合成生物学 ›› 2022, Vol. 3 ›› Issue (5): 932-952.DOI: 10.12211/2096-8280.2021-104
陶飞1(), 孙韬2, 王钰3, 魏婷4, 倪俊1, 许平1
收稿日期:
2021-11-18
修回日期:
2021-12-22
出版日期:
2022-10-31
发布日期:
2022-11-16
通讯作者:
陶飞
作者简介:
基金资助:
Fei TAO1(), Tao SUN2, Yu WANG3, Ting WEI4, Jun NI1, Ping XU1
Received:
2021-11-18
Revised:
2021-12-22
Online:
2022-10-31
Published:
2022-11-16
Contact:
Fei TAO
摘要:
CO2是最主要的温室气体,也是储量丰富的碳资源。发展CO2的高效资源化利用技术可缓解迫切的能源和环境压力,是实现“双碳”目标的重要途径。蓝细菌可通过光合自养的方式将CO2转变为有机物,是开发光驱动细胞工厂并直接利用CO2生产化合物的主要微生物底盘。聚球藻作为蓝细菌的典型代表,生长快、遗传背景清楚、营养需求低,是目前光驱动合成生物学的热门底盘。在当前“碳达峰”和“碳中和”的“双碳”背景下,聚球藻底盘的研究正迎来前所未有的机遇。本文从自然进化、地球物理局限、土地气候依赖、太阳能转化效率等角度探讨了蓝细菌底盘开发的理性和机遇;分析了其在能源生产、化合物制造和碳汇与碳捕集中的应用潜力和愿景;从碳固定、光能捕捉和生物多样性的层面讨论了蓝细菌的代谢潜能。在上述基础上,系统综述了基因编辑、适应性进化、多元抗逆和光驱动细胞工厂这些蓝细菌合成生物学的热点研究领域近期的重要研究进展,并对当前所面临的挑战与难题进行了梳理,分析提出了可行的应对策略。对这些问题和挑战的深入探索有望推动光能捕获、固碳、抗逆、代谢网络重编等方面研究的突破,开发出超越自然进化的高效光合底盘,并最终建造高版本的光驱动细胞工厂,助力“双碳”目标的实现。
中图分类号:
陶飞, 孙韬, 王钰, 魏婷, 倪俊, 许平. “双碳”背景下聚球藻底盘研究的挑战与机遇[J]. 合成生物学, 2022, 3(5): 932-952.
Fei TAO, Tao SUN, Yu WANG, Ting WEI, Jun NI, Ping XU. Challenges and opportunities in the research of Synechococcus chassis under the context of carbon peak and neutrality[J]. Synthetic Biology Journal, 2022, 3(5): 932-952.
Strain | Type | Engineered CRISPR system | Application | Ref. |
---|---|---|---|---|
Synechococcus elongatus PCC 7942 | Cas9 | One plasmid pCas9-NSI expresses Streptococcus pyogenes Cas9, tracrRNA and crRNA under the native promoter | Simultaneous glgc knock-out and gltA/ppc knock-in with a 100% efficiency after 3 passages of antibiotic selection | [ |
One plasmid harbors the editing template | ||||
Cas12a | One plasmid pSL2680 expresses Francisella novicida Cas12a under a lac promoter and an endogenous CRISPR array under a J23119 promoter | rpaA, atpA, and ppnK point mutations, no efficiency data were provided | [ | |
Synechococcus elongatus UTEX 2973 | Cas9 | One plasmid pSL2546 expresses S. pyogenes Cas9 under a rpsL(XC) promoter and tracrRNA and sgRNA under a gapdhp(EL) promoter and harbors the editing template | nblA deletion with a 100% efficiency in the first patch | [ |
Cas12a | One plasmid pSL2680 expresses F. novicida Cas12a under a lac promoter and an endogenous CRISPR array under a J23119 promoter | psbA S264A point mutation with 75% efficiency, eyfp knock-in with a 60% efficiency, and nblA deletion with a 90% efficiency after 3~4 passages of antibiotic selection | [ |
表1 基于CRISPR的聚球藻基因组编辑技术
Tab. 1 CRISPR-based genome editing technologies for Synechococcus
Strain | Type | Engineered CRISPR system | Application | Ref. |
---|---|---|---|---|
Synechococcus elongatus PCC 7942 | Cas9 | One plasmid pCas9-NSI expresses Streptococcus pyogenes Cas9, tracrRNA and crRNA under the native promoter | Simultaneous glgc knock-out and gltA/ppc knock-in with a 100% efficiency after 3 passages of antibiotic selection | [ |
One plasmid harbors the editing template | ||||
Cas12a | One plasmid pSL2680 expresses Francisella novicida Cas12a under a lac promoter and an endogenous CRISPR array under a J23119 promoter | rpaA, atpA, and ppnK point mutations, no efficiency data were provided | [ | |
Synechococcus elongatus UTEX 2973 | Cas9 | One plasmid pSL2546 expresses S. pyogenes Cas9 under a rpsL(XC) promoter and tracrRNA and sgRNA under a gapdhp(EL) promoter and harbors the editing template | nblA deletion with a 100% efficiency in the first patch | [ |
Cas12a | One plasmid pSL2680 expresses F. novicida Cas12a under a lac promoter and an endogenous CRISPR array under a J23119 promoter | psbA S264A point mutation with 75% efficiency, eyfp knock-in with a 60% efficiency, and nblA deletion with a 90% efficiency after 3~4 passages of antibiotic selection | [ |
图3 噬菌体辅助连续进化(PACE)系统示意图MP—诱变质粒;AP—辅助质粒;SP—筛选噬菌体或其注入宿主细胞的基因组;POI—待进化的目标蛋白
Fig. 3 Schematic design of phage-assisted continuous evolution (PACE) MP—mutagenesis plasmid; AP—accessory plasmid; SP—selection phage or its genome inside the infected host cell; POI—protein of interest to be evolved
产物 | 产量 | 宿主 | 参考文献 |
---|---|---|---|
2, 3-丁二醇 | 2.38 g/L | S. elongatus PCC 7942 | [ |
异丁醇 | 550 mg/L | S. elongatus PCC 7942 | [ |
3-羟基丙酸 | 659 mg/L | S. elongatus PCC 7942 | [ |
D-乳酸 | 798 mg/L | S. elongatus PCC 7942 | [ |
甘油 | 1.24 g/L | S. elongatus PCC 7942 | [ |
β-聚羟基丁酸 | 420 mg/L | S. elongatus UTEX2973 | [ |
咖啡酸 | 4.7 mg/L | S. elongatus PCC 7942 | [ |
对香豆酸 | 128.2 mg/L | S. elongatus PCC 7942 | [ |
阿魏酸 | 6.3 mg/L | S. elongatus PCC 7942 | [ |
柚皮素 | 4.6 mg/L | S. elongatus PCC 7942 | [ |
白藜芦醇 | 7.1 mg/L | S. elongatus PCC 7942 | [ |
双去甲氧基姜黄素 | 4.1 mg/L | S. elongatus PCC 7942 | [ |
异戊二烯 | 60 mg/(L·d) | S. elongatus PCC 7942 | [ |
柠檬烯 | 50 μg/(L·h) | Synechococcus sp. PCC 7002 | [ |
红没药烯 | 7.5 μg/(L·h) | Synechococcus sp. PCC 7002 | [ |
乙烯 | 512 μg/(L·OD·h) | S. elongatus PCC 7942 | [ |
甘露醇 | 0.63 g/(L·d) | Synechococcus sp. PCC 7002 | [ |
表2 聚球藻细胞为底盘生产的产品
Tab. 2 Chemical production using Synechococcus strain as chassis
产物 | 产量 | 宿主 | 参考文献 |
---|---|---|---|
2, 3-丁二醇 | 2.38 g/L | S. elongatus PCC 7942 | [ |
异丁醇 | 550 mg/L | S. elongatus PCC 7942 | [ |
3-羟基丙酸 | 659 mg/L | S. elongatus PCC 7942 | [ |
D-乳酸 | 798 mg/L | S. elongatus PCC 7942 | [ |
甘油 | 1.24 g/L | S. elongatus PCC 7942 | [ |
β-聚羟基丁酸 | 420 mg/L | S. elongatus UTEX2973 | [ |
咖啡酸 | 4.7 mg/L | S. elongatus PCC 7942 | [ |
对香豆酸 | 128.2 mg/L | S. elongatus PCC 7942 | [ |
阿魏酸 | 6.3 mg/L | S. elongatus PCC 7942 | [ |
柚皮素 | 4.6 mg/L | S. elongatus PCC 7942 | [ |
白藜芦醇 | 7.1 mg/L | S. elongatus PCC 7942 | [ |
双去甲氧基姜黄素 | 4.1 mg/L | S. elongatus PCC 7942 | [ |
异戊二烯 | 60 mg/(L·d) | S. elongatus PCC 7942 | [ |
柠檬烯 | 50 μg/(L·h) | Synechococcus sp. PCC 7002 | [ |
红没药烯 | 7.5 μg/(L·h) | Synechococcus sp. PCC 7002 | [ |
乙烯 | 512 μg/(L·OD·h) | S. elongatus PCC 7942 | [ |
甘露醇 | 0.63 g/(L·d) | Synechococcus sp. PCC 7002 | [ |
1 | PALINKAS L A, WONG M. Global climate change and mental health[J]. Current Opinion in Psychology, 2020, 32: 12-16. |
2 | 丁仲礼. 中国碳中和框架路线图研究[J]. 中国工业和信息化, 2021(8): 54-61. |
DING Z L. Research on the roadmap and framework of China's carbon neutral[J]. China Industry & Information Technology, 2021(8): 54-61. | |
3 | 王永中. 碳达峰、碳中和目标与中国的新能源革命[J]. 人民论坛⋅学术前沿, 2021(14): 88-96. |
WANG Y Z. The targets of carbon peak and carbon neutralization and China's new energy revolution[J]. Frontiers, 2021(14): 88-96. | |
4 | 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. |
HU A G. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15. | |
5 | 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64. |
WANG C, ZHANG Y X. Implementation pathway and policy system of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2020, 12(6): 58-64. | |
6 | FUCHSMAN C A, PALEVSKY H I, WIDNER B, et al. Cyanobacteria and cyanophage contributions to carbon and nitrogen cycling in an oligotrophic oxygen-deficient zone[J]. The ISME Journal, 2019, 13(11): 2714-2726. |
7 | SÁNCHEZ-BARACALDO P, BIANCHINI G, WILSON J D, et al. Cyanobacteria and biogeochemical cycles through Earth history[J]. Trends in Microbiology, 2022, 30(2): 143-157. |
8 | AL-HAJ L, LUI Y T, ABED R M M, et al. Cyanobacteria as chassis for industrial biotechnology: progress and prospects[J]. Life, 2016, 6(4): 42. |
9 | XU X M, RISOUL V, BYRNE D, et al. HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium Nostoc PCC 7120[J]. eLife, 2020, 9: e59190. |
10 | KIENINGER A K, MALDENER I. Cell-cell communication through septal junctions in filamentous cyanobacteria[J]. Current Opinion in Microbiology, 2021, 61: 35-41. |
11 | ZHAO L S, HUOKKO T, WILSON S, et al. Structural variability, coordination and adaptation of a native photosynthetic machinery[J]. Nature Plants, 2020, 6(7): 869-882. |
12 | PEMBROKE J T, RYAN M P. Cyanobacterial biofuel production: current development, challenges and future needs[M]// Biofuel and biorefinery technologies. Cham: Springer International Publishing, 2020: 35-62. |
13 | KOCH M, BRUCKMOSER J, SCHOLL J, et al. Maximizing PHB content in Synechocystis sp. PCC 6803: a new metabolic engineering strategy based on the regulator PirC[J]. Microbial Cell Factories, 2020, 19(1): 231. |
14 | CASE A E, ATSUMI S. Cyanobacterial chemical production[J]. Journal of Biotechnology, 2016, 231: 106-114. |
15 | WANG F, GAO Y Y, YANG G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production[J]. Bioengineered, 2020, 11(1): 1208-1220. |
16 | ZAHRA Z, CHOO D H, LEE H, et al. Cyanobacteria: review of current potentials and applications[J]. Environments, 2020, 7(2): 13. |
17 | LI C, TAO F, XU P. Carbon flux trapping: highly efficient production of polymer-grade D-lactic acid with a thermophilic D-lactate dehydrogenase[J]. ChemBioChem: a European Journal of Chemical Biology, 2016, 17(16): 1491-1494. |
18 | LI C, TAO F, NI J, et al. Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy[J]. Scientific Reports, 2015, 5: 9777. |
19 | ZHU Z, JIANG J H, FA Y. Overcoming the biological contamination in microalgae and cyanobacteria mass cultivations for photosynthetic biofuel production[J]. Molecules, 2020, 25(22): 5220. |
20 | MAZARD S, PENESYAN A, OSTROWSKI M, et al. Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future[J]. Marine Drugs, 2016, 14(5): 97. |
21 | ONGENA J, OOST G V. Energy for future centuries: prospects for fusion power as a future energy source[J]. Fusion Science and Technology, 2012, 61(2T): 3-16. |
22 | KWOK S. Abiotic synthesis of complex organics in the Universe[J]. Nature Astronomy, 2017, 1(10): 642-643. |
23 | WOODLEY J M. Towards the sustainable production of bulk-chemicals using biotechnology[J]. New Biotechnology, 2020, 59: 59-64. |
24 | VAVITSAS K, KUGLER A, SATTA A, et al. Doing synthetic biology with photosynthetic microorganisms[J]. Physiologia Plantarum, 2021, 173(2): 624-638. |
25 | CHAUVAT F, CASSIER-CHAUVAT C. Chapter Six - Genomics of cyanobacteria: new insights and lessons for shaping our future-A follow-up of volume 65: genomics of cyanobacteria[M] Advances in botanical research (Volume 100), 2021: 213-235. |
26 | LEWIS N S, NOCERA D G. Powering the planet: chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729-15735. |
27 | AHMED S D, AL-ISMAIL F S M, SHAFIULLAH M, et al. Grid integration challenges of wind energy: a review[J]. IEEE Access, 8: 10857-10878. |
28 | OBI M, BASS R. Trends and challenges of grid-connected photovoltaic systems - a review[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1082-1094. |
29 | CHEN R S, CHENG Y F, HAN S Y, et al. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar-sea rice 86[J]. BMC Genomics, 2017, 18(1): 655. |
30 | MELANDRI G, ABDELGAWAD H, FLOKOVÁ K, et al. Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses[J]. Planta, 2021, 254(1): 13. |
31 | HUANG Q S, JIANG F H, WANG L Z, et al. Design of photobioreactors for mass cultivation of photosynthetic organisms[J]. Engineering, 2017, 3(3): 318-329. |
32 | CASSIER-CHAUVAT C, DIVE V, CHAUVAT F. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1359-1364. |
33 | VASILE N S, CORDARA A, USAI G, et al. Computational analysis of dynamic light exposure of unicellular algal cells in a flat-panel photobioreactor to support light-induced CO2 bioprocess development[J]. Frontiers in Microbiology, 2021, 12: 639482. |
34 | SAWA M, FANTUZZI A, BOMBELLI P, et al. Electricity generation from digitally printed cyanobacteria[J]. Nature Communications, 2017, 8: 1327. |
35 | SCHUERGERS N, WERLANG C, AJO-FRANKLIN C M, et al. A synthetic biology approach to engineering living photovoltaics[J]. Energy & Environmental Science, 2017, 10(5): 1102-1115. |
36 | QIAO Y, JIANG K Z, DENG H, et al. A high-energy-density and long-life lithium-ion battery via reversible oxide-peroxide conversion[J]. Nature Catalysis, 2019, 2(11): 1035-1044. |
37 | LIU X F, MIAO R, LINDBERG P, et al. Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria[J]. Energy & Environmental Science, 2019, 12(9): 2765-2777. |
38 | ALDRIDGE S. Industry backs biocatalysis for greener manufacturing[J]. Nature Biotechnology, 2013, 31(2): 95-96. |
39 | GAO X, GAO F, LIU D, et al. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2 [J]. Energy & Environmental Science, 2016, 9(4): 1400-1411. |
40 | ZHU T, XIE X M, LI Z M, et al. Enhancing photosynthetic production of ethylene in genetically engineered Synechocystis sp. PCC 6803[J]. Green Chemistry, 2015, 17(1): 421-434. |
41 | WANG Y, TAO F, NI J, et al. Production of C3 platform chemicals from CO2 by genetically engineered cyanobacteria[J]. Green Chemistry, 2015, 17(5): 3100-3110. |
42 | NI J, TAO F, WANG Y, et al. A photoautotrophic platform for the sustainable production of valuable plant natural products from CO2 [J]. Green Chemistry, 2016, 18(12): 3537-3548. |
43 | NI J, LIU H Y, TAO F, et al. Remodeling of the photosynthetic chain promotes direct CO2 conversion into valuable aromatic compounds[J]. Angewandte Chemie International Edition, 2018, 57(49): 15990-15994. |
44 | LIU D, LIBERTON M, HENDRY J I, et al. Engineering biology approaches for food and nutrient production by cyanobacteria[J]. Current Opinion in Biotechnology, 2021, 67: 1-6. |
45 | ATAEIAN M, LIU Y H, CANON-RUBIO K A, et al. Direct capture and conversion of CO2 from air by growing a cyanobacterial consortium at pH up to 11.2[J]. Biotechnology and Bioengineering, 2019, 116(7): 1604-1611. |
46 | UPENDAR G, SINGH S, CHAKRABARTY J, et al. Sequestration of carbon dioxide and production of biomolecules using cyanobacteria[J]. Journal of Environmental Management, 2018, 218: 234-244. |
47 | KUMAR K, DASGUPTA C N, NAYAK B, et al. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria[J]. Bioresource Technology, 2011, 102(8): 4945-4953. |
48 | MUÑOZ-ROJAS M, ROMÁN J R, RONCERO-RAMOS B, et al. Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration[J]. Science of the Total Environment, 2018, 636: 1149-1154. |
49 | PANDIT S, NAYAK B K, DAS D. Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment[J]. Bioresource Technology, 2012, 107: 97-102. |
50 | BURNAP R L. Systems and photosystems: cellular limits of autotrophic productivity in cyanobacteria[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 1. |
51 | AHMAD M AL, NATOUR Z AL, ATTOUB S, et al. Monitoring of the budding yeast cell cycle using electrical parameters[J]. IEEE Access, 6: 19231-19237. |
52 | GIBSON B, WILSON D J, FEIL E, et al. The distribution of bacterial doubling times in the wild[J]. Proceedings Biological Sciences, 2018, 285(1880): 20180789. |
53 | O'DONNELL M, LANGSTON L, STILLMAN B. Principles and concepts of DNA replication in bacteria, archaea, and eukarya[J]. Cold Spring Harbor Perspectives in Biology, 2013, 5(7): a010108. |
54 | FOSSUM S, CROOKE E, SKARSTAD K. Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli [J]. The EMBO Journal, 2007, 26(21): 4514-4522. |
55 | WŁODARCZYK A, SELÃO T T, NORLING B, et al. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production[J]. Communications Biology, 2020, 3: 215. |
56 | YU J J, LIBERTON M, CLIFTEN P F, et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2 [J]. Scientific Reports, 2015, 5: 8132. |
57 | UNGERER J, LIN P C, CHEN H Y, et al. Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacterium Synechococcus elongatus UTEX 2973[J]. mBio, 2018, 9(1): e02327-e02317. |
58 | JAHN M, VIALAS V, KARLSEN J, et al. Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins[J]. Cell Reports, 2018, 25(2): 478-486.e8. |
59 | GEISZ J F, FRANCE R M, SCHULTE K L, et al. Six-junction III-V solar cells with 47.1% conversion efficiency under 143 Suns concentration[J]. Nature Energy, 2020, 5(4): 326-335. |
60 | GAN F, ZHANG S Y, ROCKWELL N C, et al. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light[J]. Science, 2014, 345(6202): 1312-1317. |
61 | TEODOR A H, BRUCE B D. Putting photosystem I to work: truly green energy[J]. Trends in Biotechnology, 2020, 38(12): 1329-1342. |
62 | FANG X, KALATHIL S, REISNER E. Semi-biological approaches to solar-to-chemical conversion[J]. Chemical Society Reviews, 2020, 49(14): 4926-4952. |
63 | LIPS D, SCHUURMANS J M, BRANCO DOS SANTOS F, et al. Many ways towards 'solar fuel': quantitative analysis of the most promising strategies and the main challenges during scale-up[J]. Energy & Environmental Science, 2018, 11(1): 10-22. |
64 | KIRST H, FORMIGHIERI C, MELIS A. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2014, 1837(10): 1653-1664. |
65 | HIROSE Y, SONG C H, WATANABE M, et al. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria[J]. Molecular Plant, 2019, 12(8): 1167-1169. |
66 | LUIMSTRA V M, SCHUURMANS J M, VERSCHOOR A M, et al. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II[J]. Photosynthesis Research, 2018, 138(2): 177-189. |
67 | GONG F Y, ZHU H W, ZHANG Y P, et al. Biological carbon fixation: from natural to synthetic[J]. Journal of CO2 Utilization, 2018, 28: 221-227. |
68 | LIANG F Y, LINDBERG P, LINDBLAD P. Engineering photoautotrophic carbon fixation for enhanced growth and productivity[J]. Sustainable Energy & Fuels, 2018, 2(12): 2583-2600. |
69 | BARATI B, ZENG K, BAEYENS J, et al. Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration[J]. Biomass and Bioenergy, 2021, 145: 105927. |
70 | YU H, LI X Q, DUCHOUD F, et al. Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway[J]. Nature Communications, 2018, 9: 2008. |
71 | WEI L, SHEN C, HAJJAMI M EL, et al. Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level[J]. Metabolic Engineering, 2019, 54: 96-108. |
72 | CLARK R L, GORDON G C, BENNETT N R, et al. High-CO2 requirement as a mechanism for the containment of genetically modified cyanobacteria[J]. ACS Synthetic Biology, 2018, 7(2): 384-391. |
73 | TUSCHHOFF E J, HUTTER C R, GLOR R E. Improving sustainable use of genetic resources in biodiversity archives[J]. PeerJ, 2020, 8: e8369. |
74 | GRÉBERT T, DORÉ H, PARTENSKY F, et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): E2010-E2019. |
75 | XIA X M, LIU H B, CHOI D, et al. Variation of Synechococcus pigment genetic diversity along two turbidity gradients in the China seas[J]. Microbial Ecology, 2018, 75(1): 10-21. |
76 | CALLIERI C. Synechococcus plasticity under environmental changes[J]. FEMS Microbiology Letters, 2017, 364(23): fnx229. |
77 | PATTHARAPRACHAYAKUL N, LEE M, INCHAROENSAKDI A, et al. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria[J]. Enzyme and Microbial Technology, 2020, 140: 109619. |
78 | BEHLER J, VIJAY D, HESS W R, et al. CRISPR-based technologies for metabolic engineering in cyanobacteria[J]. Trends in Biotechnology, 2018, 36(10): 996-1010. |
79 | 李洋, 申晓林, 孙新晓, 等. CRISPR基因编辑技术在微生物合成生物学领域的研究进展[J]. 合成生物学, 2021, 2(1): 106-120. |
LI Y, SHEN X L, SUN X X, et al. Advances of CRISPR gene editing in microbial synthetic biology[J]. Synthetic Biology Journal, 2021, 2(1): 106-120. | |
80 | LI H, SHEN C R, HUANG C H, et al. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production[J]. Metabolic Engineering, 2016, 38: 293-302. |
81 | UNGERER J, WENDT K E, HENDRY J I, et al. Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(50): E11761-E11770. |
82 | WENDT K E, UNGERER J, COBB R E, et al. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973[J]. Microbial Cell Factories, 2016, 15(1): 115. |
83 | UNGERER J, PAKRASI H B. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria[J]. Scientific Reports, 2016, 6: 39681. |
84 | SUN T, LI S B, SONG X Y, et al. Toolboxes for cyanobacteria: recent advances and future direction[J]. Biotechnology Advances, 2018, 36(4): 1293-1307. |
85 | LIU J, WANG Y, LU Y J, et al. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum [J]. Microbial Cell Factories, 2017, 16(1): 205. |
86 | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. |
87 | NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305): aaf8729. |
88 | ZHAO D D, LI J, LI S W, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology, 2021, 39(1): 35-40. |
89 | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. |
90 | KURT I C, ZHOU R H, IYER S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature Biotechnology, 2021, 39(1): 41-46. |
91 | WANG Y, LIU Y, ZHENG P, et al. Microbial base editing: a powerful emerging technology for microbial genome engineering[J]. Trends in Biotechnology, 2021, 39(2): 165-180. |
92 | WANG Y, LIU Y, LI J W, et al. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum [J]. Biotechnology and Bioengineering, 2019, 116(11): 3016-3029. |
93 | WANG Y, LIU Y, LIU J, et al. MACBETH: multiplex automated Corynebacterium glutamicum base editing method[J]. Metabolic Engineering, 2018, 47: 200-210. |
94 | WANG Y, CHENG H J, LIU Y, et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing[J]. Nature Communications, 2021, 12: 678. |
95 | HUANG C H, SHEN C R, LI H, et al. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942[J]. Microbial Cell Factories, 2016, 15(1): 196. |
96 | KNOOT C J, BISWAS S, PAKRASI H B. Tunable repression of key photosynthetic processes using Cas12a CRISPR interference in the fast-growing cyanobacterium Synechococcus sp. UTEX 2973[J]. ACS Synthetic Biology, 2020, 9(1): 132-143. |
97 | CHOI S Y, WOO H M. CRISPRi-dCas12a: a dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria[J]. ACS Synthetic Biology, 2020, 9(9): 2351-2361. |
98 | LIU Y, WAN X Y, WANG B J. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria[J]. Nature Communications, 2019, 10: 3693. |
99 | YAO L, SHABESTARY K, BJÖRK S M, et al. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes[J]. Nature Communications, 2020, 11: 1666. |
100 | SWANSON W J. Adaptive evolution of genes and gene families[J]. Current Opinion in Genetics & Development, 2003, 13(6): 617-622. |
101 | BILLIS K, BILLINI M, TRIPP H J, et al. Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of stress acclimation[J]. PLoS One, 2014, 9(10): e109738. |
102 | DANN M, ORTIZ E M, THOMAS M, et al. Enhancing photosynthesis at high light levels by adaptive laboratory evolution[J]. Nature Plants, 2021, 7(5): 681-695. |
103 | YOSHIKAWA K, OGAWA K, TOYA Y, et al. Mutations in hik26 and slr1916 lead to high-light stress tolerance in Synechocystis sp. PCC6803[J]. Communications Biology, 2021, 4: 343. |
104 | SRIVASTAVA V, AMANNA R, ROWDEN S J L, et al. Adaptive laboratory evolution of the fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance[J]. Journal of Bioscience and Bioengineering, 2021, 131(5): 491-500. |
105 | WANG Y X, SHI M L, NIU X F, et al. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803[J]. Microbial Cell Factories, 2014, 13: 151. |
106 | XU C X, SUN T, LI S B, et al. Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803[J]. Biotechnology for Biofuels, 2018, 11: 205. |
107 | TILLICH U M, WOLTER N, FRANKE P, et al. Screening and genetic characterization of thermo-tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution[J]. BMC Biotechnology, 2014, 14: 66. |
108 | HU L, HE J Y, DONG M J, et al. Divergent metabolic and transcriptomic responses of Synechocystis sp. PCC 6803 to salt stress after adaptive laboratory evolution[J]. Algal Research, 2020, 47: 101856. |
109 | UCHIYAMA J, KANESAKI Y, IWATA N, et al. Genomic analysis of parallel-evolved cyanobacterium Synechocystis sp. PCC 6803 under acid stress[J]. Photosynthesis Research, 2015, 125(1/2): 243-254. |
110 | DURÃO P, AIGNER H, NAGY P, et al. Opposing effects of folding and assembly chaperones on evolvability of Rubisco[J]. Nature Chemical Biology, 2015, 11(2): 148-155. |
111 | PARIKH M R, GREENE D N, WOODS K K, et al. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli [J]. Protein Engineering, Design and Selection, 2006, 19(3): 113-119. |
112 | BAI S Y, WALLIS J G, DENOLF P, et al. Directed evolution increases desaturation of a cyanobacterial fatty acid desaturase in eukaryotic expression systems[J]. Biotechnology and Bioengineering, 2016, 113(7): 1522-1530. |
113 | CARLSON J C, BADRAN A H, GUGGIANA-NILO D A, et al. Negative selection and stringency modulation in phage-assisted continuous evolution[J]. Nature Chemical Biology, 2014, 10(3): 216-222. |
114 | ESVELT K M, CARLSON J C, LIU D R. A system for the continuous directed evolution of biomolecules[J]. Nature, 2011, 472(7344): 499-503. |
115 | MILLER S M, WANG T N, LIU D R. Phage-assisted continuous and non-continuous evolution[J]. Nature Protocols, 2020, 15(12): 4101-4127. |
116 | WU H, WEI T, YU B B, et al. A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase[J]. RNA Biology, 2021, 18(sup1): 451-466. |
117 | JOHNSTON C W, BADRAN A H, COLLINS J J. Continuous bioactivity-dependent evolution of an antibiotic biosynthetic pathway[J]. Nature Communications, 2020, 11: 4202. |
118 | MORRISON M S, PODRACKY C J, LIU D R. The developing toolkit of continuous directed evolution[J]. Nature Chemical Biology, 2020, 16(6): 610-619. |
119 | LAN E I, LIAO J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018-6023. |
120 | ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nature Biotechnology, 2009, 27(12): 1177-1180. |
121 | HIROKAWA Y, GOTO R, UMETANI Y, et al. Construction of a novel D-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942[J]. Journal of Bioscience and Bioengineering, 2017, 124(1): 54-61. |
122 | KOBAYASHI I, WATANABE S, KANESAKI Y, et al. Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942[J]. Molecular Microbiology, 2017, 104(2): 260-277. |
123 | YASUDA A, INAMI D, RpaB HANAOKA M., an essential response regulator for high-light stress, is extensively involved in transcriptional regulation under light-intensity upshift conditions in Synechococcus elongatus PCC 7942[J]. The Journal of General and Applied Microbiology, 2020, 66(2): 73-79. |
124 | GUYET U, NGUYEN N A, DORÉ H, et al. Synergic effects of temperature and irradiance on the physiology of the marine Synechococcus strain WH7803[J]. Frontiers in Microbiology, 2020, 11: 1707. |
125 | MUELLER T J, UNGERER J L, PAKRASI H B, et al. Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973[J]. Scientific Reports, 2017, 7: 41569. |
126 | TAN X M, HOU S W, SONG K, et al. The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973[J]. Biotechnology for Biofuels, 2018, 11: 218. |
127 | JAISWAL D, SENGUPTA A, SENGUPTA S, et al. A novel cyanobacterium Synechococcus elongatus PCC 11802 has distinct genomic and metabolomic characteristics compared to its neighbor PCC 11801[J]. Scientific Reports, 2020, 10: 191. |
128 | CUI J Y, SUN T, LI S B, et al. Improved salt tolerance and metabolomics analysis of Synechococcus elongatus UTEX 2973 by overexpressing Mrp antiporters[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 500. |
129 | CUI J Y, SUN T, CHEN L, et al. Salt-tolerant Synechococcus elongatus UTEX 2973 obtained via engineering of heterologous synthesis of compatible solute glucosylglycerol[J]. Frontiers in Microbiology, 2021, 12: 650217. |
130 | LOU W J, TAN X M, SONG K, et al. A specific single nucleotide polymorphism in the ATP synthase gene significantly improves environmental stress tolerance of Synechococcus elongatus PCC 7942[J]. Applied and Environmental Microbiology, 2018, 84(18): e01222-e01218. |
131 | OLIVER J W K, MACHADO I M P, YONEDA H, et al. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol[J]. Proceeding of the National Academy of Sciences of the United States of America, 2013, 110(4): 1249-1254. |
132 | LI X Q, SHEN C R, LIAO J C. Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942[J]. Photosynthesis Research, 2014, 120(3): 301-310. |
133 | LAN E I, CHUANG D S, SHEN C R, et al. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942[J]. Metabolic Engineering, 2015, 31: 163-170. |
134 | ROH H, LEE J S, CHOI H I, et al. Improved CO2-derived polyhydroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gas[J]. Bioresource Technology, 2021, 327: 124789. |
135 | SHARKEY T D, WIBERLEY A E, DONOHUE A R. Isoprene emission from plants: why and how[J]. Annals of Botany, 2007, 101(1): 5-18. |
136 | DAVIES F K, WORK V H, BELIAEV A S, et al. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 21. |
137 | TAKAHAMA K, MATSUOKA M, NAGAHAMA K, et al. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus[J]. Journal of Bioscience and Bioengineering, 2003, 95(3): 302-305. |
138 | JACOBSEN J H, FRIGAARD N U. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium[J]. Metabolic Engineering, 2014, 21: 60-70. |
139 | SMITH M J, FRANCIS M B. A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals[J]. ACS Synthetic Biology, 2016, 5(9): 955-961. |
140 | WEISS T L, YOUNG E J, DUCAT D C. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production[J]. Metabolic Engineering, 2017, 44: 236-245. |
141 | VELMURUGAN R, INCHAROENSAKDI A. Metal oxide mediated extracellular NADPH regeneration improves ethanol production by engineered Synechocystis sp. PCC 6803[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 148. |
[1] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[2] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[3] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[4] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[5] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[6] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[7] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[8] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[9] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[10] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[11] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
[12] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
[13] | 孙翰, 刘进. 真核微藻脂质代谢工程的研究进展和展望[J]. 合成生物学, 2023, 4(6): 1140-1160. |
[14] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
[15] | 晏雄鹰, 王振, 娄吉芸, 张皓瑜, 黄星宇, 王霞, 杨世辉. 生物燃料高效生产微生物细胞工厂构建研究进展[J]. 合成生物学, 2023, 4(6): 1082-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||