合成生物学 ›› 2022, Vol. 3 ›› Issue (5): 953-965.DOI: 10.12211/2096-8280.2022-023
孙中亮, 陈辉, 王强
收稿日期:
2022-04-15
修回日期:
2022-08-17
出版日期:
2022-10-31
发布日期:
2022-11-16
通讯作者:
王强
作者简介:
基金资助:
Zhongliang SUN, Hui CHEN, Qiang WANG
Received:
2022-04-15
Revised:
2022-08-17
Online:
2022-10-31
Published:
2022-11-16
Contact:
Qiang WANG
摘要:
微藻可以利用太阳能固定CO2并转化为有机物,其作为合成生物物质的细胞工厂具有众多生物学和工程学优点。当前,全球正面临着碳减排和资源短缺的双重压力,通过微藻固碳合成化合物技术的攻关和突破,实现直接利用微藻固定CO2,有望建立以CO2为原料、以太阳能为能源,规模化生产大宗食物、能源、化学品和医药保健品的未来新兴绿色生物制造产业,对于解决当前面临的粮食安全、环境污染和能源紧缺等问题具有战略意义。本文从光驱自养的角度,首先总结了微藻作为细胞工厂生产平台化合物、生物能源和高附加值化合物的途径、底盘改造策略等最新进展,进而对该技术的未来发展方向进行展望。最后,提出了微藻作为合成生物学高效底盘细胞,其广泛应用还应该从建立标准化的藻类基因与基因组编辑技术体系、深刻理解合成物质在藻细胞中的代谢流和控制机制以及提高生物量产率和光合作用效率等几个环节进行攻关,以加强微藻绿色生物制造产业的可控性和可复制性。
中图分类号:
孙中亮, 陈辉, 王强. 从CO2到有机物——碳中和的微藻绿色生物制造[J]. 合成生物学, 2022, 3(5): 953-965.
Zhongliang SUN, Hui CHEN, Qiang WANG. From CO2 to value-added products—carbon neutral microalgal green biomanufacturing[J]. Synthetic Biology Journal, 2022, 3(5): 953-965.
表达产物 | 合成聚合物 | 表达株系 | 最终产率/[mg/(L·d)] | 参考文献 |
---|---|---|---|---|
1,3-丙二醇 | 聚酯、聚醚、聚氨酯、PTT | Synechococcus sp. PCC 7942 | 61 | [ |
Synechococcus sp. PCC 7942 | 8 | [ | ||
Synechococcus sp. PCC 7942 | 20.6 | [ | ||
Synechococcus sp. PCC 7120 | 2.3 | [ | ||
1,2-丙二醇 | 聚丙二醇 | Synechococcus sp. PCC 7942 | 15 | [ |
Synechocystis sp. PCC 6803 | 100 | [ | ||
异戊二烯 | 橡胶 | Synechocystis sp. PCC 6803 | 60 | [ |
Synechocystis sp. PCC 6803 | 1.7 | [ | ||
乙烯 | 聚乙烯、聚苯乙烯、PVC、聚酯 | Synechocystis sp. PCC 6803 | 2104 | [ |
Synechocystis sp. PCC 6803 | 19.2 | [ | ||
3-羟基丙酸 | 聚3-羟基丙酸 | Synechocystis sp. PCC 6803 | 139.5 | [ |
Synechococcus sp. PCC 7942 | 329.5 | [ | ||
2,3-丁二醇 | 树脂 | Synechococcus sp. PCC 7942 | 54.36 | [ |
Synechococcus sp. PCC 7942 | 300 | [ | ||
Synechococcus sp. PCC 7942 | 110 | [ | ||
Synechococcus sp. PCC 7942 | 100 | [ |
表1 蓝藻细胞工厂生产平台化合物
Tab. 1 Production of platform compound by cyanobacteria cell factory
表达产物 | 合成聚合物 | 表达株系 | 最终产率/[mg/(L·d)] | 参考文献 |
---|---|---|---|---|
1,3-丙二醇 | 聚酯、聚醚、聚氨酯、PTT | Synechococcus sp. PCC 7942 | 61 | [ |
Synechococcus sp. PCC 7942 | 8 | [ | ||
Synechococcus sp. PCC 7942 | 20.6 | [ | ||
Synechococcus sp. PCC 7120 | 2.3 | [ | ||
1,2-丙二醇 | 聚丙二醇 | Synechococcus sp. PCC 7942 | 15 | [ |
Synechocystis sp. PCC 6803 | 100 | [ | ||
异戊二烯 | 橡胶 | Synechocystis sp. PCC 6803 | 60 | [ |
Synechocystis sp. PCC 6803 | 1.7 | [ | ||
乙烯 | 聚乙烯、聚苯乙烯、PVC、聚酯 | Synechocystis sp. PCC 6803 | 2104 | [ |
Synechocystis sp. PCC 6803 | 19.2 | [ | ||
3-羟基丙酸 | 聚3-羟基丙酸 | Synechocystis sp. PCC 6803 | 139.5 | [ |
Synechococcus sp. PCC 7942 | 329.5 | [ | ||
2,3-丁二醇 | 树脂 | Synechococcus sp. PCC 7942 | 54.36 | [ |
Synechococcus sp. PCC 7942 | 300 | [ | ||
Synechococcus sp. PCC 7942 | 110 | [ | ||
Synechococcus sp. PCC 7942 | 100 | [ |
藻株 | 操作方法 | 有益结果 | 油脂含量或产率 | 参考文献 |
---|---|---|---|---|
Phaeodactylum tricornutum | 过表达内源性苹果酸脱氢酶 | 油脂含量增加250% | 57.8% | [ |
Chlamydomonas reinhardtii | Lobosphaera incise中的GPAT基因(LiGPAT)在莱茵衣藻中过表达 | TAG含量比野生型增加50% | 50.0% | [ |
Thalassiosira pseudonana | 转化反义结构体,阻止脂质分解代谢 | 油脂含量比野生型增加230% | 18.8% | [ |
Phaeodactylum tricornutum | 过表达Ⅱ型甘油二酯酰基转移酶(DGAT2D)基因 | TAG含量增加35% | 37.2% | [ |
Chlorella spp | 拟南芥激酶的上调和过表达 | 油脂产量增加110.4% | 27.5% | [ |
Nannochloropsis | 过表达新型bZIP1转录因子NobZIP1N | 油脂含量增加而不影响微藻生长 | 40% | [ |
Chlamydomonas reinhardtii | 使用CRISPR-Cas9敲除磷脂酶A2基因 | 油脂含量可达64.25% | 80.92 mg/(L·d) | [ |
Chlamydomonas reinhardtii | 使用CRISPR-Cas9 RNP方法产生葡萄糖焦磷酸化酶基因(AGP)突变的突变体 | 油脂含量比野生型增加274% | 57.67% | [ |
Nannochloropsis | 通过插入突变产生突变体Mut68 | 脂肪酸甲酯含量和产量分别比野生型增加34%和75% | 78.3 mg/(L·d) | [ |
Planktochlorella nurekis | 利用细胞松弛素B和秋水仙碱调控DNA水平 | 油脂含量比野生型增加10%~60% | 12%~26% | [ |
表2 基因工程和代谢工程方法用于提高微藻油脂产量
Tab. 2 Genetic engineering and metabolic engineering methods are used to improve the yield of microalgae lipid
藻株 | 操作方法 | 有益结果 | 油脂含量或产率 | 参考文献 |
---|---|---|---|---|
Phaeodactylum tricornutum | 过表达内源性苹果酸脱氢酶 | 油脂含量增加250% | 57.8% | [ |
Chlamydomonas reinhardtii | Lobosphaera incise中的GPAT基因(LiGPAT)在莱茵衣藻中过表达 | TAG含量比野生型增加50% | 50.0% | [ |
Thalassiosira pseudonana | 转化反义结构体,阻止脂质分解代谢 | 油脂含量比野生型增加230% | 18.8% | [ |
Phaeodactylum tricornutum | 过表达Ⅱ型甘油二酯酰基转移酶(DGAT2D)基因 | TAG含量增加35% | 37.2% | [ |
Chlorella spp | 拟南芥激酶的上调和过表达 | 油脂产量增加110.4% | 27.5% | [ |
Nannochloropsis | 过表达新型bZIP1转录因子NobZIP1N | 油脂含量增加而不影响微藻生长 | 40% | [ |
Chlamydomonas reinhardtii | 使用CRISPR-Cas9敲除磷脂酶A2基因 | 油脂含量可达64.25% | 80.92 mg/(L·d) | [ |
Chlamydomonas reinhardtii | 使用CRISPR-Cas9 RNP方法产生葡萄糖焦磷酸化酶基因(AGP)突变的突变体 | 油脂含量比野生型增加274% | 57.67% | [ |
Nannochloropsis | 通过插入突变产生突变体Mut68 | 脂肪酸甲酯含量和产量分别比野生型增加34%和75% | 78.3 mg/(L·d) | [ |
Planktochlorella nurekis | 利用细胞松弛素B和秋水仙碱调控DNA水平 | 油脂含量比野生型增加10%~60% | 12%~26% | [ |
藻株 | 操作方法 | 有益结果 | 氢气产量或产率 | 参考文献 |
---|---|---|---|---|
Chlamydomonas reinhardtii | 设计光诱导系统,利用该系统设计蓝光诱导产氢转基因藻类 | 成功激活了人工miRNA,提高微藻的产氢能力 | 20 μL/(L·h) | [ |
Chlamydomonas reinhardtii | 将大肠杆菌的丙酮酸氧化酶和过氧化氢酶基因整合到衣藻叶绿体基因组中 | 生物氢产量增加了2倍 | 1.04 μmol/(L·h) | [ |
Chlorella sp. DT. | 敲除psbO基因 | 生物氢产量比野生型提高了9倍 | 350 mL/L | [ |
Chlamydomonas reinhardtii | 截短捕光天线 | 氢气产量比野生型增加6倍 | 30 mL/L | [ |
Synechocystis sp. PCC 6803 | 添加抑制光合和呼吸作用电子传递链的抑制剂 | 氢气产量增加了30倍 | 1.25 μmol/(L·h) | [ |
Chlamydomonas reinhardtii | 热诱导人工miRNA表达系统 | 氢气合成增加60% | 90 μL/mg Chl | [ |
表3 提高微藻产氢率的多种基因工程方法
Tab. 3 Various genetic engineering methods for improving hydrogen production rate of microalgae
藻株 | 操作方法 | 有益结果 | 氢气产量或产率 | 参考文献 |
---|---|---|---|---|
Chlamydomonas reinhardtii | 设计光诱导系统,利用该系统设计蓝光诱导产氢转基因藻类 | 成功激活了人工miRNA,提高微藻的产氢能力 | 20 μL/(L·h) | [ |
Chlamydomonas reinhardtii | 将大肠杆菌的丙酮酸氧化酶和过氧化氢酶基因整合到衣藻叶绿体基因组中 | 生物氢产量增加了2倍 | 1.04 μmol/(L·h) | [ |
Chlorella sp. DT. | 敲除psbO基因 | 生物氢产量比野生型提高了9倍 | 350 mL/L | [ |
Chlamydomonas reinhardtii | 截短捕光天线 | 氢气产量比野生型增加6倍 | 30 mL/L | [ |
Synechocystis sp. PCC 6803 | 添加抑制光合和呼吸作用电子传递链的抑制剂 | 氢气产量增加了30倍 | 1.25 μmol/(L·h) | [ |
Chlamydomonas reinhardtii | 热诱导人工miRNA表达系统 | 氢气合成增加60% | 90 μL/mg Chl | [ |
图2 微藻产氢体系的构建(Our study provides innovative bio-hydrogen production strategy and new insights into the shelf-assembly of carboxysome and selective permeability of carboxysome shell as well, and paves the way for engineering carboxysome shell-based nanoreactors to recruit specific enzymes for diverse catalytic reactions)
Fig. 2 Schematic of structure and working mode of the Shell-HydA nanoreactor
分类 | 藻株 | 合成产物 | 参考文献 |
---|---|---|---|
原核藻 | Synechocystis sp. PCC 6803 | 对香豆酸 | [ |
Synechocystis sp. PCC 6803 | 叶黄素 | [ | |
Synechococcus elongatus UTEX 2973 | 柠檬烯 | [ | |
Synechocystis sp. PCC 6803 | 乳酸 | [ | |
Synechococcus sp. PCC 7002 | 虾青素 | [ | |
Anabaena sp. PCC7120 | 法尼烯 | [ | |
Synechococcus sp. PCC 7942 | 柠檬烯 | [ | |
真核藻 | Chlamydomonas reinhardtii | 类异戊二烯 | [ |
Chlamydomonas reinhardtii | 木糖醇 | [ | |
Chlamydomonas reinhardtii | 倍半萜 | [ | |
Phaeodactylum tricornutum | DHA | [ | |
Bacillariophyta | 没药烯 | [ | |
Nannochloropsis | EPA | [ | |
Phaeodactylum tricornutum | 岩藻黄质 | [ |
表4 微藻底盘细胞中高附加值化合物的生物合成
Tab. 4 Biosynthesis of high value-added compounds by microalgae chassis cells
分类 | 藻株 | 合成产物 | 参考文献 |
---|---|---|---|
原核藻 | Synechocystis sp. PCC 6803 | 对香豆酸 | [ |
Synechocystis sp. PCC 6803 | 叶黄素 | [ | |
Synechococcus elongatus UTEX 2973 | 柠檬烯 | [ | |
Synechocystis sp. PCC 6803 | 乳酸 | [ | |
Synechococcus sp. PCC 7002 | 虾青素 | [ | |
Anabaena sp. PCC7120 | 法尼烯 | [ | |
Synechococcus sp. PCC 7942 | 柠檬烯 | [ | |
真核藻 | Chlamydomonas reinhardtii | 类异戊二烯 | [ |
Chlamydomonas reinhardtii | 木糖醇 | [ | |
Chlamydomonas reinhardtii | 倍半萜 | [ | |
Phaeodactylum tricornutum | DHA | [ | |
Bacillariophyta | 没药烯 | [ | |
Nannochloropsis | EPA | [ | |
Phaeodactylum tricornutum | 岩藻黄质 | [ |
1 | IEA. Global Energy Review 2021 [R/OL]. IEA, 2021. . |
2 | ESPOSITO R A, MONROE L S, FRIEDMAN J S. Deployment models for commercialized carbon capture and storage[J]. Environmental Science & Technology, 2011, 45(1): 139-146. |
3 | DETHERIDGE A, HOSKING L J, THOMAS H R, et al. Deep seam and minesoil carbon sequestration potential of the South Wales Coalfield, UK[J]. Journal of Environmental Management, 2019, 248: 109325. |
4 | SANNA A, STEEL L, MAROTO-VALER M M. Carbon dioxide sequestration using NaHSO4 and NaOH: a dissolution and carbonation optimisation study[J]. Journal of Environmental Management, 2017, 189: 84-97. |
5 | SONG Z L, LIU H Y, STRÖMBERG C A E, et al. Phytolith carbon sequestration in global terrestrial biomes[J]. Science of the Total Environment, 2017, 603/604: 502-509. |
6 | SMITH P. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology, 2016, 22(3): 1315-1324. |
7 | WANG Q. Microbial photosynthesis[M]. Singapore: Springer Singapore, 2020. |
8 | CHEN H, WANG Q. Microalgae-based green bio-manufacturing-how far from us[J]. Frontiers in Microbiology, 2022, 13: 832097. |
9 | CHEN H, WANG Q. Regulatory mechanisms of lipid biosynthesis in microalgae[J]. Biological Reviews of the Cambridge Philosophical Society, 2021, 96(5): 2373-2391. |
10 | CHEN H, WANG X Y, WANG Q. Microalgal biofuels in China: The past, progress and prospects[J]. GCB Bioenergy, 2020, 12(12): 1044-1065. |
11 | NG I S, KESKIN B B, TAN S I. A critical review of genome editing and synthetic biology applications in metabolic engineering of microalgae and cyanobacteria[J]. Biotechnology Journal, 2020, 15(8): e1900228. |
12 | NADUTHODI M I S, CLAASSENS N J, D'ADAMO S, et al. Synthetic biology approaches to enhance microalgal productivity[J]. Trends in Biotechnology, 2021, 39(10): 1019-1036. |
13 | POLINER E, FARRÉ E M, BENNING C. Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp[J]. Plant Cell Reports, 2018, 37(10): 1383-1399. |
14 | ZHANG X, CHEN H, CHEN W X, et al. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNO x of industrial flue gases[J]. Environmental Science & Technology, 2014, 48(17): 10497-10504. |
15 | ZHENG S Y, CHEN S Y, ZOU S Y, et al. Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp[J]. Bioresource Technology, 2021, 321: 124428. |
16 | PACHAPUR V L, SARMA S J, BRAR S K, et al. Platform chemicals[M]//Platform Chemical Biorefinery. Amsterdam: Elsevier, 2016: 1-20. |
17 | WERPY T, PETERSEN G. Top Value added chemicals from biomass: volume i—results of screening for potential candidates from sugars and synthesis gas[R]. US Department of Energy, Office of Scientific and Technical Information (OSTI), 2004. |
18 | FACT.MR. Bio-based Platform Chemicals Market[R/OL]. 2021. . |
19 | MORALES-DELANUEZ A, HERNÁNDEZ-CASTELLANO L E, MORENO-INDIAS I, et al. Use of glycerol and propylene glycol as additives in heat-treated goat colostrum[J]. Journal of Dairy Science, 2020, 103(3): 2756-2761. |
20 | TIAN C L, LIU L, XIA M Q, et al. The evaluations of menthol and propylene glycol on the transdermal delivery system of dual drug-loaded lyotropic liquid crystalline gels[J]. AAPS PharmSciTech, 2020, 21(6): 224. |
21 | FIUME M M, BERGFELD W F, BELSITO D V, et al. Safety assessment of propylene glycol, tripropylene glycol, and PPGs as used in cosmetics[J]. International Journal of Toxicology, 2012, 31(5 ): 245S-260S. |
22 | LEE C S, AROUA M K, DAUD W M A W, et al. A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 963-972. |
23 | HIROKAWA Y, DEMPO Y, FUKUSAKI E, et al. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions[J]. Journal of Bioscience and Bioengineering, 2017, 123(1): 39-45. |
24 | HIROKAWA Y, MATSUO S, HAMADA H, et al. Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution[J]. Microbial Cell Factories, 2017, 16(1): 212. |
25 | HIROKAWA Y, MAKI Y, HANAI T. Improvement of 1, 3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions[J]. Metabolic Engineering, 2017, 39: 192-199. |
26 | LIU H Y, NI J, XU P, et al. Enhancing light-driven 1, 3-propanediol production by using natural compartmentalization of differentiated cells[J]. ACS Synthetic Biology, 2018, 7(10): 2436-2446. |
27 | LI H, LIAO J C. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol[J]. Microbial Cell Factories, 2013, 12(1): 4. |
28 | DAVID C, SCHMID A, ADRIAN L, et al. Production of 1, 2-propanediol in photoautotrophic Synechocystis is linked to glycogen turn-over[J]. Biotechnology and Bioengineering, 2018, 115(2): 300-311. |
29 | MATOS C T, GOUVEIA L, MORAIS A R C, et al. Green metrics evaluation of isoprene production by microalgae and bacteria[J]. Green Chem, 2013, 15(10): 2854-2864. |
30 | GAO X, GAO F, LIU D, et al. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2 [J]. Energy & Environmental Science, 2016, 9(4): 1400-1411. |
31 | CHAVES J E, MELIS A. Biotechnology of cyanobacterial isoprene production[J]. Applied Microbiology and Biotechnology, 2018, 102(15): 6451-6458. |
32 | PADE N, ERDMANN S, ENKE H K, et al. Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803[J]. Biotechnology for Biofuels, 2016, 9: 89. |
33 | WANG Y, TAO F, NI J, et al. Production of C3 platform chemicals from CO2 by genetically engineered cyanobacteria[J]. Green Chemistry, 2015, 17(5): 3100-3110. |
34 | HIROKAWA Y, MAKI Y, TATSUKE T, et al. Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway[J]. Metabolic Engineering, 2016, 34: 97-103. |
35 | CHAVES J E, RUEDA-ROMERO P, KIRST H, et al. Engineering isoprene synthase expression and activity in cyanobacteria[J]. ACS Synthetic Biology, 2017, 6(12): 2281-2292. |
36 | VEETIL V P, ANGERMAYR S A, HELLINGWERF K J. Ethylene production with engineered Synechocystis sp PCC 6803 strains[J]. Microbial Cell Factories, 2017, 16(1): 34. |
37 | DURALL C, LINDBERG P, YU J P, et al. Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803[J]. Biotechnology for Biofuels, 2020, 13: 16. |
38 | WANG Y P, CHEN L, ZHANG W W. Proteomic and metabolomic analyses reveal metabolic responses to 3-hydroxypropionic acid synthesized internally in cyanobacterium Synechocystis sp. PCC 6803[J]. Biotechnology for Biofuels, 2016, 9: 209. |
39 | LAN E I, CHUANG D S, SHEN C R, et al. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942[J]. Metabolic Engineering, 2015, 31: 163-170. |
40 | KANNO M, ATSUMI S. Engineering an obligate photoautotrophic cyanobacterium to utilize glycerol for growth and chemical production[J]. ACS Synthetic Biology, 2017, 6(1): 69-75. |
41 | MCEWEN J T, KANNO M, ATSUMI S. 2, 3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption[J]. Metabolic Engineering, 2016, 36: 28-36. |
42 | NOZZI N E, CASE A E, CARROLL A L, et al. Systematic approaches to efficiently produce 2,3-butanediol in a marine cyanobacterium[J]. ACS Synthetic Biology, 2017, 6(11): 2136-2144. |
43 | CHOWDHURY H, LOGANATHAN B. Third-generation biofuels from microalgae: a review[J]. Current Opinion in Green and Sustainable Chemistry, 2019, 20: 39-44. |
44 | ARUN J, VARSHINI P, PRITHVINATH P K, et al. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: bio-char and post HTL wastewater utilization studies[J]. Bioresource Technology, 2018, 261: 182-187. |
45 | XU S N, ELSAYED M, ISMAIL G A, et al. Evaluation of bioethanol and biodiesel production from Scenedesmus obliquus grown in biodiesel waste glycerol: a sequential integrated route for enhanced energy recovery[J]. Energy Conversion and Management, 2019, 197: 111907. |
46 | CHISTI Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3): 294-306. |
47 | RAN W Y, WANG H T, LIU Y H, et al. Storage of starch and lipids in microalgae: biosynthesis and manipulation by nutrients[J]. Bioresource Technology, 2019, 291: 121894. |
48 | SINGH P, KUMARI S, GULDHE A, et al. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 1-16. |
49 | GUARNIERI M T, PIENKOS P T. Algal omics: unlocking bioproduct diversity in algae cell factories[J]. Photosynthesis Research, 2015, 123(3): 255-263. |
50 | XUE J, NIU Y F, HUANG T, et al. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation[J]. Metabolic Engineering, 2015, 27: 1-9. |
51 | ISKANDAROV U, SITNIK S, SHTAIDA N, et al. Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production[J]. Journal of Applied Phycology, 2016, 28(2): 907-919. |
52 | TRENTACOSTE E M, SHRESTHA R P, SMITH S R, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(49): 19748-19753. |
53 | NIU Y F, ZHANG M H, LI D W, et al. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum [J]. Marine Drugs, 2013, 11(11): 4558-4569. |
54 | FAN J H, NING K, ZENG X W, et al. Genomic foundation of starch-to-lipid switch in oleaginous Chlorella spp[J]. Plant Physiology, 2015, 169(4): 2444-2461. |
55 | LI D W, BALAMURUGAN S, YANG Y F, et al. Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion[J]. Science Advances, 2019, 5(1): eaau3795. |
56 | SHIN Y S, JEONG J, NGUYEN T H T, et al. Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production[J]. Bioresource Technology, 2019, 271: 368-374. |
57 | RYU A J, KANG N K, JEON S, et al. Development and characterization of a Nannochloropsis mutant with simultaneously enhanced growth and lipid production[J]. Biotechnology for Biofuels, 2020, 13: 38. |
58 | SZPYRKA E, BRODA D, OKLEJEWICZ B, et al. A non-vector approach to increase lipid levels in the microalga Planktochlorella nurekis [J]. Molecules, 2020, 25(2): 270. |
59 | GOSWAMI R K, MEHARIYA S, OBULISAMY P K, et al. Advanced microalgae-based renewable biohydrogen production systems: a review[J]. Bioresource Technology, 2021, 320: 124301. |
60 | CHEN C Y, CHANG H Y, CHANG J S. Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4413-4420. |
61 | LAKATOS G, BALOGH D, FARKAS A, et al. Factors influencing algal photobiohydrogen production in algal-bacterial co-cultures[J]. Algal Research, 2017, 28: 161-171. |
62 | WANG Y T, JIANG X Q, HU C X, et al. Optogenetic regulation of artificial microRNA improves H2 production in green alga Chlamydomonas reinhardtii [J]. Biotechnology for Biofuels, 2017, 10: 257. |
63 | XU F Q, MA W M, ZHU X G. Introducing pyruvate oxidase into the chloroplast of Chlamydomonas reinhardtii increases oxygen consumption and promotes hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(17): 10648-10654. |
64 | LIN H D, LIU B H, KUO T T, et al. Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT[J]. Bioresource Technology, 2013, 143: 154-162. |
65 | KOSOUROV S N, GHIRARDI M L, SEIBERT M. A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2044-2048. |
66 | BURROWS E H, CHAPLEN F W R, ELY R L. Effects of selected electron transport chain inhibitors on 24-h hydrogen production by Synechocystis sp. PCC 6803[J]. Bioresource Technology, 2011, 102(3): 3062-3070. |
67 | LI H, LIU Y M, WANG Y T, et al. Improved photobio-H2 production regulated by artificial miRNA targeting psbA in green microalga Chlamydomonas reinhardtii [J]. Biotechnology for Biofuels, 2018, 11: 36. |
68 | YANG D W, SYN J W, HSIEH C H, et al. Genetically engineered hydrogenases promote biophotocatalysis-mediated H2 production in the green alga Chlorella sp. DT[J]. International Journal of Hydrogen Energy, 2019, 44(5): 2533-2545. |
69 | YACOBY I, POCHEKAILOV S, TOPORIK H, et al. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin: NADP+-oxidoreductase (FNR) enzymes in vitro [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(23): 9396-9401. |
70 | LOSH J L, YOUNG J N, MOREL F M M. Rubisco is a small fraction of total protein in marine phytoplankton[J]. The New Phytologist, 2013, 198(1): 52-58. |
71 | HU G R, FAN Y, ZHENG Y L, et al. Photoprotection capacity of microalgae improved by regulating the antenna size of light-harvesting complexes[J]. Journal of Applied Phycology, 2020, 32(2): 1027-1039. |
72 | LI T P, JIANG Q Y, HUANG J F, et al. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production[J]. Nature Communications, 2020, 11: 5448. |
73 | JOHN R P, ANISHA G S, NAMPOOTHIRI K M, et al. Micro and macroalgal biomass: a renewable source for bioethanol[J]. Bioresource Technology, 2011, 102(1): 186-193. |
74 | LUAN G D, QI Y J, WANG M, et al. Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories[J]. Biotechnology for Biofuels, 2015, 8: 184. |
75 | CHOCHOIS V, DAUVILLÉE D, BEYLY A, et al. Hydrogen production in Chlamydomonas: photosystem II-dependent and-independent pathways differ in their requirement for starch metabolism[J]. Plant Physiology, 2009, 151(2): 631-640. |
76 | HE M, WU B, QIN H, et al. Zymomonas mobilis: a novel platform for future biorefineries[J]. Biotechnology for Biofuels, 2014, 7(1): 101. |
77 | GAO Z X, ZHAO H, LI Z M, et al. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria[J]. Energy Environmental Science, 2012, 5(12): 9857-9865. |
78 | REPPAS N. Metabolic switch: US20120164705A1[P]. 2012. |
79 | DEXTER J, ARMSHAW P, SHEAHAN C, et al. The state of autotrophic ethanol production in Cyanobacteria[J]. Journal of Applied Microbiology, 2015, 119(1): 11-24. |
80 | BILAL M, RASHEED T, AHMED I, et al. High-value compounds from microalgae with industrial exploitability-a review[J]. Frontiers in Bioscience (Scholar Edition), 2017, 9(3): 319-342. |
81 | GAO E B, KYERE-YEBOAH K, WU J H, et al. Photoautotrophic production of p-coumaric acid using genetically engineered Synechocystis sp. Pasteur Culture Collection 6803[J]. Algal Research, 2021, 54: 102180. |
82 | LEHMANN M, VAMVAKA E, TORRADO A, et al. Introduction of the carotenoid biosynthesis α-branch into Synechocystis sp. PCC 6803 for lutein production[J]. Frontiers in Plant Science, 2021, 12: 699424. |
83 | LIN P C, ZHANG F Z, PAKRASI H B. Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering[J]. Metabolic Engineering Communications, 2021, 12: e00164. |
84 | VARMAN A M, YU Y, YOU L, et al. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium[J]. Microbial Cell Factories, 2013, 12: 117. |
85 | HASUNUMA T, TAKAKI A, MATSUDA M, et al. Single-stage astaxanthin production enhances the nonmevalonate pathway and photosynthetic central metabolism in Synechococcus sp. PCC 7002[J]. ACS Synthetic Biology, 2019, 8(12): 2701-2709. |
86 | HALFMANN C, GU L P, GIBBONS W, et al. Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene[J]. Applied Microbiology and Biotechnology, 2014, 98(23): 9869-9877. |
87 | WANG X, LIU W, XIN C P, et al. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(50): 14225-14230. |
88 | LAUERSEN K J. Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production[J]. Planta, 2019, 249(1): 155-180. |
89 | POURMIR A, NOOR-MOHAMMADI S, JOHANNES T W. Production of xylitol by recombinant microalgae[J]. Journal of Biotechnology, 2013, 165(3/4): 178-183. |
90 | LAUERSEN K J, BAIER T, WICHMANN J, et al. Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii [J]. Metabolic Engineering, 2016, 38: 331-343. |
