合成生物学 ›› 2022, Vol. 3 ›› Issue (5): 953-965.DOI: 10.12211/2096-8280.2022-023

• 特约评述 • 上一篇    下一篇

从CO2到有机物——碳中和的微藻绿色生物制造

孙中亮, 陈辉, 王强   

  1. 河南大学省部共建作物逆境适应与改良国家重点实验室,河南  开封  475004
  • 收稿日期:2022-04-15 修回日期:2022-08-17 出版日期:2022-10-31 发布日期:2022-11-16
  • 通讯作者: 王强
  • 作者简介:孙中亮(1989—),男,博士,副教授。主要从事微藻培养工程和藻基生物产品开发相关研究,包括利用新型光生物反应器高密度培养微藻以及虾青素、多不饱和脂肪酸高附加值产品的工程化制备。E-mail:zlsun@henu.edu.cn
    王强(1973—),男,教授,博士生导师,河南大学“杰出人才特区支持计划”特聘教授。主要从事光合成生物学研究,以光合作用研究模式材料蓝细菌和小球藻为研究对象,立足光合作用与合成生物学,聚焦环境问题,围绕微藻环境适应、生物能源与生物减排等科学问题,开展系统性研究。 E-mail:wangqiang@henu.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFA0909600);国家自然科学基金(32170138);河南省高校科技创新团队(22IRTSTHN024);河南省自然科学基金(212300410024);河南省科技攻关项目(222102110131);高等学校学科创新引智计划(#D16014)

From CO2 to value-added products—carbon neutral microalgal green biomanufacturing

Zhongliang SUN, Hui CHEN, Qiang WANG   

  1. State Key Laboratory of Crop Stress Adaptation and Improvement,School of Life Sciences,Henan University,Kaifeng 475004,China
  • Received:2022-04-15 Revised:2022-08-17 Online:2022-10-31 Published:2022-11-16
  • Contact: Qiang WANG

摘要:

微藻可以利用太阳能固定CO2并转化为有机物,其作为合成生物物质的细胞工厂具有众多生物学和工程学优点。当前,全球正面临着碳减排和资源短缺的双重压力,通过微藻固碳合成化合物技术的攻关和突破,实现直接利用微藻固定CO2,有望建立以CO2为原料、以太阳能为能源,规模化生产大宗食物、能源、化学品和医药保健品的未来新兴绿色生物制造产业,对于解决当前面临的粮食安全、环境污染和能源紧缺等问题具有战略意义。本文从光驱自养的角度,首先总结了微藻作为细胞工厂生产平台化合物、生物能源和高附加值化合物的途径、底盘改造策略等最新进展,进而对该技术的未来发展方向进行展望。最后,提出了微藻作为合成生物学高效底盘细胞,其广泛应用还应该从建立标准化的藻类基因与基因组编辑技术体系、深刻理解合成物质在藻细胞中的代谢流和控制机制以及提高生物量产率和光合作用效率等几个环节进行攻关,以加强微藻绿色生物制造产业的可控性和可复制性。

关键词: 微藻, CO2, 平台化合物, 生物能源, 高附加值化合物, 合成生物学

Abstract:

Currently, our world is facing the dual pressure of carbon emission reduction and resource shortage. China has also put forward a goal of reaching CO2 emission peak by 2030 and achieving carbon neutrality by 2060. At present, the production and manufacture of fuels and bulk chemical products mainly rely on petrochemical refining, which is facing the challenges of high risk of production safety, great pressure of environmental protection, and contradiction between supply and demand of oil and gas resources. In this context, the use of microalgae for direct CO2 fixation is expected to establish large-scale biomanufacturing with CO2 as raw material and sunlight as energy source, this is a new manufacturing mode that breaks away from the route of petrochemical industry, and has the typical characteristics of low carbon, recyclable, green, and clean. This emerging green industry is of strategic significance for solving the current issues of food security and energy shortages, through sustainable production of food, energy, chemicals, and pharmaceuticals. In addition, microalgae possess great potential in environment protection, thanks to their strong stress resistance, effective remediation of eutrophic elements such as nitrogen and phosphorus from wastewater, and simultaneous removal of SO x and NO x during CO2 utilization in flue gas. Therefore, compared with heterotrophic chassis cells, microalgae-based synthetic biology and bio-manufacturing also play a role in carbon sequestration and emission reduction, and microalgae have then attracted much attention in recent years as “green cell factories”. From the perspective of light-driven autotrophy, we summarize the latest progress of microalgae as a cell factory, introduce chassis transformation strategies, and then look into the future development of this technology. In particular, improved genetic manipulation and larger cultivation scales are critical for microalgae to serve as high efficiency chassis for synthetic biology, whereas promising directions include establishment of standardized systems for algal genome editing, deep understanding of metabolic flux and control for robust biosynthesis, as well as improvement of biomass productivity and photosynthesis efficiency. All in all, this review provides a useful reference to establish controllable and replicable processes for microalgae green biomanufacturing.

Key words: microalgae, carbon dioxide, carbon platform compound, bio-energy, high-value compounds, synthetic biology

中图分类号: