合成生物学 ›› 2024, Vol. 5 ›› Issue (2): 281-293.DOI: 10.12211/2096-8280.2023-063
王步森, 徐婧含, 高智强, 侯利华
收稿日期:
2023-08-30
修回日期:
2023-12-13
出版日期:
2024-04-30
发布日期:
2024-04-28
通讯作者:
侯利华
作者简介:
基金资助:
Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU
Received:
2023-08-30
Revised:
2023-12-13
Online:
2024-04-30
Published:
2024-04-28
Contact:
Lihua HOU
摘要:
近十年来,中东呼吸综合征、埃博拉出血热、寨卡病毒感染、新型冠状病毒肺炎等重大传染性疾病疫情相继出现,对疫苗的快速研发提出重大挑战。其中病毒载体疫苗是新型疫苗研发的重要形式,它可以通过雾化吸入或口服等方式进行无创免疫,在没有佐剂的情况下发挥免疫作用,同时诱导体液、细胞和黏膜免疫反应,具有良好的免疫原性和安全性。随着对病毒基因组和结构蛋白等元件认识的不断深入,利用合成生物学研究思路系统设计、改造病毒载体,从而赋予重组病毒载体疫苗高滴度生产、高安全性和高免疫原性等生物学特征,对疫苗研发具有重要指导意义。本文综述了复制型、非复制型等病毒载体疫苗研发策略,以及具有临床应用价值的疫苗病毒载体,如腺病毒载体、痘病毒载体、水疱性口炎病毒载体等,希望对利用合成生物学进行新型病毒载体疫苗的研发提供一定的参考。未来,病毒载体疫苗必将向着更高的安全性、更强的保护性、更好的依从性、更低的生产成本等方向迭代发展。
中图分类号:
王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293.
Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines[J]. Synthetic Biology Journal, 2024, 5(2): 281-293.
病毒种类 | 基因组 | 主要型别 | ||||
---|---|---|---|---|---|---|
类型 | 长度/kb | 容量/kb | 是否入核 | 是否整合 | ||
腺病毒 | DNA | 36 | 7~8 | 是 | 否 | 5型[ |
痘病毒 | DNA | 170~300 | 25 | 否 | 否 | 痘苗安卡拉株[ |
水疱性口炎病毒 | RNA | 11 | 4.5 | 否 | 否 | 印第安纳株[ |
黄病毒 | RNA | 10 | 2 | 否 | 否 | 黄热病毒[ |
疱疹病毒 | DNA | 140~230 | 30 | 是 | 是 | 水痘-带状疱疹病毒[ |
表1 应用于疫苗开发的主要病毒载体类型
Table 1 Major viral vectors used in vaccine development
病毒种类 | 基因组 | 主要型别 | ||||
---|---|---|---|---|---|---|
类型 | 长度/kb | 容量/kb | 是否入核 | 是否整合 | ||
腺病毒 | DNA | 36 | 7~8 | 是 | 否 | 5型[ |
痘病毒 | DNA | 170~300 | 25 | 否 | 否 | 痘苗安卡拉株[ |
水疱性口炎病毒 | RNA | 11 | 4.5 | 否 | 否 | 印第安纳株[ |
黄病毒 | RNA | 10 | 2 | 否 | 否 | 黄热病毒[ |
疱疹病毒 | DNA | 140~230 | 30 | 是 | 是 | 水痘-带状疱疹病毒[ |
图1 病毒载体重组疫苗基因组结构[(a)AdV载体疫苗的基因组结构。基因组中的E1和E3区域全部缺失,外源基因表达框可以通过体外剪接嵌入E1缺失位点。(b)MVA载体疫苗的基因组结构。基因组中的胸苷激酶(TK)被设计为转基因插入位点,外源基因表达框可以在细胞中通过同源重组嵌入。(c)VSV载体疫苗的基因组结构。VSV的糖蛋白可以被其他包膜病毒的糖蛋白所替代。(d)YFV载体疫苗的基因组结构。YFV基因组中的prM和E蛋白可以被其他黄病毒的prM或E蛋白所替代。(e)HSV载体疫苗的基因组结构。外源基因表达框可以嵌入病毒基因组中的UL或US区]
Fig. 1 Schematic diagrams for the genome structure of virus-vectored vaccines[(a) Genome structure of AdV-vectored vaccines. The E1 and E3 regions in the genome are all deleted, and the expression cassette can be inserted into the E1 deletion site by splicing in vitro. (b) Genome structure of MVA-based vaccines. The thymidine kinase (TK) in the genome is designed as site for gene insertion, and the expression cassette can be inserted by homologous recombination in the sensitive cells. (c) Genome structure of VSV-based vaccines. The glycoprotein of VSV can be replaced by the glycoprotein from other enveloped viruses. (d) Genome structure of YFV-based vaccines. The prM and E proteins in the YFV genome can be replaced by prM and E proteins from other flaviviruses. (e) Genome structure of HSV-based vaccines. The expression cassettes can be inserted into the UL or US regions in the viral genome.]
1 | KATZ I T, WEINTRAUB R, BEKKER L G, et al. From vaccine nationalism to vaccine equity—finding a path forward[J]. The New England Journal of Medicine, 2021, 384(14): 1281-1283. |
2 | HEINEMAN T C, CONNELLY B L, BOURNE N, et al. Immunization with recombinant varicella-zoster virus expressing herpes simplex virus type 2 glycoprotein D reduces the severity of genital herpes in guinea pigs[J]. Journal of Virology, 1995, 69(12): 8109-8113. |
3 | CHEN M Y, BUTLER S S, CHEN W T, et al. Physical, chemical, and synthetic virology: reprogramming viruses as controllable nanodevices[J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2019, 11(3): e1545. |
4 | CAPEDING M R, ALBERTO E R, BOUCKENOOGHE A, et al. Five-year antibody persistence following a Japanese encephalitis chimeric virus vaccine (JE-CV) booster in JE-CV-primed children in the Philippines[J]. The Journal of Infectious Diseases, 2018, 217(4): 567-571. |
5 | GARBUTT M, LIEBSCHER R, WAHL-JENSEN V, et al. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses[J]. Journal of Virology, 2004, 78(10): 5458-5465. |
6 | THAO T THI NHU, LABROUSSAA F, EBERT N, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform[J]. Nature, 2020, 582(7813): 561-565. |
7 | BRAUCHER D R, HENNINGSON J N, LOVING C L, et al. Intranasal vaccination with replication-defective adenovirus type 5 encoding influenza virus hemagglutinin elicits protective immunity to homologous challenge and partial protection to heterologous challenge in pigs[J]. Clinical and Vaccine Immunology, 2012, 19(11): 1722-1729. |
8 | BETT A J, HADDARA W, PREVEC L, et al. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(19): 8802-8806. |
9 | CORVER J, LENCHES E, SMITH K, et al. Fine mapping of a cis-acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization[J]. Journal of Virology, 2003, 77(3): 2265-2270. |
10 | HILL-BATORSKI L, HATTA Y, MOSER M J, et al. Quadrivalent formulation of intranasal influenza vaccine M2SR (M2-deficient single replication) protects against drifted influenza A and B virus challenge[J]. Vaccines, 2023, 11(4): 798. |
11 | WONG G, RICHARDSON J S, CUTTS T, et al. Intranasal immunization with an adenovirus vaccine protects guinea pigs from Ebola virus transmission by infected animals[J]. Antiviral Research, 2015, 116: 17-19. |
12 | SINZGER C, EBERHARDT K, CAVIGNAC Y, et al. Macrophage cultures are susceptible to lytic productive infection by endothelial-cell-propagated human cytomegalovirus strains and present viral IE1 protein to CD4+ T cells despite late downregulation of MHC class Ⅱ molecules[J]. Journal of General Virology, 2006, 87(7): 1853-1862. |
13 | COOPER D, WRIGHT K J, CALDERON P C, et al. Attenuation of recombinant vesicular stomatitis virus-human immunodeficiency virus type 1 vaccine vectors by gene translocations and G gene truncation reduces neurovirulence and enhances immunogenicity in mice[J]. Journal of Virology, 2008, 82(1): 207-219. |
14 | ZHU F C, LI Y H, GUAN X H, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial[J]. The Lancet, 2020, 395(10240): 1845-1854. |
15 | VAN ZYL-SMIT R N, ESMAIL A, BATEMAN M E, et al. Safety and immunogenicity of adenovirus 35 tuberculosis vaccine candidate in adults with active or previous tuberculosis. A randomized trial[J]. American Journal of Respiratory and Critical Care Medicine, 2017, 195(9): 1171-1180. |
16 | DE SANTIS O, AUDRAN R, POTHIN E, et al. Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study[J]. The Lancet Infectious Diseases, 2016, 16(3): 311-320. |
17 | PITTMAN P R, HAHN M, LEE H S, et al. Phase 3 efficacy trial of modified vaccinia Ankara as a vaccine against smallpox[J]. The New England Journal of Medicine, 2019, 381(20): 1897-1908. |
18 | GRAY G E, BEKKER L G, LAHER F, et al. Vaccine efficacy of ALVAC-HIV and bivalent subtype C gp120-MF59 in adults[J]. The New England Journal of Medicine, 2021, 384(12): 1089-1100. |
19 | HUTTNER A, DAYER J A, YERLY S, et al. The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial[J]. The Lancet Infectious Diseases, 2015, 15(10): 1156-1166. |
20 | KIM G N, CHOI J A, WU K Y, et al. A vesicular stomatitis virus-based prime-boost vaccination strategy induces potent and protective neutralizing antibodies against SARS-CoV-2[J]. PLoS Pathogens, 2021, 17(12): e1010092. |
21 | MA J, YAKASS M B, JANSEN S, et al. Live-attenuated YF17D-vectored COVID-19 vaccine protects from lethal yellow fever virus infection in mouse and hamster models[J]. eBioMedicine, 2022, 83: 104240. |
22 | HU P S, CHEN X M, HUANG L H, et al. A highly pathogenic porcine reproductive and respiratory syndrome virus candidate vaccine based on Japanese encephalitis virus replicon system[J]. PeerJ, 2017, 5: e3514. |
23 | KAUGARS K, DARDICK J, DE OLIVEIRA A P, et al. A recombinant herpes virus expressing influenza hemagglutinin confers protection and induces antibody-dependent cellular cytotoxicity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(34): e2110714118. |
24 | SUMIDA S M, TRUITT D M, LEMCKERT A A C, et al. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein[J]. The Journal of Immunology, 2005, 174(11): 7179-7185. |
25 | WOHLFART C. Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms[J]. Journal of Virology, 1988, 62(7): 2321-2328. |
26 | ROBERTS D M, NANDA A, HAVENGA M J E, et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity[J]. Nature, 2006, 441(7090): 239-243. |
27 | ABE S, OKUDA K, URA T, et al. Adenovirus type 5 with modified hexons induces robust transgene-specific immune responses in mice with pre-existing immunity against adenovirus type 5[J]. The Journal of Gene Medicine, 2009, 11(7): 570-579. |
28 | URA T, OKUDA K, SHIMADA M. Developments in viral vector-based vaccines[J]. Vaccines, 2014, 2(3): 624-641. |
29 | FUCHS J D, BART P A, FRAHM N, et al. Safety and immunogenicity of a recombinant adenovirus serotype 35-vectored HIV-1 vaccine in adenovirus serotype 5 seronegative and seropositive individuals[J]. Journal of AIDS & Clinical Research, 2015, 6(5): 461. |
30 | WALSH D S, OWIRA V, POLHEMUS M, et al. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON®-TB Gold (+) Kenyan adults without evidence of tuberculosis[J]. Vaccine, 2016, 34(21): 2430-2436. |
31 | MILLIGAN I D, GIBANI M M, SEWELL R, et al. Safety and immunogenicity of novel adenovirus type 26- and modified vaccinia ankara-vectored Ebola vaccines: a randomized clinical trial [J]. JAMA, 2016, 315(15): 1610-1623. |
32 | GURWITH M, LOCK M, TAYLOR E M, et al. Safety and immunogenicity of an oral, replicating adenovirus serotype 4 vector vaccine for H5N1 influenza: a randomised, double-blind, placebo-controlled, phase 1 study[J]. The Lancet Infectious Diseases, 2013, 13(3): 238-250. |
33 | VORBURGER S A, HUNT K K. Adenoviral gene therapy[J]. The Oncologist, 2002, 7(1): 46-59. |
34 | YANG T C, DAYBALL K, WAN Y H, et al. Detailed analysis of the CD8+ T-cell response following adenovirus vaccination[J]. Journal of Virology, 2003, 77(24): 13407-13411. |
35 | HIWASA K, NAGAYA H, TERAO S J, et al. Improved gene transfer into bladder cancer cells using adenovirus vector containing RGD motif[J]. Anticancer Research, 2012, 32(8): 3137-3140. |
36 | XIN K Q, JOUNAI N, SOMEYA K, et al. Prime-boost vaccination with plasmid DNA and a chimeric adenovirus type 5 vector with type 35 fiber induces protective immunity against HIV[J]. Gene Therapy, 2005, 12(24): 1769-1777. |
37 | FOUGEROUX C, HOLST P. Future prospects for the development of cost-effective adenovirus vaccines[J]. International Journal of Molecular Sciences, 2017, 18(4): 686. |
38 | DEAL C, PEKOSZ A, KETNER G. Prospects for oral replicating adenovirus-vectored vaccines[J]. Vaccine, 2013, 31(32): 3236-3243. |
39 | CROSBY C M, BARRY M A. Ⅲa deleted adenovirus as a single-cycle genome replicating vector[J]. Virology, 2014, 462/463: 158-165. |
40 | CROSBY C M, MATCHETT W E, ANGUIANO-ZARATE S S, et al. Replicating single-cycle adenovirus vectors generate amplified influenza vaccine responses[J]. Journal of Virology, 2017, 91(2): e00720-16. |
41 | CROSBY C M, NEHETE P, SASTRY K J, et al. Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines[J]. Journal of Virology, 2015, 89(1): 669-675. |
42 | ZYGRAICH N, LOBMANN M, PEETERMANS J, et al. Local and systemic response after simultaneous intranasal inoculation of temperature-sensitive mutants of parainfluenza 3, IBR and bovine adenovirus 3[J]. Developments in Biological Standardization, 1975, 28: 482-488. |
43 | CHENG T, SONG Y F, ZHANG Y, et al. A novel oncolytic adenovirus based on simian adenovirus serotype 24[J]. Oncotarget, 2017, 8(16): 26871-26885. |
44 | FOLEGATTI P M, EWER K J, ALEY P K, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial[J]. The Lancet, 2020, 396(10249): 467-478. |
45 | KAUFMANN J K, NETTELBECK D M. Virus chimeras for gene therapy, vaccination, and oncolysis: adenoviruses and beyond[J]. Trends in Molecular Medicine, 2012, 18(7): 365-376. |
46 | KAUFMAN H L, KOHLHAPP F J, ZLOZA A. Oncolytic viruses: a new class of immunotherapy drugs[J]. Nature Reviews Drug Discovery, 2015. 14(9): 642-662. |
47 | LI J X, HOU L H, MENG F Y, et al. Immunity duration of a recombinant adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy adults in China: final report of a randomised, double-blind, placebo-controlled, phase 1 trial[J]. The Lancet Global Health, 2017, 5(3): e324-e334. |
48 | ZHU F C, WURIE A H, HOU L H, et al. Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial[J]. The Lancet, 2017, 389(10069): 621-628. |
49 | KENNEDY S B, BOLAY F, KIEH M, et al. Phase 2 placebo-controlled trial of two vaccines to prevent Ebola in Liberia[J]. New England Journal of Medicine, 2017, 377(15): 1438-1447. |
50 | MACKETT M, SMITH G L, MOSS B. Vaccinia virus: a selectable eukaryotic cloning and expression vector[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(23): 7415-7419. |
51 | HOLGADO M P, FALIVENE J, MAETO C, et al. Deletion of A44L, A46R and C12L vaccinia virus genes from the MVA genome improved the vector immunogenicity by modifying the innate immune response generating enhanced and optimized specific T-cell responses[J]. Viruses, 2016, 8(5): 139. |
52 | VIEIRA GOMES A, SOUZA CARMO T, SILVA CARVALHO L, et al. Comparison of yeasts as hosts for recombinant protein production[J]. Microorganisms, 2018, 6(2): 38. |
53 | TAO Q Z, ZHANG H B. Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors[J]. Nucleic Acids Research, 1998, 26(21): 4901-4909. |
54 | DAVISON A J, MOSS B. New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins[J]. Nucleic Acids Research, 1990, 18(14): 4285. |
55 | FALIVENE J, DEL MÉDICO ZAJAC M P, PASCUTTI M F, et al. Improving the MVA vaccine potential by deleting the viral gene coding for the IL-18 binding protein[J]. PLoS One, 2012, 7(2): e32220. |
56 | STICKL H, HOCHSTEIN-MINTZEL V, MAYR A, et al. MVA-Stufenimpfung gegen pocken: klinische erprobung des attenuierten pocken-lebendimpfstoffes, stamm MVA[J/OL]. Deutsche Medizinische Wochenschrift, 1974, 99(47): 2386-2392[2023-09-01]. . |
57 | GOMEZ C E, NAJERA J L, KRUPA M, et al. MVA and NYVAC as vaccines against emergent infectious diseases and cancer[J]. Current Gene Therapy, 2011, 11(3): 189-217. |
58 | DREXLER I, STAIB C, SUTTER G. Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential?[J]. Current Opinion in Biotechnology, 2004, 15(6): 506-512. |
59 | ZHU J G, MARTINEZ J, HUANG X P, et al. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-Β[J]. Blood, 2007, 109(2): 619-625. |
60 | PRICE P J R, TORRES-DOMÍNGUEZ L E, BRANDMÜLLER C, et al. Modified vaccinia virus Ankara: innate immune activation and induction of cellular signalling[J]. Vaccine, 2013, 31(39): 4231-4234. |
61 | JORDAN I, NORTHOFF S, THIELE M, et al. A chemically defined production process for highly attenuated poxviruses[J]. Biologicals, 2011, 39(1): 50-58. |
62 | COONEY E. Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein[J]. The Lancet, 1991, 337(8741): 567-572. |
63 | GÓMEZ C E, NÁJERA J L, PERDIGUERO B, et al. The HIV/AIDS vaccine candidate MVA-B administered as a single immunogen in humans triggers robust, polyfunctional, and selective effector memory T cell responses to HIV-1 antigens[J]. Journal of Virology, 2011, 85(21): 11468-11478. |
64 | GARCÍA F, BERNALDO DE QUIRÓS J C L, GÓMEZ C E, et al. Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: a phase I clinical trial (RISVAC02)[J]. Vaccine, 2011, 29(46): 8309-8316. |
65 | BAKARI M, ABOUD S, NILSSON C, et al. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania[J]. Vaccine, 2011, 29(46): 8417-8428. |
66 | CAVENAUGH J S, AWI D, MENDY M, et al. Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection[J]. PLoS One, 2011, 6(2): e14626. |
67 | BERTHOUD T K, HAMILL M, LILLIE P J, et al. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1[J]. Clinical Infectious Diseases, 2011, 52(1): 1-7. |
68 | BEJON P, OGADA E, MWANGI T, et al. Extended follow-up following a phase 2b randomized trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya[J]. PLoS One, 2007, 2(8): e707. |
69 | TAMERIS M D, HATHERILL M, LANDRY B S, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial[J]. The Lancet, 2013, 381(9871): 1021-1028. |
70 | TAPIA M D, SOW S O, LYKE K E, et al. Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial[J]. The Lancet Infectious Diseases, 2016, 16(1): 31-42. |
71 | EWER K, RAMPLING T, VENKATRAMAN N, et al. A monovalent chimpanzee adenovirus Ebola vaccine boosted with MVA[J]. The New England Journal of Medicine, 2016, 374(17): 1635-1646. |
72 | CHAN W M, RAHMAN M M, MCFADDEN G. Oncolytic myxoma virus: the path to clinic[J]. Vaccine, 2013, 31(39): 4252-4258. |
73 | GILBERT S C. Clinical development of Modified Vaccinia virus Ankara vaccines[J]. Vaccine, 2013, 31(39): 4241-4246. |
74 | ANTOINE G, SCHEIFLINGER F, DORNER F, et al. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses[J]. Virology, 1998, 244(2): 365-396. |
75 | OVERTON E T, LAWRENCE S J, WAGNER E, et al. Immunogenicity and safety of three consecutive production lots of the non replicating smallpox vaccine MVA: a randomised, double blind, placebo controlled phase III trial[J]. PLoS One, 2018, 13(4): e0195897. |
76 | COSMA A, NAGARAJ R, BÜHLER S, et al. Therapeutic vaccination with MVA-HIV-1 nef elicits Nef-specific T-helper cell responses in chronically HIV-1 infected individuals[J]. Vaccine, 2003, 22(1): 21-29. |
77 | SAMY N, REICHHARDT D, SCHMIDT D, et al. Safety and immunogenicity of novel modified vaccinia Ankara-vectored RSV vaccine: a randomized phase Ⅰ clinical trial[J]. Vaccine, 2020, 38(11): 2608-2619. |
78 | JOHNSON J E, NASAR F, COLEMAN J W, et al. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates[J]. Virology, 2007, 360(1): 36-49. |
79 | SUN G Y, FANG X K, WU H, et al. Porcine monocyte-derived dendritic cells can be differentially activated by vesicular stomatitis virus and its matrix protein mutants[J]. Veterinary Microbiology, 2018, 219: 30-39. |
80 | RAUCH S, JASNY E, SCHMIDT K E, et al. New vaccine technologies to combat outbreak situations[J]. Frontiers in Immunology, 2018, 9: 1963. |
81 | FUCHS J D, FRANK I, ELIZAGA M L, et al. First-in-human evaluation of the safety and immunogenicity of a recombinant vesicular stomatitis virus human immunodeficiency virus-1 gag vaccine (HVTN 090)[J]. Open Forum Infectious Diseases, 2015, 2(3): ofv082. |
82 | AGNANDJI S T, HUTTNER A, ZINSER M E, et al. Phase 1 trials of rVSV Ebola vaccine in Africa and Europe[J]. The New England Journal of Medicine, 2016, 374(17): 1647-1660. |
83 | WONG G, MENDOZA E J, PLUMMER F A, et al. From bench to almost bedside: the long road to a licensed Ebola virus vaccine[J]. Expert Opinion on Biological Therapy, 2018, 18(2): 159-173. |
84 | ROBERTS A, BUONOCORE L, PRICE R, et al. Attenuated vesicular stomatitis viruses as vaccine vectors[J]. Journal of Virology, 1999, 73(5): 3723-3732. |
85 | EZELLE H J, MARKOVIC D, BARBER G N. Generation of hepatitis C virus-like particles by use of a recombinant vesicular stomatitis virus vector[J]. Journal of Virology, 2002, 76(23): 12325-12334. |
86 | KAHN J S, ROBERTS A, WEIBEL C, et al. Replication-competent or attenuated, nonpropagating vesicular stomatitis viruses expressing respiratory syncytial virus (RSV) antigens protect mice against RSV challenge[J]. Journal of Virology, 2001, 75(22): 11079-11087. |
87 | GEISBERT T W, JONES S, FRITZ E A, et al. Development of a new vaccine for the prevention of Lassa fever[J]. PLoS Medicine, 2005, 2(6): e183. |
88 | HERD K A, HARVEY T, KHROMYKH A A, et al. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour[J]. Virology, 2004, 319(2): 237-248. |
89 | THEILER M, SMITH H H. The use of yellow fever virus modified by in vitro cultivation for human immunization[J]. Reviews in Medical Virology, 2000, 10(1): 3-16. |
90 | MONATH T P, SELIGMAN S J, ROBERTSON J S, et al. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment[J]. Vaccine, 2015, 33(1): 62-72. |
91 | RECKER M, BLYUSS K B, SIMMONS C P, et al. Immunological serotype interactions and their effect on the epidemiological pattern of dengue[J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1667): 2541-2548. |
92 | YUN S I, LEE Y M. Japanese encephalitis: the virus and vaccines[J]. Human Vaccines & Immunotherapeutics, 2014, 10(2): 263-279. |
93 | LI E, GUO J, OH S J, et al. Anterograde transneuronal tracing and genetic control with engineered yellow fever vaccine YFV-17D[J]. Nature Methods, 2021, 18(12): 1542-1551. |
94 | MONATH T P, LIU J, KANESA-THASAN N, et al. A live, attenuated recombinant West Nile virus vaccine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(17): 6694-6699. |
95 | XIAO H, HU H R, GUO Y J, et al. Construction and characterization of a synthesized herpes simplex virus H129-Syn-G2[J]. Virologica Sinica, 2023, 38(3): 373-379. |
96 | KAMIYAMA T, SATO H, TAKAHARA T, et al. Novel immunogenicity of Oka varicella vaccine vector expressing hepatitis B surface antigen[J]. The Journal of Infectious Diseases, 2000, 181(3): 1158-1161. |
97 | KAUR A, SANFORD H B, GARRY D, et al. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus[J]. Virology, 2007, 357(2): 199-214. |
98 | TAYLOR T J, DIAZ F, COLGROVE R C, et al. Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector[J]. Virology, 2016, 496: 186-193. |
99 | CHESNEY J, AWASTHI S, CURTI B, et al. Phase Ⅲb safety results from an expanded-access protocol of talimogene laherparepvec for patients with unresected, stage ⅢB-ⅣM1c melanoma[J]. Melanoma Research, 2018, 28(1): 44-51. |
100 | TULMAN E R, DELHON G, AFONSO C L, et al. Genome of horsepox virus[J]. Journal of Virology, 2006, 80(18): 9244-9258. |
101 | NOYCE R S, LEDERMAN S, EVANS D H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments[J]. PLoS One, 2018, 13(1): e0188453. |
[1] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[2] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
[3] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[4] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
[5] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[6] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[7] | 刘泽众, 周洁, 朱赟, 陆路, 姜世勃. 基于重组人Ⅲ型胶原蛋白的三聚体抗原疫苗策略在新冠和流感疫苗中的应用[J]. 合成生物学, 2024, 5(2): 385-395. |
[8] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[9] | 谭子斌, 梁康, 陈有海. 合成生物学在基于微生物载体肿瘤疫苗设计中的应用[J]. 合成生物学, 2024, 5(2): 221-238. |
[10] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[11] | 郭茜亚, 陈积, 董铭心. 流感病毒改造新策略及其应用[J]. 合成生物学, 2024, 5(2): 267-280. |
[12] | 江莎莎, 王晨, 路冉, 刘俸君, 李俊, 王斌. T细胞免疫反应载体疫苗在人类疾病预防和治疗中的应用[J]. 合成生物学, 2024, 5(2): 294-309. |
[13] | 叶青, 秦成峰. “国际公共卫生紧急事件”下的mRNA疫苗研发[J]. 合成生物学, 2024, 5(2): 310-320. |
[14] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[15] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||