合成生物学 ›› 2025, Vol. 6 ›› Issue (5): 1107-1125.DOI: 10.12211/2096-8280.2024-095

• 特约评述 • 上一篇    下一篇

植物合成生物学:植物细胞大规模培养的新机遇

颜钊涛1,2, 周鹏飞3, 汪阳忠4, 张鑫4, 谢雯燕4, 田晨菲1,4, 王勇1   

  1. 1.中国科学院分子植物科学卓越创新中心,植物生理生态研究所,中国科学院合成生物学重点实验室,上海 200032
    2.中国科学院大学,北京 100049
    3.广东医科大学基础医学院,广东 东莞 523808
    4.上海烟草集团有限责任公司烟草行业卷烟烟气重点实验室,上海 201315
  • 收稿日期:2024-12-18 修回日期:2025-02-24 出版日期:2025-10-31 发布日期:2025-11-05
  • 通讯作者: 田晨菲,王勇
  • 作者简介:颜钊涛(1998—),男,硕士研究生。主要研究方向为植物合成生物学及植物细胞培养。E-mail:yanzhaotao@cemps.ac.cn
    田晨菲(1995—),女,博士后。研究方向为植物合成生物学。E-mail:tianchenfei@cemps.ac.cn
    王勇(1974—),男,研究员,博士生导师。研究方向为天然产物合成生物学,通过解析天然产物的生物合成途径,运用合成生物学的思想和方法,基于工程化的设计和建构,改进复杂天然产物的生物合成效率和其生产方式,开发天然的或非天然的复杂天然产物活性成分。E-mail:yongwang@cemps.ac.cn
  • 基金资助:
    国家重点研发计划(SQ2024YFA1700126);上海市市级重大专项(24HC2820400);上海烟草集团有限责任公司行业卷烟烟气重点实验室开放性课题(K2023-1-044P)

Plant synthetic biology: new opportunities for large-scale culture of plant cells

YAN Zhaotao1,2, ZHOU Pengfei3, WANG Yangzhong4, ZHANG Xin4, XIE Wenyan4, TIAN Chenfei1,4, WANG Yong1   

  1. 1.Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences,Institute of Plant Physiology and Ecology,Chinese Academy of Sciences,Shanghai 200032,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.School of Basic Medical Sciences,Guangdong Medical University,Dongguan 523808,Guangdong,China
    4.Key Laboratory of Cigarette Smoke in Tobacco Industry,Shanghai Tobacco Group Co. ,Ltd,Shanghai 201315,China
  • Received:2024-12-18 Revised:2025-02-24 Online:2025-10-31 Published:2025-11-05
  • Contact: TIAN Chenfei, WANG Yong

摘要:

植物细胞培养(plant cell culture, PCC)作为一种极具发展潜力的生物合成平台,具有生长周期短、成本效益高、无病原危害、次生代谢产物丰富等优势,在医药、食品和保健等领域备受关注。然而,生产效率不足是限制PCC应用于商业化生产的最大阻碍,其中,遗传转化效率低、调控网络复杂、细胞结团及遗传稳定性差是主要困难。合成生物学遵循自下而上的工程化建造理念,对天然植物细胞进行精准设计与改造,为开发高效、经济可行的植物细胞工厂提供了新的解决方案。本文回顾了PCC作为合成平台在生产重组蛋白和次生代谢产物中的研究现状。重点探讨了植物合成生物学对PCC在工业化发展中的推动作用,包括优质植物细胞系的构建、遗传转化体系的优化、表达系统的优化、生产效率与产能的提升以及赋予植物细胞合成异源产物的能力。未来,PCC的发展更需强调合成生物学理念和技术在突破当前技术瓶颈中的关键作用,以促进植物细胞大规模培养的进一步发展。

关键词: 植物合成生物学, 植物细胞, 生物合成, 天然产物, 基因工程

Abstract:

Plant Cell Culture (PCC) has emerged as a highly promising chassis for synthetic biology, offering a range of advantages such as short growth cycles, cost-effectiveness, absence of pathogenic risks, and abundant secondary metabolites. These features make PCC an attractive alternative for applications in medicine, food, and health. However, insufficient production efficiency due to difficulties in genetic transformation, complex regulatory networks, cell aggregation, and poor genetic stability remains a major obstacle that limits the commercialization of PCC. Synthetic biology, with its bottom-up engineering design approach, provides a powerful toolkit to address these challenges. By enabling the precise design and modification of native plant cells, synthetic biology offers innovative strategies to develop efficient and economically viable plant cell factories. In this paper, we first review the current status of PCC in synthesizing high-value compounds, particularly recombinant proteins and secondary metabolites. Recent advancements have demonstrated the potential of PCC to produce therapeutic proteins, vaccines, industrial enzymes and bioactive compounds such as alkaloids, flavonoids, and terpenoids. These successes underscore the versatility of PCC as a bioproduction platform. We then explore the role of synthetic biology in advancing PCC industrialization. Key developments include the creation of high-quality plant cell lines through genome editing tools like CRISPR/Cas9, enhancing genetic stability and metabolic efficiency. Additionally, synthetic biology has improved genetic transformation systems, overcoming a critical bottleneck in PCC. Enhanced expression systems, incorporating synthetic promoters and regulatory elements, have significantly boosted target compound yields. Furthermore, synthetic biology has expanded PCC applications by enabling the biosynthesis of heterologous compounds beyond their native metabolic pathways. Finally, we discuss future prospects, emphasizing the potential of synthetic biology to overcome current technical challenges. Emerging technologies including multi-omics integration, machine learning, and synthetic organelle development are anticipated to further enhance PCC’s scalability and efficiency. By addressing these challenges, synthetic biology will pave the way for large-scale plant cell cultivation, thereby facilitating its widespread adoption in industrial bioproduction. The convergence of PCC and synthetic biology holds immense potential for the sustainable, cost-effective, and scalable production of high-value compounds.

Key words: plant synthetic biology, plant cells, biosynthesis, natural product, genetic engineering

中图分类号: