X D, WANG J Q, CHEN Z W, et al. Engineering PD-1-presenting platelets for cancer immunotherapy[J]. Nano Letters, 2018, 18(9): 5716-5725. |
29 | MA J N, LIU F Y, SHEU W C, et al. Copresentation of tumor antigens and costimulatory molecules via biomimetic nanoparticles for effective cancer immunotherapy[J]. Nano Letters, 2020, 20(6): 4084-4094. |
30 | ZHANG X D, KANG Y, WANG J Q, et al. Engineered PD-L1-expressing platelets reverse new-onset type 1 diabetes[J]. Advanced Materials, 2020, 32(26): 1907692. |
31 | CORBO C, CROMER W E, MOLINARO R, et al. Engineered biomimetic nanovesicles show intrinsic anti-inflammatory properties for the treatment of inflammatory bowel diseases[J]. Nanoscale, 2017, 9(38): 14581-14591. |
32 | DOYLE L M, WANG M Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): 727. |
33 | WITWER K W, WOLFRAM J. Extracellular vesicles versus synthetic nanoparticles for drug delivery[J]. Nature Reviews Materials, 2021, 6(2): 103-106. |
34 | SHELLER-MILLER S, RADNAA E, YOO J K, et al. Exosomal delivery of NF-κB inhibitor delays LPS-induced preterm birth and modulates fetal immune cell profile in mouse models[J]. Science Advances, 2021, 7(4): eabd3865. |
35 | MORISHITA M, TAKAHASHI Y, MATSUMOTO A, et al. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA[J]. Biomaterials, 2016, 111: 55-65. |
36 | BARILE L, VASSALLI G. Exosomes: therapy delivery tools and biomarkers of diseases[J]. Pharmacology & Therapeutics, 2017, 174: 63-78. |
37 | TIAN Y H, LI S P, SONG J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy[J]. Biomaterials, 2014, 35(7): 2383-2390. |
38 | ALVAREZ-ERVITI L, SEOW Y, YIN H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nature Biotechnology, 2011, 29(4): 341-345. |
39 | KOJIMA R, BOJAR D, RIZZI G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment[J]. Nature Communications, 2018, 9: 1305. |
40 | KIM S H, BIANCO N, MENON R, et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive[J]. Molecular Therapy, 2006, 13(2): 289-300. |
41 | GERRITZEN M J H, MARTENS D E, WIJFFELS R H, et al. Bioengineering bacterial outer membrane vesicles as vaccine platform[J]. Biotechnology Advances, 2017, 35(5): 565-574. |
42 | SCHWECHHEIMER C, KUEHN M J. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions[J]. Nature Reviews Microbiology, 2015, 13(10): 605-619. |
43 | GUJRATI V, KIM S, KIM S H, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy[J]. ACS Nano, 2014, 8(2): 1525-1537. |
44 | LAUGHLIN R C, ALANIZ R C. Outer membrane vesicles in service as protein shuttles, biotic defenders, and immunological doppelgängers[J]. Gut Microbes, 2016, 7(5): 450-454. |
45 | SALVERDA M L M, MEINDERTS S M, HAMSTRA H J, et al. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles[J]. Vaccine, 2016, 34(8): 1025-1033. |
46 | RAPPAZZO C G, WATKINS H C, GUARINO C M, et al. Recombinant M2e outer membrane vesicle vaccines protect against lethal influenza A challenge in BALB/c mice[J]. Vaccine, 2016, 34(10): 1252-1258. |
47 | KUIPERS K, DALEKE-SCHERMERHORN M H, JONG W S P, et al. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization[J]. Vaccine, 2015, 33(17): 2022-2029. |
48 | IRENE C, FANTAPPIÈ L, CAPRONI E, et al. Bacterial outer membrane vesicles engineered with lipidated antigens as a platform for Staphylococcus aureus vaccine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(43): 21780-21788. |
49 | WANG S J, HUANG W W, LI K, et al. Engineered outer membrane vesicle is potent to elicit HPV16E7-specific cellular immunity in a mouse model of TC-1 graft tumor[J]. International Journal of Nanomedicine, 2017, 12: 6813-6825. |
50 | HUANG W, WANG S, YAO Y, et al. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elieits protective immunity against Acinetobacter baumannii infection [J]. Scientific Reports, 2016, 6(1): 37242. |
51 | CHEN L X, VALENTINE J L, HUANG C J, et al. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): E3609-E3618. |
52 | KIM O Y, PARK H T, DINH N T H, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response[J]. Nature Communications, 2017, 8: 626. |
53 | LI Y, ZHAO R, CHENG K, et al. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition[J]. ACS Nano, 2020, 14(12): 16698-16711. |
54 | KOO H, ALLAN R N, HOWLIN R P, et al. Targeting microbial biofilms: current and prospective therapeutic strategies[J]. Nature Reviews Microbiology, 2017, 15(12): 740-755. |
55 | HUANG J, LIU S, ZHANG C, et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials[J]. Nature Chemical Biology, 2019, 15(1): 34-41. |
56 | FANG K L, PARK O J, HONG S H. Controlling biofilms using synthetic biology approaches[J]. Biotechnology Advances, 2020, 40: 107518. |
57 | CHAPMAN M R, ROBINSON L S, PINKNER J S, et al. Role of Escherichia coli curli operons in directing amyloid fiber formation[J]. Science, 2002, 295(5556): 851-855. |
58 | DRIKS A. Tapping into the biofilm: insights into assembly and disassembly of a novel amyloid fibre in Bacillus subtilis [J]. Molecular Microbiology, 2011, 80(5): 1133-1136. |
59 | ZHONG C, GURRY T, CHENG A A, et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres[J]. Nature Nanotechnology, 2014, 9(10): 858-866. |
60 | WANG X Y, PU J H, AN B L, et al. Programming cells for dynamic assembly of inorganic nano-objects with spatiotemporal control[J]. Advanced Materials, 2018, 30(16): 1705968. |
61 | HUME H K C, VIDIGAL J, CARRONDO M J T, et al. Synthetic biology for bioengineering virus-like particle vaccines[J]. Biotechnology and Bioengineering, 2019, 116(4): 919-935. |
62 | MOHSEN M O, ZHA L S, CABRAL-MIRANDA G, et al. Major findings and recent advances in virus-like particle (VLP)-based vaccines[J]. Seminars in Immunology, 2017, 34: 123-132. |
63 | ALAM M M, JARVIS C M, HINCAPIE R, et al. Glycan-modified virus-like particles evoke T helper type 1-like immune responses[J]. ACS Nano, 2021, 15(1): 309-321. |
64 | WALLS A C, FIALA B, SCHÄFER A, et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2[J]. Cell, 2020, 183(5): 1367-1382.e17. |
65 | MARCANDALLI J, FIALA B, OLS S, et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus[J]. Cell, 2019, 176(6): 1420-1431.e17. |
66 | BROUWER P J M, ANTANASIJEVIC A, BERNDSEN Z, et al. Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle[J]. Nature Communications, 2019, 10: 4272. |
67 | BRUUN T U J, ANDERSSON A M C, DRAPER S J, et al. Engineering a rugged nanoscaffold to enhance plug-and-display vaccination[J]. ACS Nano, 2018, 12(9): 8855-8866. |
68 | SERRADELL M C, RUPIL L L, MARTINO R A, et al. Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins[J]. Nature Communications, 2019, 10: 361. |
69 | LING S, YANG S, HU X, et al. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice[J]. Nature Biomedical Engineering, 2021, 5(2): 144-156. |
70 | HOSSEINIDOUST Z, MOSTAGHACI B, YASA O, et al. Bioengineered and biohybrid bacteria-based systems for drug delivery[J]. Advanced Drug Delivery Reviews, 2016, 106: 27-44. |
71 | PAWELEK J M, LOW K B, BERMUDES D. Bacteria as tumour-targeting vectors[J]. The Lancet Oncology, 2003, 4(9): 548-556. |
72 | KRAMER M G, MASNER M, FERREIRA F A, et al. Bacterial therapy of cancer: promises, limitations, and insights for future directions[J]. Frontiers in Microbiology, 2018, 9: 16. |
73 | PATON A W, MORONA R, PATON J C. Bioengineered microbes in disease therapy[J]. Trends in Molecular Medicine, 2012, 18(7): 417-425. |
74 | ZHOU S, GRAVEKAMP C, BERMUDES D, et al. Tumour-targeting bacteria engineered to fight cancer[J]. Nature Reviews Cancer, 2018, 18(12): 727-743. |
75 | FORBES N S. Engineering the perfect (bacterial) cancer therapy[J]. Nature Reviews Cancer, 2010, 10(11): 785-794. |
76 | YANG C, CUI M, ZHANG Y, et al. Upconversion optogenetic micro-nanosystem optically controls the secretion of light-responsive bacteria for systemic immunity regulation[J]. Communications Biology, 2020, 3: 561. |
77 | ZHENG D W, CHEN Y, LI Z H, et al. Optically-controlled bacterial metabolite for cancer therapy[J]. Nature Communications, 2018, 9: 1680. |
78 | CHEN F M, ZANG Z S, CHEN Z, et al. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy[J]. Biomaterials, 2019, 214: 119226. |
79 | LIU L L, HE H M, LUO Z Y, et al. In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer[J]. Advanced Functional Materials, 2020, 30(10): 1910176. |
80 | XING J H, YIN T, LI S M, et al. Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy[J]. Advanced Functional Materials, 2021, 31(11): 2008262. |
81 | PARK B W, ZHUANG J, YASA O, et al. Multifunctional bacteria-driven microswimmers for targeted active drug delivery[J]. ACS Nano, 2017, 11(9): 8910-8923. |
82 | ZHONG D N, LI W L, QI Y C, et al. Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxia for FL/PA/MR imaging-guided enhanced radio-photodynamic synergetic therapy[J]. Advanced Functional Materials, 2020, 30(17): 1910395. |
83 | BOURDEAU R W, LEE-GOSSELIN A, LAKSHMANAN A, et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts[J]. Nature, 2018, 553(7686): 86-90. |
84 | PASTRANA E. Optogenetics: controlling cell function with light[J]. Nature Methods, 2011, 8(1): 24-25. |
85 | FELFOUL O, MOHAMMADI M, TAHERKHANI S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions[J]. Nature Nanotechnology, 2016, 11(11): 941-947. |
86 | MATSUMOTO Y, CHEN R, ANIKEEVA P, et al. Engineering intracellular biomineralization and biosensing by a magnetic protein[J]. Nature Communications, 2015, 6: 8721. |
87 | AUBRY M, WANG W A, GUYODO Y, et al. Engineering E. coli for magnetic control and the spatial localization of functions[J]. ACS Synthetic Biology, 2020, 9(11): 3030-3041. |
88 | YAN X H, ZHOU Q, VINCENT M, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy[J]. Science Robotics, 2017, 2(12): eaaq1155. |
89 | JAMES M L, GAMBHIR S S. A molecular imaging primer: modalities, imaging agents, and applications[J]. Physiological Reviews, 2012, 92(2): 897-965. |
90 | SHAPIRO M G, GOODWILL P W, NEOGY A, et al. Biogenic gas nanostructures as ultrasonic molecular reporters[J]. Nature Nanotechnology, 2014, 9(4): 311-316. |
91 | SMITH T T, MOFFETT H F, STEPHAN S B, et al. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors[J]. The Journal of Clinical Investigation, 2017, 127(6): 2176-2191. |
92 | LABANIEH L, MAJZNER R G, MACKALL C L. Programming CAR-T cells to kill cancer[J]. Nature Biomedical Engineering, 2018, 2(6): 377-391. |
93 | DEPIL S, DUCHATEAU P, GRUPP S A, et al. 'Off-the-shelf' allogeneic CAR T cells: development and challenges[J]. Nature Reviews Drug Discovery, 2020, 19(3): 185-199. |
94 | RAMELLO M C, BENZAÏD I, KUENZI B M, et al. An immunoproteomic approach to characterize the CAR interactome and signalosome[J]. Science Signaling, 2019, 12(568): eaap9777. |
95 | ABDALLA A M E, XIAO L, MIAO Y, et al. Nanotechnology promotes genetic and functional modifications of therapeutic T cells against cancer[J]. Advanced Science, 2020, 7(10): 1903164. |
96 | STEPHAN S B, TABER A M, JILEAEVA I, et al. Biopolymer implants enhance the efficacy of adoptive T-cell therapy[J]. Nature Biotechnology, 2015, 33(1): 97-101. |
97 | STEPHAN M T, MOON J J, UM S H, et al. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles[J]. Nature Medicine, 2010, 16(9): 1035-1041. |
98 | TANG L, ZHENG Y R, MELO M B, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery[J]. Nature Biotechnology, 2018, 36(8): 707-716. |
99 | HAO M X, HOU S Y, LI W S, et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy[J]. Science Translational Medicine, 2020, 12(571): eaaz6667. |
100 | CHEN Q, HU Q Y, DUKHOVLINOVA E, et al. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells[J]. Advanced Materials, 2019, 31(23): 1900192. |
101 | KIM G B, ARAGON-SANABRIA V, RANDOLPH L, et al. High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma[J]. Bioactive Materials, 2020, 5(3): 624-635. |
102 | NIE W D, WEI W, ZUO L P, et al. Magnetic nanoclusters armed with responsive PD-1 antibody synergistically improved adoptive T-cell therapy for solid tumors[J]. ACS Nano, 2019, 13(2): 1469-1478. |
103 | HARMSEN S, MEDINE E I, MOROZ M, et al. A dual-modal PET/near infrared fluorescent nanotag for long-term immune cell tracking[J]. Biomaterials, 2021, 269: 120630. |
104 | KORNIENKO N, ZHANG J Z, SAKIMOTO K K, et al. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis[J]. Nature Nanotechnology, 2018, 13(10): 890-899. |
105 | CESTELLOS-BLANCO S, ZHANG H, KIM J M, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis, 2020, 3(3): 245-255. |
106 | LIU C, GALLAGHER J J, SAKIMOTO K K, et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Letters, 2015, 15(5): 3634-3639. |
107 | NICHOLS E M, GALLAGHER J J, LIU C, et al. Hybrid bioinorganic approach to solar-to-chemical conversion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11461-11466. |
108 | LIU C, COLÓN B C, ZIESACK M, et al. Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290): 1210-1213. |
109 | SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
110 | WANG B, JIANG Z F, YU J C, et al. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system[J]. Nanoscale, 2019, 11(19): 9296-9301. |
111 | CHEN M, ZHOU X F, YU Y Q, et al. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans[J]. Environment International, 2019, 127: 353-360. |
112 | ZHANG H, LIU H, TIAN Z Q, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology, 2018, 13(10): 900-905. |
113 | GAO L Z, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2(9): 577-583. |
114 | FAN K, XI J, FAN L, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy[J]. Nature Communications, 2018, 9: 1440. |
115 | WANG X Y, HU Y H, WEI H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond[J]. Inorganic Chemistry Frontiers, 2016, 3(1): 41-60. |
116 | JIANG D W, NI D L, ROSENKRANS Z T, et al. Nanozyme: new horizons for responsive biomedical applications[J]. Chemical Society Reviews, 2019, 48(14): 3683-3704. |
117 | HU X, LI F Y, XIA F, et al. Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy[J]. Journal of the American Chemical Society, 2020, 142(3): 1636-1644. |
118 | ZHAO S, DUAN H X, YANG Y L, et al. Fenozyme protects the integrity of the blood-brain barrier against experimental cerebral malaria[J]. Nano Letters, 2019, 19(12): 8887-8895. |
119 | XU B L, WANG H, WANG W W, et al. A single-atom nanozyme for wound disinfection applications[J]. Angewandte Chemie International Edition, 2019, 58(15): 4911-4916. |
120 | EGGERMONT L J, PAULIS L E, TEL J, et al. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells[J]. Trends in Biotechnology, 2014, 32(9): 456-465. |
121 | SUN X Q, HAN X, XU L G, et al. Surface-engineering of red blood cells as artificial antigen presenting cells promising for cancer immunotherapy[J]. Small, 2017, 13(40): 1701864. |
122 | PERICA K, DE LEÓN MEDERO A, DURAI M, et al. Nanoscale artificial antigen presenting cells for T cell immunotherapy[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2014, 10(1): 119-129. |
123 | PERICA K, BIELER J G, SCHÜTZ C, et al. Enrichment and expansion with nanoscale artificial antigen presenting cells for adoptive immunotherapy[J]. ACS Nano, 2015, 9(7): 6861-6871. |
124 | ZHANG D K Y, CHEUNG A S, MOONEY D J. Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds[J]. Nature Protocols, 2020, 15(3): 773-798. |
125 | CHEUNG A S, ZHANG D K Y, KOSHY S T, et al. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells[J]. Nature Biotechnology, 2018, 36(2): 160-169. |
126 | ZHANG Q M, WEI W, WANG P L, et al. Biomimetic magnetosomes as versatile artificial antigen-presenting cells to potentiate T-cell-based anticancer therapy[J]. ACS Nano, 2017, 11(11): 10724-10732. |
127 | CHENG S S, XU C, JIN Y, et al. Artificial mini dendritic cells boost T cell-based immunotherapy for ovarian cancer[J]. Advanced Science, 2020, 7(7): 1903301. |
128 | JIANG Y, KRISHNAN N, ZHOU J R, et al. Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity[J]. Advanced Materials, 2020, 32(30): 2001808. |
129 | WU Z G, CHEN Y, MUKASA D, et al. Medical micro/nanorobots in complex media[J]. Chemical Society Reviews, 2020, 49(22): 8088-8112. |
130 | WU Z G, TROLL J, JEONG H H, et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye[J]. Science Advances, 2018, 4(11): eaat4388. |
131 | WU Z G, LI L, YANG Y R, et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo [J]. Science Robotics, 2019, 4(32): eaax0613. |
132 | JI Y X, LIN X K, WU Z G, et al. Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmers[J]. Angewandte Chemie International Edition, 2019, 58(35): 12200-12205. |
133 | PINHEIRO A V, HAN D, SHIH W M, et al. Challenges and opportunities for structural DNA nanotechnology[J]. Nature Nanotechnology, 2011, 6(12): 763-772. |
134 | LI S P, JIANG Q, LIU S L, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo [J]. Nature Biotechnology, 2018, 36(3): 258-264. |
135 | LI Y F, LI K, WANG X Y, et al. Conformable self-assembling amyloid protein coatings with genetically programmable functionality[J]. Science Advances, 2020, 6(21): eaba1425. |
[1] | 卞佳豪, 杨广宇. 人工智能辅助的蛋白质工程[J]. 合成生物学, 2022, 3(3): 429-444. |
[2] | 胥欣欣, 匡华. 基于合成受体的食品污染物生物检测进展[J]. 合成生物学, 2022, 3(2): 399-414. |
[3] | 武伟红, 李炜, 张先恩, 崔宗强. 合成生物学与荧光成像技术[J]. 合成生物学, 2022, 3(2): 369-384. |
[4] | 施茜, 吴园园, 杨洋. DNA纳米技术与合成生物学[J]. 合成生物学, 2022, 3(2): 302-319. |
[5] | 郑涵奇, 吴晴, 李洪军, 顾臻. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301. |
[6] | 任师超, 孙秋艳, 冯旭东, 李春. 微生物细胞工厂合成五环三萜皂苷类化合物[J]. 合成生物学, 2022, 3(1): 168-183. |
[7] | 赵晓宇, 张浩, 李雪飞, 胡政. 进化视角下的定量生物学规律与人工生命合成[J]. 合成生物学, 2022, 3(1): 6-21. |
[8] | 褚亚东, 赵宗保. 小型集成化自动移液工作站系统及应用[J]. 合成生物学, 2022, 3(1): 195-208. |
[9] | 张亭, 冷梦甜, 金帆, 袁海. 合成生物研究重大科技基础设施概述[J]. 合成生物学, 2022, 3(1): 184-194. |
[10] | 郭思敏, 叶斌, 徐飞. 美德伦理视角下的合成生物学技术伦理治理[J]. 合成生物学, 2022, 3(1): 224-237. |
[11] | 任杰, 曾安平. 基于二氧化碳的生物制造:从基础研究到工业应用的挑战[J]. 合成生物学, 2021, 2(6): 854-862. |
[12] | 郭亮, 高聪, 柳亚迪, 陈修来, 刘立明. 大肠杆菌生产饲用氨基酸的研究进展[J]. 合成生物学, 2021, 2(6): 964-981. |
[13] | 汪庆卓, 宋萍, 黄和. 合成生物技术驱动天然的真核油脂细胞工厂开发[J]. 合成生物学, 2021, 2(6): 920-941. |
[14] | 陈久洲, 王钰, 蒲伟, 郑平, 孙际宾. 5-氨基乙酰丙酸生物合成技术的发展及展望[J]. 合成生物学, 2021, 2(6): 1000-1016. |
[15] | 王凤姣, 徐海洋, 闫建斌, 李伟. 植物天然农药除虫菊酯的生物合成和应用研究进展[J]. 合成生物学, 2021, 2(5): 751-763. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||