合成生物学 ›› 2023, Vol. 4 ›› Issue (2): 244-262.DOI: 10.12211/2096-8280.2022-059

• 特约评述 • 上一篇    下一篇

合成生物学在疾病诊疗中的应用

吴晓昊1, 廖荣东2, 李飞云1, 欧阳中天1, 冉怡1, 公维远1, 曲明灏1, 陈明珏1, 林荔军2, 肖国芝1   

  1. 1.南方科技大学医学院,广东 深圳 518055
    2.南方医科大学珠江医院关节骨病外科,广东 广州 510280
  • 收稿日期:2022-10-31 修回日期:2023-02-01 出版日期:2023-04-30 发布日期:2023-04-27
  • 通讯作者: 林荔军,肖国芝
  • 作者简介:吴晓昊(1991—),男,博士研究生。研究方向为骨关节稳态和疾病发生的分子机制。E-mail:wxho0606@163.com
    廖荣东(1996—),男,博士研究生。研究方向为骨科疾病的发病机制。E-mail:lrdyxs12138@163.com
    林荔军(1976—),男,博士,主任医师,博士生导师。主要从事合成生物学与骨科疾病诊治领域方面的研究,利用合成生物学方法构建新型材料用于骨关节炎、骨折不愈合等骨科多发疾病的治疗,研究方向为骨关节炎发病分子机制研究、骨肉瘤侵袭和转移的分子机制研究、骨组织3D打印和生物力学研究学。E-mail:gost1@smu.edu.cn
    肖国芝(1963—),男,教授,乌克兰国家工程院外籍院士。主要研究方向是骨骼发育和疾病的相关分子基础。E-mail:xiaogz@sustech.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFA0906004);国家自然科学基金(82230081)

Applications of synthetic biology in disease diagnosis and treatment

Xiaohao WU1, Rongdong LIAO2, Feiyun LI1, Zhongtian OUYANG1, Yi RAN1, Weiyuan GONG1, Minghao QU1, Mingjue CHEN1, Lijun LIN2, Guozhi XIAO1   

  1. 1.School of Medicine,Southern University of Science and Technology,Shenzhen 518055,Guangdong,China
    2.Department of Orthopedics,Zhujiang Hospital,Southern Medical University,Guangzhou 510280,Guangdong,China
  • Received:2022-10-31 Revised:2023-02-01 Online:2023-04-30 Published:2023-04-27
  • Contact: Lijun LIN, Guozhi XIAO

摘要:

合成生物学是一门新兴学科。从广义上讲,合成生物学是通过将基因工程、系统生物学、计算机工程等多学科作为工具,根据特定需求进行设计,乃至重新合成生物体系。近20年来,合成生物学领域的相关研究不断取得突破,并已在针对人类疾病的诊断、临床治疗、药物研发等诸多方面获得重要应用。合成生物学不仅为疾病的早期、精确诊断提供新的思路和技术手段,还发展出多种新型的疾病治疗手段,包括基于合成生物学原理设计的细胞疗法、细菌疗法、疫苗、生物医学材料等。利用合成生物学方法,我们可以精确诊断早期疾病、精准改造细胞或细菌、进行疾病机制研究和药物筛选、快速生产新型疫苗和生物医学材料。基于合成生物学的疾病诊疗方法将是科研领域重要的发展方向之一,并将在未来彻底改变临床疾病的诊疗方式。本文综述合成生物学原理和技术在疾病诊断和治疗中的应用,并进一步探讨合成生物学在疫苗生产、生物医学材料、新药研发等方面的应用。

关键词: 合成生物学, 疾病, 诊断, 治疗, 新药研发

Abstract:

Synthetic biology (SB) is an emerging discipline, which utilizes genetic engineering, systems biology, computer science, and other disciplines as tools to design, and even re-synthesize biological systems for specific needs. In the past 20 years, milestone breakthroughs in SB have been achieved and applied in the diagnosis and treatment of human diseases, particularly in the discovery of new drugs. SB not only provides new ideas and technical tools for the early and accurate diagnosis of diseases, but also develops a variety of new approaches for treating diseases, including cell therapy, bacteriotherapy, vaccines, and biomedical materials. Using SB-based methods, we can precisely diagnose diseases at an early stage, specifically engineer cells or bacteria, conduct mechanistic studies and drug screening, and rapidly produce vaccines and biomedical materials. SB with the "design-build-test" cycle greatly facilitates the development of new diagnostic and therapeutic approaches. Moreover, SB applies engineering principles (modularity, composability, abstraction, and standardization) to redefine biological systems in a more modular and composable way. Through this framework, the basic units of the biological system are fully characterized as standardized motifs (DNA sequences or gene-encoded products), and these motifs are mixed and matched to construct a fully functional genetic apparatus. By utilizing recently developed gene editing tools, such as the clustered regularly interspaced palindromic repeats (CRISPR/Cas9) technology, SB can integrate programmed devices into a chassis (e.g., bacteria and yeast), create new systems capable of producing target biomolecules or behaviors, and precisely manipulate the genome of cells and individuals to repair genetic defects. SB-based disease diagnosis and treatment will be one of the important development directions in the field of scientific research to completely change the way of diagnosis and clinical treatment of diseases in the future. This article reviews the applications of SB-based technologies in disease diagnosis and treatment, as well as in the production of vaccines and biomedical materials, as well as in new drug development.

Key words: synthetic biology, disease, diagnosis, treatment, drug development

中图分类号: