Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (5): 583-592.DOI: 10.12211/2096-8280.2020-019
• Invited Review • Previous Articles Next Articles
Qing WANG, Yijun CHEN
Received:
2020-03-08
Revised:
2020-09-23
Online:
2020-12-03
Published:
2020-10-31
Contact:
Yijun CHEN
王清, 陈依军
通讯作者:
陈依军
作者简介:
作者简介:王清(1994—),女,硕士研究生。研究方向:化学生物学。E-mail:基金资助:
CLC Number:
Qing WANG, Yijun CHEN. Synthetic biology approaches to improve druggability of natural products[J]. Synthetic Biology Journal, 2020, 1(5): 583-592.
王清, 陈依军. 天然产物成药性的合成生物学改良[J]. 合成生物学, 2020, 1(5): 583-592.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-019
1 | DU Lin, ROBLES A J, KING J B, et al. Crowdsourcing natural products discovery to access uncharted dimensions of fungal metabolite diversity [J]. Angewandte Chemie International Edition, 2014, 53(3): 804-809. |
2 | BAUER A, BRÖNSTRUP M. Industrial natural product chemistry for drug discovery and development [J]. Natural Product Reports, 2014, 31(1): 35-60. |
3 | BROWN D G, LISTER T, MAY-DRACKA T L. New natural products as new leads for antibacterial drug discovery [J]. Bioorganic & Medicinal Chemistry Letters, 2014, 24(2): 413-418. |
4 | SCHEEPSTRA M, NIETO L, HIRSCH A K, et al. A natural-product switch for a dynamic protein interface [J]. Angewandte Chemie International Edition, 2014, 53(25): 6443-6448. |
5 | HARVEY A L, EDRADA-EBEL R A, QUINN R J. The re-emergence of natural products for drug discovery in the genomics era [J]. Nature Reviews Drug Discovery, 2015, 14(2): 111-129. |
6 | ZIMMERMANN T J, ROY S, MARTINEZ N E, et al. Biology-oriented synthesis of a tetrahydroisoquinoline-based compound collection targeting microtubule polymerization [J]. ChemBioChem, 2013, 14(3): 295-300. |
7 | LOWE D B. Drug discovery: combichem all over again [J]. Nature Chemistry, 2014, 6(10): 851-852. |
8 | NEWMAN D J, CRAGG G M. Natural products as sources of new drugs over the 30 years from 1981 to 2010 [J]. Journal of Natural Products, 2012, 75(3): 311-335. |
9 | RODRIGUES T, REKER D, SCHNEIDER P, et al. Counting on natural products for drug design [J]. Nature Chemistry, 2016, 8(6): 531-534. |
10 | DEITERS A, CROPP T A, SUMMERER D, et al. Site-specific PEGylation of proteins containing unnatural amino acids [J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14(23): 5743-5745. |
11 | NEUMANN H, WANG Kaihang, DAVIS L, et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome [J]. Nature, 2010, 464(7287): 441-444. |
12 | BALTZ R H. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways [J]. ACS Synthetic Biology, 2014, 3(10): 748-758. |
13 | KHALIL A S, COLLINS J J. Synthetic biology: applications come of age [J]. Nature Reviews Genetics, 2010, 11(5): 367-379. |
14 | BREITLING R, TAKANO E. Synthetic biology advances for pharmaceutical production [J]. Current Opinion in Biotechnology, 2015, 35: 46-51. |
15 | TANG Xiaolong, DAI Hong, ZHU Yongxiang, et al. Maytansine-loaded star-shaped folate-core PLA-TPGS nanoparticles enhancing anticancer activity [J]. American Journal of Translational Research, 2014, 6(5): 528-537. |
16 | JARAPRAKASH NG, SUROLIA A. Role of glycosylation in nucleating protein folding and stability [J]. Biochemical Journal, 2017, 474(14): 2333-2347. |
17 | JI Shuai, LIANG Wenfei, LI Ziwei, et al. Effcient and selective glucosylation of prenylated phenolic compounds by Mucor hiemalis [J]. RSC Advances, 2016, 6(25): 20791-20799. |
18 | LIU Xiaochen, ZHANG Liang. Biosynthesis of glycyrrhetinic acid-3-O-monoglucose using glycosyltransferase UGT73C11 from Barbarea vulgaris [J]. Industrial & Engineering Chemistry Research, 2017, 56(52): 14949-14958. |
19 | LIANG Wenfei, LI Ziwei, JI Shuai, et al. Microbial glycosylation of tanshinone IIA by Cunninghamella elegans AS 3.2028 [J]. RSC Advances, 2015, 5(78): 63753-63756. |
20 | HARMS J M, WILSON D N, SCHLUENZEN F, et al. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin [J]. Molecular Cell, 2008, 30(1): 26-38. |
21 | ZHENG Qingfei, WANG Shoufeng, LIAO Rijing, et al. Precursor-directed mutational biosynthesis facilitates the functional assignment of two cytochromes P450 in thiostrepton biosynthesis [J]. ACS Chemical Biology, 2016, 11: 2673–2678. |
22 | WANG Shoufeng, ZHENG Qingfei, WANG Jianfeng, et al. Target-oriented design and biosynthesis of thiostrepton-derived thiopeptide antibiotics with improved pharmaceutical properties [J]. Organic Chemistry Frontiers, 2015, 2: 106-109. |
23 | EVANS B, CHEN Yunqiu, METCALF W, et al. Directed evolution of the nonribosomal peptide synthetase AdmK generates new Andrimid derivatives in vivo [J]. Chemistry & Biology, 2011, 18(5): 601-607. |
24 | MATSUDA Y, GOTFREDSEN C H, LARSEN T O. Genetic characterization of neosartorin biosynthesis provides insight into heterodimeric natural product generation [J]. Organic Letters, 2018, 20(22): 7197-7200. |
25 | JI Zhiqin, WEI Shaopeng, FAN Lixia, et al. Three novel cyclic hexapeptides from Streptomyces alboflavus 313 and their antibacterial activity [J]. European Journal of Medicinal Chemistry, 2012, 50: 296-303. |
26 | FAN Lixia, JI Zhiqin, GUO Zhengyan, et al. NW-G12, a novel nonchlorinated cyclohexapeptide from Streptomyces alboflavus313 [J]. Chemistry of Natural Compounds, 2013, 49(5): 910-913. |
27 | GUO Zhengyan, LI Pengwei, CHEN Guozhu, et al. Design and biosynthesis of dimeric alboflavusins with biaryl linkages via regiospecific C—C bond coupling [J]. Journal of the American Chemical Society, 2018, 140(51): 18009-18015. |
28 | HINDRA, YANG Dong, TENG Qihui, et al. Genome mining of Streptomyces mobaraensis DSM40847 as a bleomycin producer providing a biotechnology platform to engineer designer bleomycin analogues [J]. Organic Letters, 2017, 19(6): 1386-1389. |
29 | BUTLER M S, ROBERTSON A A B, COOPER M A. Natural product and natural product derived drugs in clinical trials [J]. Natural Product Reports, 2014, 31(11): 1612-1661. |
30 | CHEN Yun, DENG Wei, WU Jiequn, et al. Genetic modulation of the overexpression of tailoring genes eryK and eryG leading to the improvement of erythromycin A purity and production in Saccharopolyspora erythraea fermentation [J]. Applied and Environmental Microbiology, 2008, 74(6): 1820-1828. |
31 | 张万祥, 汪焰胜, 吴杭, 等. 前体代谢工程提高红霉素产量的研究进展[J]. 生物技术通讯, 2019, 30(1): 140-145. |
ZHANG Wanxiang, WANG Yansheng, WU Hang, et al. Advances in metabolic engineering of precursors for improving Erythromycin production [J]. Letters in Biotechnology, 2019, 30(1): 140-145. | |
32 | WU Jiequn, ZHANG Qinglin, DENG Wei, et al. Toward improvement of erythromycin A production in an industrial Saccharopolyspora erythraea strain via facilitation of genetic manipulation with an artificial attB site for specific recombination [J]. Applied and Environmental Microbiology, 2011, 77(21): 7508-7516. |
33 | LIAN Jiazhang, SI Tong, NAIR N U, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains [J]. Metabolic Engineering, 2014, 24: 139-149. |
34 | KRIVORUCHKO A, ZHANG Yiming, SIEWERS V, et al. Microbial acetyl-CoA metabolism and metabolic engineering [J]. Metabolic Engineering, 2015, 28: 28-42. |
35 | LIU Yiqi, BAI Chenxiao, LIU Qi, et al. Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast [J]. Metabolic Engineering, 2019, 54: 275-284. |
36 | 朱灵英, 郭娟, 张爱丽, 等. 参与植物三萜生物合成的细胞色素P450酶研究进展[J]. 中草药, 2019, 50(22): 5597-5610. |
ZHU Lingying, GUO Juan, ZHANG Aili, et al. Research progress on CYP450 involved in medicinal plant triterpenoid biosynthesis [J]. Chinese Traditional and Herbal Drugs, 2019, 50(22): 5597-5610. | |
37 | 漆丽华, 张媚, 潘海学, 等. 基于生物合成途径改造的一个三欣卡辛类似物的发现[J]. 生命有机化学, 2014, 34(7): 1376-1381. |
XI Lihua, ZHANG Mei, PAN Haixue, et al. Production of a trioxacarcin analogue by engineering of its biosynthetic pathway [J]. Chinese Journal of Organic Chemistry, 2014, 34(7): 1376-1381. | |
38 | MARTIN V J J, PITERA D J, WITHERS S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids [J]. Nature Biotechnology, 2003, 21(7): 796-802. |
39 | 范楚珧, 刘龙英, 沈玥, 等. 吗啡的合成生物学研究和工业化生产[J]. 科学通报, 2016, 61: 1436-1444. |
FAN Chuyao, LIU Longying, SHEN Yue, et al. Progress of biosynthesis of morphine and its industrial manufacture [J]. Chinese Science Bulletin, 2016, 61: 1436-1444. | |
40 | NAKAGAWA A, MINAMI H, KIM Ju-Sung, et al. A bacterial platform for fermentative production of plant alkaloids [J]. Nature Communications, 2011, 2(1): 1-9. |
41 | NEUMANN H, NEUMANN-STAUBITZ P. Synthetic biology approaches in drug discovery and pharmaceutical biotechnology [J]. Applied Microbiology and Biotechnology, 2010, 87(1): 75-86. |
42 | ENGELS B, DAHM P, JENNEWEIN S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production [J]. Metabolic Engineering, 2008, 10(3/4): 201-206. |
43 | KIRBY J, KEASLING J D. Metabolic engineering of microorganisms for isoprenoid production [J]. Natural Product Reports, 2008, 25(4): 656-661. |
44 | WALTHER T, CALVAYRAC F, MALBERT Y, et al. Construction of a synthetic metabolic pathway for the production of 2,4-dihydroxybutyric acid from homoserine [J]. Metabolic Engineering, 2018, 45: 237-245. |
45 | WEI Liang, WANG Qian, XU Ning, et al. Combining protein and metabolic engineering strategies for high level production of O-acetylhomoserine in Escherichia coli [J]. ACS Synthetic Biology, 2019, 8: 1153-1167. |
46 | WILLIAMS T L, YIN Yuhui W, CARTER C W. Selective inhibition of bacterial tryptophanyl-tRNA synthetases by indolmycin is mechanism-based [J]. Journal of Biological Chemistry, 2016, 291(1): 255-265. |
47 | DU Yiling, HIGGINS M A, ZHAO Guiyun, et al. Convergent biosynthetic transformations to a bacterial specialized metabolite [J]. Nature Chemical Biology, 2019, 15(11): 1043-1048. |
48 | DANGEL V, WESTRICH L, SMITH M C M, et al. Use of an inducible promoter for antibiotic production in a heterologous host [J]. Applied Microbiology and Biotechnology, 2010, 87(1): 261-269. |
49 | YAN Fu, BURGARD C, POPOFF A, et al. Synthetic biology approaches and combinatorial biosynthesis towards heterologous lipopeptide production [J]. Chemical Science, 2018, 9(38): 7510-7519. |
50 | KOMATSU M, KOMATSU K, KOIWAI H, et al. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites [J]. ACS Synthetic Biology, 2013, 2(7): 384-396. |
51 | LUO Yunzi, HUANG Hua, LIANG Jing, et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster [J]. Nature Communications, 2013, 4: 94-105. |
52 | TAN Gaoyi, DENG Kunhua, LIU Xinhua, et al. Heterologous biosynthesis of spinosad: an omics-guided large polyketide synthase gene cluster reconstitution in Streptomyces [J]. ACS Synthetic Biology, 2017, 6(6): 995-1005. |
53 | D'ISCHIA M, WAKAMATSU K, CICOIRA F, et al. Melanins and melanogenesis: from pigment cells to human health and technological applications [J]. Pigment Cell & Melanoma Research, 2015, 28(5): 520-544. |
54 | KIM Young Jo, KHETAN A, WU Wei, et al. Evidence of porphyrin-like structures in natural melanin pigments using electrochemical fingerprinting [J]. Advanced Materials, 2016, 28(16): 3173-3180. |
55 | WANG Zheng, TSCHIRHART T, SCHULTZHAUS Z, et al. Characterization and application of melanin produced by the fast-growing marine bacterium Vibrio natriegens through heterologous biosynthesis [J]. Applied and Environmental Microbiology, 2020, 86(5): e02749-19. |
[1] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[2] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
[3] | Zhonghu BAI, He REN, Jianqi NIE, Yang SUN. The recent progresses and applications of in-parallel fermentation technology [J]. Synthetic Biology Journal, 2023, 4(5): 904-915. |
[4] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[5] | Zhehui HU, Juan XU, Guangkai BIAN. Application of automated high-throughput technology in natural product biosynthesis [J]. Synthetic Biology Journal, 2023, 4(5): 932-946. |
[6] | Huan LIU, Qiu CUI. Advances and applications of ambient ionization mass spectrometry in screening of microbial strains [J]. Synthetic Biology Journal, 2023, 4(5): 980-999. |
[7] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. |
[8] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[9] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[10] | Fanzhong ZHANG, Changjun XIANG, Lihan ZHANG. Advances and applications of evolutionary analysis and big-data guided bioinformatics in natural product research [J]. Synthetic Biology Journal, 2023, 4(4): 629-650. |
[11] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[12] | Zhi SUN, Ning YANG, Chunbo LOU, Chao TANG, Xiaojing YANG. Rational design for functional topology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2023, 4(3): 444-463. |
[13] | Qilong LAI, Shuai YAO, Yuguo ZHA, Hong BAI, Kang NING. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials [J]. Synthetic Biology Journal, 2023, 4(3): 611-627. |
[14] | Qiaozhen MENG, Fei GUO. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example [J]. Synthetic Biology Journal, 2023, 4(3): 571-589. |
[15] | Sheng WANG, Zechen WANG, Weihua CHEN, Ke CHEN, Xiangda PENG, Fafen OU, Liangzhen ZHENG, Jinyuan SUN, Tao SHEN, Guoping ZHAO. Design of synthetic biology components based on artificial intelligence and computational biology [J]. Synthetic Biology Journal, 2023, 4(3): 422-443. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||