91 | HAMILTON M L, HASLAM R P, NAPIER J A, et al. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids[J]. Metabolic Engineering, 2014, 22: 3-9. |
92 | TANAKA T, MAEDA Y, SUHAIMI N, et al. Intron-mediated enhancement of transgene expression in the oleaginous diatom Fistulifera solaris towards bisabolene production[J]. Algal Research, 2021, 57: 102345. |
93 | WEI H H, SHI Y, MA X N, et al. A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica [J]. Biotechnology for Biofuels, 2017, 10: 174. |
94 | EILERS U, BIKOULIS A, BREITENBACH J, et al. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum [J]. Journal of Applied Phycology, 2016, 28(1): 123-129. |
95 | LANH P T, NGUYEN H M, DUONG B T T, et al. Generation of microalga Chlamydomonas reinhardtii expressing VP28 protein as oral vaccine candidate for shrimps against White Spot Syndrome Virus (WSSV) infection[J]. Aquaculture, 2021, 540: 736737. |
96 | GREGORY J A, TOPOL A B, DOERNER D Z, et al. Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines[J]. Applied and Environmental Microbiology, 2013, 79(13): 3917-3925. |
97 | TRAN M, HENRY R E, SIEFKER D, et al. Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners[J]. Biotechnology and Bioengineering, 2013, 110(11): 2826-2835. |
98 | TRAN M, VAN C, BARRERA D J, et al. Production of unique immunotoxin cancer therapeutics in algal chloroplasts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): E15-E22. |
99 | HU L N, FENG S Y, LIANG G F, et al. CRISPR/Cas9-induced β-carotene hydroxylase mutation in Dunaliella salina CCAP19/18[J]. AMB Express, 2021, 11(1): 83. |
100 | BECKER I, PRASAD B, NTEFIDOU M, et al. Agrobacterium tumefaciens-mediated nuclear transformation of a biotechnologically important microalga-euglena gracilis[J]. International Journal of Molecular Sciences, 2021, 22(12): 6299. |
101 | KIM J, CHANG K S, LEE S, et al. Establishment of a genome editing tool using CRISPR-Cas9 in Chlorella vulgaris UTEX395[J]. International Journal of Molecular Sciences, 2021, 22(2): 480. |
102 | LIN W R, TAN S I, HSIANG C C, et al. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery[J]. Bioresource Technology, 2019, 291: 121932. |
103 | PERIN G, BELLAN A, BERNARDI A, et al. The potential of quantitative models to improve microalgae photosynthetic efficiency[J]. Physiologia Plantarum, 2019, 166(1): 380-391. |
[1] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[2] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[3] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[4] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[5] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[6] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[7] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[8] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[9] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[10] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[11] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
[12] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
[13] | 孙翰, 刘进. 真核微藻脂质代谢工程的研究进展和展望[J]. 合成生物学, 2023, 4(6): 1140-1160. |
[14] | 刘伟松, 张坤城, 崔会娟, 朱之光, 张以恒, 张玲玲. 电能辅助二氧化碳生物转化[J]. 合成生物学, 2023, 4(6): 1191-1222. |
[15] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||