合成生物学 ›› 2024, Vol. 5 ›› Issue (2): 254-266.DOI: 10.12211/2096-8280.2023-060
涂辉阳1,2, 韩为东1, 张斌3
收稿日期:
2023-08-25
修回日期:
2023-11-12
出版日期:
2024-04-30
发布日期:
2024-04-28
通讯作者:
张斌
作者简介:
Huiyang TU1,2, Weidong HAN1, Bin ZHANG3
Received:
2023-08-25
Revised:
2023-11-12
Online:
2024-04-30
Published:
2024-04-28
Contact:
Bin ZHANG
摘要:
随着免疫检查点抑制剂和嵌合抗原受体T细胞疗法在不同适应证中的研究和临床应用,免疫治疗已经彻底改变了多种肿瘤的治疗方式。肿瘤新抗原疫苗作为一种前景广阔的免疫治疗方法,旨在激发针对新抗原的特异性T细胞反应。新抗原具有高度特异性,能够诱导和扩展肿瘤特异性T细胞库,即表位扩展。初步临床研究表明,通过快速、经济、高效的合成生物学技术,新抗原肿瘤疫苗已经展现出强大的肿瘤特异性免疫原性和抗肿瘤活性的初步证据。本文详细探讨了肿瘤新抗原的来源、发现与鉴定,以及新抗原疫苗的分类和免疫接种方案。还总结了肿瘤新抗原疫苗的优化策略,包括对预测算法、疫苗结构、免疫原性、给药方式和递送系统等方面的优化,以及联合佐剂、放化疗、免疫检查点抑制剂等方式,为个性化免疫疗法的发展提供了新的思路。
中图分类号:
涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266.
Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines[J]. Synthetic Biology Journal, 2024, 5(2): 254-266.
1 | BI K, HE M X, BAKOUNY Z, et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma[J]. Cancer Cell, 2021, 39(5): 649-661. e5. |
2 | ZHANG J E, FAN B A, CAO G L, et al. Direct presentation of tumor-associated antigens to induce adaptive immunity by personalized dendritic cell-mimicking nanovaccines[J]. Advanced Materials, 2022, 34(47): 2205950. |
3 | LINETTE G P, STADTMAUER E A, MAUS M V, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma[J]. Blood, 2013, 122(6): 863-871. |
4 | SNYDER A, MAKAROV V, MERGHOUB T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma[J]. The New England Journal of Medicine, 2014, 371(23): 2189-2199. |
5 | SCHUMACHER T N, SCHREIBER R D. Neoantigens in cancer immunotherapy[J]. Science, 2015, 348(6230): 69-74. |
6 | CARRENO B M, MAGRINI V, BECKER-HAPAK M, et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells[J]. Science, 2015, 348(6236): 803-808. |
7 | DOLGIN E. Personalized cancer vaccines pass first major clinical test[J]. Nature Reviews Drug Discovery, 2023, 22(8): 607-609. |
8 | PENG M, MO Y Z, WANG Y A, et al. Neoantigen vaccine: an emerging tumor immunotherapy[J]. Molecular Cancer, 2019, 18(1): 128. |
9 | XIE N, SHEN G B, GAO W, et al. Neoantigens: promising targets for cancer therapy[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 9. |
10 | YANG W, LEE K W, SRIVASTAVA R M, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses[J]. Nature Medicine, 2019, 25(5): 767-775. |
11 | LEVY R, REGEV T A, PAES W, et al. Large-scale immunopeptidome analysis reveals recurrent posttranslational splicing of cancer- and immune-associated genes[J]. Molecular & Cellular Proteomics, 2023, 22(4): 100519. |
12 | PLATTEN M, BUNSE L, WICK A, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma[J]. Nature, 2021, 592(7854): 463-468. |
13 | TURAJLIC S, LITCHFIELD K, XU H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis[J]. The Lancet Oncology, 2017, 18(8): 1009-1021. |
14 | OKA M, XU L, SUZUKI T, et al. Aberrant splicing isoforms detected by full-length transcriptome sequencing as transcripts of potential neoantigens in non-small cell lung cancer[J]. Genome Biology, 2021, 22(1): 9. |
15 | LINS L, THOMAS A, BRASSEUR R. Analysis of accessible surface of residues in proteins[J]. Protein Science, 2003, 12(7): 1406-1417. |
16 | PELLEQUER J L, WESTHOF E. PREDITOP: a program for antigenicity prediction[J]. Journal of Molecular Graphics, 1993, 11(3): 204-210. |
17 | ALIX A J P. Predictive estimation of protein linear epitopes by using the program PEOPLE[J]. Vaccine, 1999, 18(3/4): 311-314. |
18 | JESPERSEN M C, PETERS B, NIELSEN M, et al. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes[J]. Nucleic Acids Research, 2017, 45(W1): W24-W29. |
19 | SAHA S, RAGHAVA G P S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network[J]. Proteins, 2006, 65(1): 40-48. |
20 | SINGH H, ANSARI H R, RAGHAVA G P S. Improved method for linear B-cell epitope prediction using antigen’s primary sequence[J]. PLoS One, 2013, 8(5): e62216. |
21 | FLERI W, PAUL S, DHANDA S K, et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design[J]. Frontiers in Immunology, 2017, 8: 278. |
22 | CALIS J J A, REININK P, KELLER C, et al. Role of peptide processing predictions in T cell epitope identification: contribution of different prediction programs[J]. Immunogenetics, 2015, 67(2): 85-93. |
23 | LARSEN M V, LELIC A, PARSONS R, et al. Identification of CD8+ T cell epitopes in the West Nile virus polyprotein by reverse-immunology using NetCTL[J]. PLoS One, 2010, 5(9): e12697. |
24 | LUNDEGAARD C, LAMBERTH K, HARNDAHL M, et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class Ⅰ affinities for peptides of length 8-11[J]. Nucleic Acids Research, 2008, 36(S2): W509-W512. |
25 | REYNISSON B, ALVAREZ B, PAUL S, et al. NetMHCpan-4. 1 and NetMHCⅡpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data[J]. Nucleic Acids Research, 2020, 48(W1): W449-W454. |
26 | GARCIA-GARIJO A, FAJARDO C A, GROS A. Determinants for neoantigen identification[J]. Frontiers in Immunology, 2019, 10: 1392. |
27 | GOPANENKO A V, KOSOBOKOVA E N, KOSORUKOV V S. Main strategies for the identification of neoantigens[J]. Cancers, 2020, 12(10): 2879. |
28 | RICHARD G, PRINCIOTTA M F, BRIDON D, et al. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy[J]. Expert Review of Vaccines, 2022, 21(2): 173-184. |
29 | RILEY T P, KELLER G L J, SMITH A R, et al. Structure based prediction of neoantigen immunogenicity[J]. Frontiers in Immunology, 2019, 10: 2047. |
30 | LI F G, DENG L G, JACKSON K R, et al. Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations [J]. Journal for ImmunoTherapy of Cancer, 2021: 9(7): e002531. |
31 | OTT P A, HU Z T, KESKIN D B, et al. An immunogenic personal neoantigen vaccine for patients with melanoma[J]. Nature, 2017, 547(7662): 217-221. |
32 | SHUKLA G S, OLSON W C, PERO S C, et al. Vaccine-draining lymph nodes of cancer patients for generating anti-cancer antibodies[J]. Journal of Translational Medicine, 2017, 15(1): 180. |
33 | CHEN X T, YANG J, WANG L F, et al. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives[J]. Theranostics, 2020, 10(13): 6011-6023. |
34 | MALONIS R J, LAI J R, VERGNOLLE O. Peptide-based vaccines: current progress and future challenges[J]. Chemical Reviews, 2020, 120(6): 3210-3229. |
35 | MITTENDORF E A, LU B, MELISKO M, et al. Efficacy and safety analysis of Nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase Ⅲ clinical trial[J]. Clinical Cancer Research, 2019, 25(14): 4248-4254. |
36 | LAI C H, DUAN S L, YE F, et al. The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide[J]. Theranostics, 2018, 8(6): 1723-1739. |
37 | FLORES VEGA Y I, PÁRAMO GONZÁLEZ D L, ALSINA SARMIENTO S C, et al. Survival of NSCLC patients treated with cimavax-EGF as switch maintenance in the real-world scenario[J]. Journal of Cancer, 2023, 14(5): 874-879. |
38 | PANDYA A, SHAH Y, KOTHARI N, et al. The future of cancer immunotherapy: DNA vaccines leading the way[J]. Medical Oncology, 2023, 40(7): 200. |
39 | DUPERRET E K, PERALES-PUCHALT A, STOLTZ R, et al. A synthetic DNA, multi-neoantigen vaccine drives predominately MHC class Ⅰ CD8+ T-cell responses, impacting tumor challenge[J]. Cancer Immunology Research, 2019, 7(2): 174-182. |
40 | YANG X Y, FAN J S, WU Y, et al. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37: 102443. |
41 | BAUMAN J, BURRIS H, CLARKE J, et al. 798 Safety, tolerability, and immunogenicity of mRNA-4157 in combination with pembrolizumab in subjects with unresectable solid tumors (KEYNOTE-603): an update[J]. Journal for ImmunoTherapy of Cancer, 2020: 8(): A477. |
42 | CAFRI G, GARTNER J J, ZAKS T, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer[J]. The Journal of Clinical Investigation, 2020, 130(11): 5976-5988. |
43 | WCULEK S K, CUETO F J, MUJAL A M, et al. Dendritic cells in cancer immunology and immunotherapy[J]. Nature Reviews Immunology, 2020, 20(1): 7-24. |
44 | FU C M, ZHOU L, MI Q S, et al. DC-based vaccines for cancer immunotherapy[J]. Vaccines, 2020, 8(4): 706. |
45 | KANTOFF P W, HIGANO C S, SHORE N D, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer[J]. New England Journal of Medicine, 2010, 363(5): 411-422. |
46 | DING Z Y, LI Q, ZHANG R, et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer[J]. Signal Transduction and Targeted Therapy, 2021, 6: 26. |
47 | KESKIN D B, ANANDAPPA A J, SUN J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ⅰb glioblastoma trial[J]. Nature, 2019, 565(7738): 234-239. |
48 | DROLET M, BÉNARD É, PÉREZ N, et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis[J]. Lancet, 2019, 394(10197): 497-509. |
49 | GUARDO A C, JOE P T, MIRALLES L, et al. Preclinical evaluation of an mRNA HIV vaccine combining rationally selected antigenic sequences and adjuvant signals (HTI-TriMix)[J]. AIDS, 2017, 31(3): 321-332. |
50 | HARRIS R C, CHIANESE-BULLOCK K A, PETRONI G R, et al. The vaccine-site microenvironment induced by injection of incomplete Freund’s adjuvant, with or without melanoma peptides[J]. Journal of Immunotherapy, 2012, 35(1): 78-88. |
51 | WELLS D K, VAN BUUREN M M, DANG K K, et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction[J]. Cell, 2020, 183(3): 818-834. e13. |
52 | ZHOU C, WEI Z T, ZHANG Z B, et al. pTuneos: prioritizing tumor neoantigens from next-generation sequencing data[J]. Genome Medicine, 2019, 11(1): 67. |
53 | HU Y, WANG Z Q, HU H L, et al. ACME: pan-specific peptide-MHC class Ⅰ binding prediction through attention-based deep neural networks[J]. Bioinformatics, 2019, 35(23): 4946-4954. |
54 | LU T S, ZHANG Z, ZHU J, et al. Deep learning-based prediction of the T cell receptor-antigen binding specificity[J]. Nature Machine Intelligence, 2021, 3(10): 864-875. |
55 | ZAMANI P, TEYMOURI M, NIKPOOR A R, et al. Nanoliposomal vaccine containing long multi-epitope peptide E75-AE36 pulsed PADRE-induced effective immune response in mice TUBO model of breast cancer[J]. European Journal of Cancer, 2020, 129: 80-96. |
56 | LI L J, ZHANG X L, WANG X L, et al. Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation[J]. Genome Medicine, 2021, 13(1): 56. |
57 | TRAN T A T, KIM Y H, KIM G E, et al. The long multi-epitope peptide vaccine combined with adjuvants improved the therapeutic effects in a glioblastoma mouse model[J]. Frontiers in Immunology, 2022, 13: 1007285. |
58 | CHEN J J, YE Z F, HUANG C F, et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(34): e2207841119. |
59 | BONEHILL A, HEIRMAN C, TUYAERTS S, et al. Efficient presentation of known HLA class Ⅱ-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class Ⅱ-associated invariant chain peptide[J]. Cancer Research, 2003, 63(17): 5587-5594. |
60 | BONEHILL A, HEIRMAN C, THIELEMANS K. Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy[J]. The Journal of Gene Medicine, 2005, 7(6): 686-695. |
61 | DIEBOLD S S, COTTEN M, KOCH N, et al. MHC class Ⅱ presentation of endogenously expressed antigens by transfected dendritic cells[J]. Gene Therapy, 2001, 8(6): 487-493. |
62 | KREITER S, SELMI A, DIKEN M, et al. Increased antigen presentation efficiency by coupling antigens to MHC class Ⅰ trafficking signals[J]. Journal of Immunology, 2008, 180(1): 309-318. |
63 | WANG Z, ZHANG T T, ANDERSON A, et al. Immortalized B cells transfected with mRNA of antigen fused to MITD (IBMAM): An effective tool for antigen-specific T-cell expansion and TCR validation[J]. Biomedicines, 2023, 11(3): 796. |
64 | ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963): 144-150. |
65 | SAHIN U, DERHOVANESSIAN E, MILLER M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer[J]. Nature, 2017, 547(7662): 222-226. |
66 | KARIKÓ K, BHUYAN P, CAPODICI J, et al. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3[J]. The Journal of Immunology, 2004, 172(11): 6545-6549. |
67 | KARIKÓ K, BUCKSTEIN M, NI H P, et al. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA[J]. Immunity, 2005, 23(2): 165-175. |
68 | MARTÍNEZ-SÁEZ N, SUPEKAR N T, WOLFERT M A, et al. Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment[J]. Chemical Science, 2016, 7(3): 2294-2301. |
69 | GRÜNEWALD J, HUNT G S, DONG L Q, et al. Mechanistic studies of the immunochemical termination of self-tolerance with unnatural amino acids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(11): 4337-4342. |
70 | LIU Y, TANG L, GAO N N, et al. Synthetic MUC1 breast cancer vaccine containing a toll-like receptor 7 agonist exerts antitumor effects[J]. Oncology Letters, 2020, 20(3): 2369-2377. |
71 | CHENG F R, SU T, ZHOU S R, et al. Single-dose injectable nanovaccine-in-hydrogel for robust immunotherapy of large tumors with abscopal effect[J]. Science Advances, 2023, 9(28): eade6257. |
72 | CHENG Q A, WEI T, FARBIAK L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing[J]. Nature Nanotechnology, 2020, 15(4): 313-320. |
73 | WEI T, CHENG Q, MIN Y L, et al. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing[J]. Nature Communications, 2020, 11: 3232. |
74 | KISSICK H T, SANDA M G, DUNN L K, et al. Immunization with a peptide containing MHC class Ⅰ and Ⅱ epitopes derived from the tumor antigen SIM2 induces an effective CD4 and CD8 T-cell response[J]. PLoS One, 2014, 9(4): e93231. |
75 | ANDTBACKA R H I, KAUFMAN H L, COLLICHIO F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma[J]. Journal of Clinical Oncology, 2015, 33(25): 2780-2788. |
76 | D’ALISE A M, BRASU N, DE INTINIS C, et al. Adenoviral-based vaccine promotes neoantigen-specific CD8+ T cell stemness and tumor rejection[J]. Science Translational Medicine, 2022, 14(657): eabo7604. |
77 | WEISS A M, HOSSAINY S, ROWAN S J, et al. Immunostimulatory polymers as adjuvants, immunotherapies, and delivery systems[J]. Macromolecules, 2022, 55(16): 6913-6937. |
78 | PALMER D H, VALLE J W, MA Y T, et al. TG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas (CT TG01-01): a single-arm, phase 1/2 trial[J]. British Journal of Cancer, 2020, 122(7): 971-977. |
79 | CLANCY-THOMPSON E, KING L K, NUNNLEY L D, et al. Peptide vaccination in Montanide adjuvant induces and GM-CSF increases CXCR3 and cutaneous lymphocyte antigen expression by tumor antigen-specific CD8 T cells[J]. Cancer Immunology Research, 2013, 1(5): 332-339. |
80 | TSUJI T, SABBATINI P, JUNGBLUTH A A, et al. Effect of Montanide and poly-ICLC adjuvant on human self/tumor antigen-specific CD4+ T cells in phase Ⅰ overlapping long peptide vaccine trial[J]. Cancer Immunology Research, 2013, 1(5): 340-350. |
81 | LIU J Q, ZHANG C X, ZHANG X F, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy[J]. Journal of Controlled Release, 2022, 345: 306-313. |
82 | WENG M T, YANG S F, LIU S Y, et al. In situ vaccination followed by intramuscular poly-ICLC injections for the treatment of hepatocellular carcinoma in mouse models[J]. Pharmacological Research, 2023, 188: 106646. |
83 | PARMIANI G, CASTELLI C, PILLA L, et al. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients[J]. Annals of Oncology, 2007, 18(2): 226-232. |
84 | GONZALEZ G, CROMBET T, TORRES F, et al. Epidermal growth factor-based cancer vaccine for non-small-cell lung cancer therapy[J]. Annals of Oncology, 2003, 14(3): 461-466. |
85 | MENEVEAU MAX O, PANKAJ K, LYNCH KEVIN T, et al. The vaccine-site microenvironment: impacts of antigen, adjuvant, and same-site vaccination on antigen presentation and immune signaling[J]. Journal for Immunotherapy of Cancer, 2022, 10(3): e003533. |
86 | SAHIN U, OEHM P, DERHOVANESSIAN E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma[J]. Nature, 2020, 585(7823): 107-112. |
87 | LIU L N, WANG Y H, MIAO L, et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer[J]. Molecular Therapy, 2018, 26(1): 45-55. |
88 | TOSCH C, BASTIEN B, BARRAUD L, et al. Viral based vaccine TG4010 induces broadening of specific immune response and improves outcome in advanced NSCLC[J]. Journal for Immunotherapy of Cancer, 2017, 5(1): 70. |
89 | AWAD M M, GOVINDAN R, BALOGH K N, et al. Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer[J]. Cancer Cell, 2022, 40(9): 1010-1026. e11. |
90 | LIAU L M, ASHKAN K, BREM S, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial[J]. JAMA Oncology, 2023, 9(1): 112-121. |
91 | DHATCHINAMOORTHY K, COLBERT J D, ROCK K L. Cancer immune evasion through loss of MHC class Ⅰ antigen presentation[J]. Frontiers in Immunology, 2021, 12: 636568. |
92 | HU-LIESKOVAN S, MOK S, HOMET MORENO B, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma[J]. Science Translational Medicine, 2015, 7(279): 279ra41. |
93 | GABRILOVICH D I, NAGARAJ S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nature Reviews Immunology, 2009, 9(3): 162-174. |
94 | SCHUMACHER T, BUNSE L, PUSCH S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity[J]. Nature, 2014, 512(7514): 324-327. |
95 | BUNSE L, RUPP A K, POSCHKE I, et al. AMPLIFY-NEOVAC: a randomized, 3-arm multicenter phase I trial to assess safety, tolerability and immunogenicity of IDH1-vac combined with an immune checkpoint inhibitor targeting programmed death-ligand 1 in isocitrate dehydrogenase 1 mutant gliomas[J]. Neurological Research and Practice, 2022, 4(1): 20. |
96 | HSIUE E H C, WRIGHT K M, DOUGLASS J, et al. Targeting a neoantigen derived from a common TP53 mutation[J]. Science, 2021, 371(6533): eabc8697. |
97 | CHAFT J E, LITVAK A, ARCILA M E, et al. Phase Ⅱ study of the GI-4000 KRAS vaccine after curative therapy in patients with stage Ⅰ-Ⅲ lung adenocarcinoma harboring a KRAS G12C, G12D, or G12V mutation[J]. Clinical Lung Cancer, 2014, 15(6): 405-410. |
98 | GJERTSEN M K, BUANES T, ROSSELAND A R, et al. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma[J]. International Journal of Cancer, 2001, 92(3): 441-450. |
[1] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[2] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
[3] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[4] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
[5] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[6] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[7] | 谭子斌, 梁康, 陈有海. 合成生物学在基于微生物载体肿瘤疫苗设计中的应用[J]. 合成生物学, 2024, 5(2): 221-238. |
[8] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[9] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[10] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[11] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[12] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[13] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[14] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[15] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||