合成生物学 ›› 2022, Vol. 3 ›› Issue (1): 195-208.doi: 10.12211/2096-8280.2021-095
褚亚东, 赵宗保
收稿日期:
2021-09-27
修回日期:
2021-10-20
出版日期:
2022-02-28
发布日期:
2022-03-14
通讯作者:
赵宗保
作者简介:
基金资助:
Yadong CHU, Zongbao ZHAO
Received:
2021-09-27
Revised:
2021-10-20
Online:
2022-02-28
Published:
2022-03-14
Contact:
Zongbao ZHAO
摘要:
现代生物技术、合成生物学和化学生物学研究中经常需要处理大量样本,对通量、精准度和时效性有很高要求。手动液体分装、转移和分发等操作不仅给科研人员带来很大工作负荷,还是导致实验误差和效率低下的重要原因。搭建以移液工作站为核心的小型集成化自动移液工作站系统,整合必要的外围设备,并通过软件和人机交互界面协调各个设备运行,可用于完成大量耗费人力的工作,提高工作效率和科研数据质量。本文结合研究团队所搭建的自动移液工作站系统,介绍了集成化移液工作站系统的主要组成,分享其在菌株及培养基评价、酶的定向进化筛选、自动诱导表达及粗酶液制备、酶联免疫吸附筛选、高通量质粒提取等方面的应用,并对集成化移液工作站系统的不足和购置及使用中的注意事项做了简要说明。预计集成化移液工作站系统将在国内高校和科研院所得到越来越普遍的应用,但还需要加大研发投入,从硬件、软件、人才、多学科交叉等多方面入手,共同推动国产实验室自动化设备进步。希望能为科研人员今后设计和添置类似的集成化移液工作站系统提供参考。
中图分类号:
褚亚东, 赵宗保. 小型集成化自动移液工作站系统及应用[J]. 合成生物学, 2022, 3(1): 195-208, doi: 10.12211/2096-8280.2021-095.
Yadong CHU, Zongbao ZHAO. Designing and application of small-scale integrated automated liquid handling system[J]. Synthetic Biology Journal, 2022, 3(1): 195-208, doi: 10.12211/2096-8280.2021-095.
1 | NAJAFI M. Bacterial mutation; types, mechanisms and mutant detection methods: a review[J]. European Scientific Journal, 2013, 4(4): 628-638. |
2 | 朱晁谊, 朱牧孜, 李爽. 微生物实验室进化的研究进展[J]. 生物加工过程, 2019, 17(1): 8-14, 22. |
ZHU C Y, ZHU M Z, LI S. Research progress in microbial laboratory evolution[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(1): 8-14, 22. | |
3 | COBB R E, CHAO R, ZHAO H M. Directed evolution: past, present and future[J]. AIChE Journal, 2013, 59(5): 1432-1440. |
4 | 曲戈, 赵晶, 郑平, 等. 定向进化技术的最新进展[J]. 生物工程学报, 2018, 34(1): 1-11. |
QU G, ZHAO J, ZHENG P, et al. Recent advances in directed evolution[J]. Chinese Journal of Biotechnology, 2018, 34(1): 1-11. | |
5 | 蒋迎迎, 曲戈, 孙周通. 机器学习助力酶定向进化[J]. 生物学杂志, 2020, 37(4): 1-11. |
JIANG Y Y, QU G, SUN Z T. Machine learning-assisted enzyme directed evolution[J]. Journal of Biology, 2020, 37(4): 1-11. | |
6 | REETZ M T, CARBALLEIRA J D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes[J]. Nature Protocols, 2007, 2(4): 891-903. |
7 | KONG F W, YUAN L, ZHENG Y F, et al. Automatic liquid handling for life science: a critical review of the current state of the art[J]. Journal of Laboratory Automation, 2012, 17(3): 169-185. |
8 | HANSON K L, CARTWRIGHT C P. Evaluation of an automated liquid-handling system (Tecan Genesis RSP 100) in the Abbott LCx assay for Chlamydia trachomatis [J]. Journal of Clinical Microbiology, 2001, 39(5): 1975-1977. |
9 | LEHMANN R, SEVERITT J C, RODDELKOPF T, et al. Biomek cell workstation: a variable system for automated cell cultivation[J]. Journal of Laboratory Automation, 2016, 21(3): 439-450. |
10 | LEHMANN R, GALLERT C, RODDELKOPF T, et al. 3 Dimensional cell cultures: a comparison between manually and automatically produced alginate beads[J]. Cytotechnology, 2016, 68(4): 1049-1062. |
11 | ROLLER D G, AXELROD M, CAPALDO B J, et al. Synthetic lethal screening with small-molecule inhibitors provides a pathway to rational combination therapies for melanoma[J]. Molecular Cancer Therapeutics, 2012, 11(11): 2505-2515. |
12 | GOMEZ DE SANTOS P, CAÑELLAS M, TIEVES F, et al. Selective synthesis of the human drug metabolite 5'-hydroxypropranolol by an evolved self-sufficient peroxygenase[J]. ACS Catalysis, 2018, 8(6): 4789-4799. |
13 | SEIPP M T, HERRMANN M, WITTWER C T. Automated DNA extraction, quantification, dilution, and PCR preparation for genotyping by high-resolution melting[J]. Journal of Biomolecular Techniques, 2010, 21(4): 163-166. |
14 | SI T, CHAO R, MIN Y H, et al. Automated multiplex genome-scale engineering in yeast[J]. Nature Communications, 2017, 8: 15187. |
15 | CARBONELL P, JERVIS A J, ROBINSON C J, et al. An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals[J]. Communications Biology, 2018, 1: 66. |
16 | HILLSON N, CADDICK M, CAI Y Z, et al. Building a global alliance of biofoundries[J]. Nature Communications, 2019, 10: 2040. |
17 | ZHANG J Z, CHEN Y C, FU L H, et al. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology[J]. Current Opinion in Biotechnology, 2021, 67: 88-98. |
18 | MARKEL U, ESSANI K D, BESIRLIOGLU V, et al. Advances in ultrahigh-throughput screening for directed enzyme evolution[J]. Chemical Society Reviews, 2020, 49(1): 233-262. |
19 | MA F Q, CHUNG M T, YAO Y, et al. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform[J]. Nature Communications, 2018, 9: 1030. |
20 | JIAN X J, GUO X J, WANG J, et al. Microbial microdroplet culture system (MMC): An integrated platform for automated, high-throughput microbial cultivation and adaptive evolution[J]. Biotechnology and Bioengineering, 2020, 117(6): 1724-1737. |
21 | GIELEN F, HOURS R, EMOND S, et al. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): E7383-E7389. |
22 | ZINCHENKO A, DEVENISH S R A, KINTSES B, et al. One in a million: Flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution[J]. Analytical Chemistry, 2014, 86(5): 2526-2533. |
23 | WANG X X, XIN Y, REN L H, et al. Positive dielectrophoresis-based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo [J]. Science Advances, 2020, 6(32): eabb3521. |
24 | FU L H, ZHANG J Z, SI T. Recent advances in high-throughput mass spectrometry that accelerates enzyme engineering for biofuel research[J]. BMC Energy, 2020, 2: 1. |
25 | CHEN B, LIM S, KANNAN A, et al. High-throughput analysis and protein engineering using microcapillary arrays[J]. Nature Chemical Biology, 2016, 12(2): 76-81. |
26 | ZHANG H, LIU C, HUA W Y, et al. Acoustic ejection mass spectrometry for high-throughput analysis[J]. Analytical Chemistry, 2021, 93(31): 10850-10861. |
27 | ZHANG C, LI M, ZHAO G-R, et al. Alpha-terpineol production from an engineered Saccharomyces cerevisiae cell factory[J]. Microbial Cell Factories, 2019, 18(1): 160. |
28 | HU M S, WANG J, GAO Q Q, et al. Converting lignin derived phenolic aldehydes into microbial lipid by Trichosporon cutaneum [J]. Journal of Biotechnology, 2018, 281: 81-86. |
29 | GUO X J, LIU Y X, WANG Q, et al. Non‐natural cofactor and formate-driven reductive carboxylation of pyruvate[J]. Angewandte Chemie International Edition, 2020, 59(8): 3143-3146. |
30 | 叶质强, 冯露, 王心洁, 等. 转氨酶高效表达重组工程菌的培养基及诱导条件优化[J]. 生物化工, 2019, 5(2): 23-27. |
YE Z Q, FENG L, WANG X J, et al. Optimization of culture conditions of recombinant engineered bacteria with high expression of transaminase[J]. Biological Chemical Engineering, 2019, 5(2): 23-27. | |
31 | 吴蓉, 曹佳睿, 曹君, 等. 南极假丝酵母脂肪酶B基因在大肠杆菌中的表达和发酵优化[J]. 生物技术通报, 2021, 37(2): 138-148. |
WU R, CAO J R, CAO J, et al. Expression and fermentation optimization of Candida antarctica lipase B in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(2): 138-148. | |
32 | ENGVALL E, PERLMANN P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G[J]. Immunochemistry, 1971, 8(9): 871-874. |
33 | AYDIN S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA[J]. Peptides, 2015, 72: 4-15. |
34 | CORPORATION PROMEGA. Wizard® SV 96 plasmid DNA purification system automated protocol [EB/OL].[2021-07-21]. . |
35 | SMITH D, WHITE D. Automated purification of plasmid DNA using paramagnetic particles[J]. JALA: Journal of the Association for Laboratory Automation, 2003, 8(3): 50-54. |
36 | 李晶, 李增, 魏翱翔. 全自动液体工作站移液模块设计与分析[J]. 分析仪器, 2019(3): 14-18. |
LI J, LI Z, WEI A X. Design and analysis of pipetting pump module for automatic liquid processing workstation[J]. Analytical Instrumentation, 2019(3): 14-18. | |
37 | COULTER BECKMAN. Biomek software[EB/OL]. [2021-06-10]. . |
38 | TECAN TRADING AG. FluentControl[EB/OL]. [2021-07-10]. . |
39 | COULTER BECKMAN. SAMI process management[EB/OL]. [2021-06-10]. . |
40 | 谢艳姣, 吴荣顺, 苑婷婷, 等. 液体工作站在蔬菜农药残留快速检测中的应用[J]. 现代农业科技, 2015(16): 267-268, 272. |
XIE Y J, WU R S, YUAN T T, et al. Application of automatic liquid handing system for rapid detecting pesticide residue in vegetables[J]. Modern Agricultural Science and Technology, 2015(16): 267-268, 272. | |
41 | 张琼予, 丁梅, 王保捷, 等. DNA提取自动化工作站在法医学领域的应用[J]. 中国法医学杂志, 2010, 25(1): 40-42. |
ZHANG Q Y, DING M, WANG B J, et al. Application of DNA extraction automation workstation in the forensic area[J]. Chinese Journal of Forensic Medicine, 2010, 25(1): 40-42. | |
42 | GOME G, WAKSBERG J, GRISHKO A, et al. OpenLH: open liquid-handling system for creative experimentation with biology[C]// TEI '19: Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction. 2019: 55-64. |
43 | COUNCILL E E A W, AXTELL N B, TRUONG T, et al. Adapting a low-cost and open-source commercial pipetting robot for nanoliter liquid handling[J]. SLAS Technology, 2021, 26(3): 311-319. |
44 | 张圆.移液工作站行业处于初步发展阶段未来市场发展前景广阔[EB/OL]. [2021-07-12]. . |
ZHANG Y. Liquid handling workstation industry is in its infant stage but its market is quite promising in the future[EB/OL]. [2021-07-12]. . | |
45 | 重庆微浪生物. 实验员福音!“重庆造”实验机器人诞生[EB/OL]. [2021-07-13]. .php?lang=cn&id=49. |
BioWavelet Chongqing. The gospel for experimenters! The birth of laboratory robot “Made in Chongqing” [EB/OL]. [2021-07-13]. . | |
46 | Robotic Biology Consortium, YACHIE N, NATSUME T. Robotic crowd biology with Maholo LabDroids[J]. Nature Biotechnology, 2017, 35(4): 310-312. |
47 | ABB. ABB's collaborative robot takes the strain out of sampling at karolinska university laboratory[EB/OL]. [2021-07-16]. . |
48 | NIKO M C. One lab in Germany is using robots to advance computer-aided synthetic biology[EB/OL]. [2021-07-16]. computer-aided-synthetic-biology. |
49 | BURGER B, MAFFETTONE P M, GUSEV V V, et al. A mobile robotic chemist[J]. Nature, 2020, 583(7815): 237-241. |
50 | 郑钧天. 基于深度强化学习的机械臂轨迹规划仿真[D]. 成都: 电子科技大学, 2020. |
ZHENG J T. Simulation for manipulator trajectory planning based on deep reinforcement learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
51 | 卢彬鹏. 基于模仿学习和强化学习的机械臂运动技能获取[D]. 大连: 大连理工大学, 2019. |
LU B P. Robot skill acquisition based on imitation learning and reinforcement learning[D]. Dalian: Dalian University of Technology, 2019. | |
52 | 陈偕权. 基于增强现实及自然人机交互的机器人示教再现技术研究[D]. 广州: 华南理工大学, 2018. |
CHEN X Q. Research on robot teaching-playback technology based on augmented reality and natural human-robot interaction[D]. Guangzhou: South China University of Technology, 2018. | |
53 | 吕佳.《中国制造2025》解读之:推动机器人发展[EB/OL]. [2021-07-10]. . |
LÜ J. China Manufacturing 2025 decoding: Promoting robot development[EB/OL]. [2021-07-10]. . | |
54 | 段宝岩, 李耀平. 中国制造2025亟须自主工业软件[N/OL]. 中国科学报, 2016-11-24[2021-07-23]. htmlnews/2016/11/361805.shtm. |
DUAN B Y, LI Y P. China Manufacturing 2025 desiderates independent industry-oriented software [N/OL]. China Science Daily, 2016-11-24[2021-07-23]. . | |
55 | 吴朝晖. 以学科交叉融合服务国家战略需求(新语)[N]. 人民日报, 2020-11-04(12). |
WU Z H. To serve strategic demands of our country with disciplinary intersection and integration[N]. Peoples' Daily (New story), 2020-11-04(12). |
[1] | 吉博涛, 钱志刚, 夏小霞. 无细胞合成策略在生物材料研究中的应用[J]. 合成生物学, 2022, 3(4): 658-675. |
[2] | 王宇翔, 吴夏泠, 张文彬. 生物活体功能材料研究进展[J]. 合成生物学, 2022, 3(4): 621-625. |
[3] | 朱润涛, 钟超, 戴卓君. 细菌生物被膜的软物质特性及其工程化应用[J]. 合成生物学, 2022, 3(4): 626-637. |
[4] | 魏岱旭, 龚海伦, 张旭维. 抗菌肽的生物合成及医学应用[J]. 合成生物学, 2022, 3(4): 709-727. |
[5] | 李敬敬, 马超, 王帆, 张洪杰, 刘凯. 生物合成高性能蛋白及材料应用[J]. 合成生物学, 2022, 3(4): 638-657. |
[6] | 卞佳豪, 杨广宇. 人工智能辅助的蛋白质工程[J]. 合成生物学, 2022, 3(3): 429-444. |
[7] | 冯晴晴, 张天鲛, 赵潇, 聂广军. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿[J]. 合成生物学, 2022, 3(2): 260-278. |
[8] | 郑涵奇, 吴晴, 李洪军, 顾臻. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301. |
[9] | 施茜, 吴园园, 杨洋. DNA纳米技术与合成生物学[J]. 合成生物学, 2022, 3(2): 302-319. |
[10] | 武伟红, 李炜, 张先恩, 崔宗强. 合成生物学与荧光成像技术[J]. 合成生物学, 2022, 3(2): 369-384. |
[11] | 胥欣欣, 匡华. 基于合成受体的食品污染物生物检测进展[J]. 合成生物学, 2022, 3(2): 399-414. |
[12] | 赵晓宇, 张浩, 李雪飞, 胡政. 进化视角下的定量生物学规律与人工生命合成[J]. 合成生物学, 2022, 3(1): 6-21. |
[13] | 张亭, 冷梦甜, 金帆, 袁海. 合成生物研究重大科技基础设施概述[J]. 合成生物学, 2022, 3(1): 184-194. |
[14] | 郭思敏, 叶斌, 徐飞. 美德伦理视角下的合成生物学技术伦理治理[J]. 合成生物学, 2022, 3(1): 224-237. |
[15] | 任师超, 孙秋艳, 冯旭东, 李春. 微生物细胞工厂合成五环三萜皂苷类化合物[J]. 合成生物学, 2022, 3(1): 168-183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||