| 1 | SISMOUR A M, BENNER S A. Synthetic biology[J]. Expert Opinion on Biological Therapy, 2005, 5(11): 1409-1414. | 
																													
																						| 2 | 张先恩. 中国合成生物学发展回顾与展望[J]. 中国科学:生命科学, 2019, 49(12): 1543-1572. | 
																													
																						|  | ZHANG X E. Synthetic biology in China: Review and prospects[J]. Scientia Sinica (Vitae), 2019, 49(12): 1543-1572. | 
																													
																						| 3 | 赵国屏. 合成生物学: 开启生命科学 "会聚" 研究新时代[J]. 中国科学院院刊, 2018, 33(11)1135-1149 | 
																													
																						|  | ZHAO G P. Synthetic biology: unsealing the convergence era of life science research[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(11)1135-1149. | 
																													
																						| 4 | CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews Microbiology, 2014, 12(5): 381-390. | 
																													
																						| 5 | KHALIL A S, COLLINS J J. Synthetic biology: applications come of age[J]. Nature Reviews Genetics, 2010, 11(5): 367-379. | 
																													
																						| 6 | MARTIN V J J, PITERA D J, WITHERS S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21(7): 796-802. | 
																													
																						| 7 | WIN M N, SMOLKE C D. Higher-order cellular information processing with synthetic RNA devices[J]. Science, 2008, 322(5900): 456-460. | 
																													
																						| 8 | PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532. | 
																													
																						| 9 | CHAO R, MISHRA S, SI T, et al. Engineering biological systems using automated biofoundries[J]. Metabolic Engineering, 2017, 42: 98-108. | 
																													
																						| 10 | 唐婷, 付立豪, 郭二鹏, 等. 自动化合成生物技术与工程化设施平台[J]. 科学通报, 2021, 66(3): 300-309. | 
																													
																						|  | TANG T, FU L H, GUO E P, et al. Automation in synthetic biology using biological foundries[J]. Chinese Science Bulletin, 2021, 66(3): 300-309. | 
																													
																						| 11 | LE FEUVRE R A, SCRUTTON N S. A living foundry for Synthetic Biological Materials: a synthetic biology roadmap to new advanced materials[J]. Synthetic and Systems Biotechnology, 2018, 3(2): 105-112. | 
																													
																						| 12 | KANG D H, KO S C, HEO Y B, et al. RoboMoClo: a robotics-assisted modular cloning framework for multiple gene assembly in biofoundry[J]. ACS Synthetic Biology, 2022, 11(3): 1336-1348. | 
																													
																						| 13 | SI T, CHAO R, MIN Y H, et al. Automated multiplex genome-scale engineering in yeast[J]. Nature Communications, 2017, 8: 15187. | 
																													
																						| 14 | CHAO R, LIANG J, TASAN I, et al. Fully automated one-step synthesis of single-transcript TALEN pairs using a biological foundry[J]. ACS Synthetic Biology, 2017, 6(4): 678-685. | 
																													
																						| 15 | STORCH M, HAINES M C, BALDWIN G S. DNA-BOT: a low-cost, automated DNA assembly platform for synthetic biology[J]. Synthetic Biology, 2020, 5(1): ysaa010. | 
																													
																						| 16 | 崔金明, 张炳照, 马迎飞, 等. 合成生物学研究的工程化平台[J]. 中国科学院院刊, 2018, 33(11): 1249-1257. | 
																													
																						|  | CUI J M, ZHANG B Z, MA Y F, et al. Engineering platforms for synthetic biology research[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(11): 1249-1257. | 
																													
																						| 17 | HILLSON N, CADDICK M, CAI Y Z, et al. Building a global alliance of biofoundries[J]. Nature Communications, 2019, 10: 2040. | 
																													
																						| 18 | 晁然, 原永波, 赵惠民. 构建合成生物学制造厂[J]. 中国科学:生命科学, 2015, 45(10): 976-984. | 
																													
																						|  | CHAO R, YUAN Y B, ZHAO H M. Building biological foundries for next generation synthetic biology[J]. Scientia Sinica (Vitae), 2015, 45(10): 976-984. | 
																													
																						| 19 | 张亭, 冷梦甜, 金帆, 等. 合成生物研究重大科技基础设施概述[J]. 合成生物学, 2022(1): 184-194. | 
																													
																						|  | ZHANG T, LENG M T, JIN F, et al. Overview on platform for synthetic biology research at Shenzhen[J]. Synthetic Biology Journal, 2022(1): 184-194. | 
																													
																						| 20 | ZHANG J Z, CHEN Y C, FU L H, et al. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology[J]. Current Opinion in Biotechnology, 2021, 67: 88-98. | 
																													
																						| 21 | WU F, JIN S T, JIANG Y H, et al. Pre-training of equivariant graph matching networks with conformation flexibility for drug binding[J]. Advanced Science, 2022, 9(33): 2203796. | 
																													
																						| 22 | WANG J, ZHANG X Q, CHENG L X, et al. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools[J]. RNA Biology, 2020, 17(1): 13-22. | 
																													
																						| 23 | CARBONELL P, RADIVOJEVIC T, GARCÍA MARTÍN H. Opportunities at the intersection of synthetic biology, machine learning, and automation[J]. ACS Synthetic Biology, 2019, 8(7): 1474-1477. | 
																													
																						| 24 | ZHANG J, HANSEN L G, GUDICH O, et al. A microbial supply chain for production of the anti-cancer drug vinblastine[J]. Nature, 2022, 609(7926): 341-347. | 
																													
																						| 25 | CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |