Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (6): 876-885.DOI: 10.12211/2096-8280.2020-053
• Invited Review • Previous Articles Next Articles
Xianglai LI, Xiaolin SHEN, Jia WANG, Qipeng YUAN, Xinxiao SUN
Received:
2020-04-18
Revised:
2021-01-15
Online:
2022-01-21
Published:
2021-12-31
Contact:
Xinxiao SUN
李向来, 申晓林, 王佳, 袁其朋, 孙新晓
通讯作者:
孙新晓
作者简介:
基金资助:
CLC Number:
Xianglai LI, Xiaolin SHEN, Jia WANG, Qipeng YUAN, Xinxiao SUN. Recent advances in biosynthesis of chemicals by microbial co-culture[J]. Synthetic Biology Journal, 2021, 2(6): 876-885.
李向来, 申晓林, 王佳, 袁其朋, 孙新晓. 微生物共培养生产化学品的研究进展[J]. 合成生物学, 2021, 2(6): 876-885.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-053
共培养体系 | 产物 | 产量/(mg/L) | 较单培养提高 | 参考文献 |
---|---|---|---|---|
大肠杆菌/酿酒酵母 | 氧化紫杉烷 | 33 | 单培养无产物 | [ |
大肠杆菌 | 黄烷醇 | 40.7 | 970倍 | [ |
大肠杆菌 | 迷迭香酸 | 172 | 38倍 | [ |
大肠杆菌 | 红景天苷 | 6030(罐) | 20倍 | [ |
大肠杆菌 | 咖啡醇 | 401 | 12倍 | [ |
大肠杆菌 | 黏糠酸 | 682 | 19倍 | [ |
大肠杆菌 | 苯酚 | 210 | 3.9倍 | [ |
大肠杆菌 | 柚皮素 | 24 | 35% | [ |
Tab. 1 Summary of representative research progresses on microbial co-culture to produce chemicals
共培养体系 | 产物 | 产量/(mg/L) | 较单培养提高 | 参考文献 |
---|---|---|---|---|
大肠杆菌/酿酒酵母 | 氧化紫杉烷 | 33 | 单培养无产物 | [ |
大肠杆菌 | 黄烷醇 | 40.7 | 970倍 | [ |
大肠杆菌 | 迷迭香酸 | 172 | 38倍 | [ |
大肠杆菌 | 红景天苷 | 6030(罐) | 20倍 | [ |
大肠杆菌 | 咖啡醇 | 401 | 12倍 | [ |
大肠杆菌 | 黏糠酸 | 682 | 19倍 | [ |
大肠杆菌 | 苯酚 | 210 | 3.9倍 | [ |
大肠杆菌 | 柚皮素 | 24 | 35% | [ |
1 | SUN X X, SHEN X L, JAIN R, et al. Synthesis of chemicals by metabolic engineering of microbes[J]. Chemical Society Reviews, 2015, 44(11): 3760-3785. |
2 | DE LIMA BROSSI M J, JIMÉNEZ D J, CORTES-TOLALPA L, et al. Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation[J]. Microbial Ecology, 2016, 71(3): 616-627. |
3 | BILIOURIS K, BABSON D, SCHMIDT-DANNERT C, et al. Stochastic simulations of a synthetic bacteria-yeast ecosystem[J]. BMC Systems Biology, 2012, 6: 58. |
4 | ZHOU K, QIAO K J, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology, 2015, 33(4): 377-383. |
5 | HANLY T J, HENSON M A. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures[J]. Biotechnology and Bioengineering, 2011, 108(2): 376-385. |
6 | WANG Z Y, CAO G L, ZHENG J, et al. Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess[J]. Biotechnology for Biofuels, 2015, 8(1):84. |
7 | SCHOLZ S A, GRAVES I, MINTY J J, et al. Production of cellulosic organic acids via synthetic fungal consortia[J]. Biotechnology and Bioengineering, 2018, 115(4): 1096-1100. |
8 | JIANG Y J, ZHANG T, LU J S, et al. Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing[J]. Applied Microbiology and Biotechnology, 2018, 102(13): 5419-5425. |
9 | JIANG Y J, GUO D, LU J S, et al. Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5[J]. Biotechnology for Biofuels, 2018, 11: 89. |
10 | ROELL G W, ZHA J, CARR R R, et al. Engineering microbial consortia by division of labor[J]. Microbial Cell Factories, 2019, 18(1): 1-11. |
11 | ZHANG H R, WANG X N. Modular co-culture engineering, a new approach for metabolic engineering[J]. Metabolic Engineering, 2016, 37: 114-121. |
12 | JONES J A, VERNACCHIO V R, SINKOE A L, et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids[J]. Metabolic Engineering, 2016, 35: 55-63. |
13 | LI Z H, WANG X N, ZHANG H R. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering[J]. Metabolic Engineering, 2019, 54: 1-11. |
14 | LIU X, LI X B, JIANG J, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides[J]. Metabolic Engineering, 2018, 47: 243-253. |
15 | CHEN Z Y, SUN X X, LI Y, et al. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols[J]. Metabolic Engineering, 2017, 39: 102-109. |
16 | ZHANG H R, PEREIRA B, LI Z J, et al. Engineering Escherichia coli coculture systems for the production of biochemical products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8266-8271. |
17 | GUO X Y, LI Z H, WANG X N, et al. De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering[J]. Biotechnology and Bioengineering, 2019, 116(12): 3349-3359. |
18 | GANESAN V, LI Z H, WANG X N, et al. Heterologous biosynthesis of natural product naringenin by co-culture engineering[J]. Synthetic and Systems Biotechnology, 2017, 2(3): 236-242. |
19 | THUAN N H, TRUNG N T, CUONG N X, et al. Escherichia coli modular coculture system for resveratrol glucosides production[J]. World Journal of Microbiology and Biotechnology, 2018, 34(6): 1-13. |
20 | THUAN N H, CHAUDHARY A K, CUONG D V, et al. Engineering co-culture system for production of apigetrin in Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(3): 175-185. |
21 | CAMACHO-ZARAGOZA J M, HERNÁNDEZ-CHÁVEZ G, MORENO-AVITIA F, et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol[J]. Microbial Cell Factories, 2016, 15(1): 1-11. |
22 | AKDEMIR H, SILVA A, ZHA J, et al. Production of pyranoanthocyanins using Escherichia coli co-cultures[J]. Metabolic Engineering, 2019, 55: 290-298. |
23 | SUN J, RAZA M, SUN X X, et al. Biosynthesis of adipic acid via microaerobic hydrogenation of cis,cis-muconic acid by oxygen-sensitive enoate reductase[J]. Journal of Biotechnology, 2018, 280: 49-54. |
24 | FAN L H, ZHANG Z J, YU X Y, et al. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33): 13260-13265. |
25 | HE Q, HEMME C L, JIANG H L, et al. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp.[J]. Bioresource Technology, 2011, 102(20):9586-9592. |
26 | NAKAYAMA S, KIYOSHI K, KADOKURA T, et al. Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4[J]. Applied and Environmental Microbiology, 2011, 77(18): 6470-6475. |
27 | MINTY J J, SINGER M E, SCHOLZ S A, et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14592-14597. |
28 | WANG M, YU C Z, ZHAO H M. Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization[J]. Biotechnology and Bioengineering, 2016, 113(3): 484-491. |
29 | SEDLAK M, HO N W. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast[J]. Yeast, 2004, 21(8):671-684. |
30 | LI H B, SCHMITZ O, ALPER H S. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter[J]. Applied Microbiology and Biotechnology, 2016, 100(23): 10215-10223. |
31 | VERHOEVEN M D, DE VALK S C, DARAN J M G, et al. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains[J]. FEMS Yeast Research, 2018, 18(8): foy075. |
32 | HILL E A, CHRISLER W B, BELIAEV A S, et al. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks[J]. Bioresource Technology, 2017, 228: 250-256. |
33 | LEE C R, KIM C, SONG Y E, et al. Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovatavia a reducing-equivalent transfer mediator[J]. Bioresource Technology, 2018, 259: 128-135. |
34 | WEISS T L, YOUNG E J, DUCAT D C. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production[J]. Metabolic Engineering, 2017, 44: 236-245. |
35 | DUCAT D C, AVELAR-RIVAS J A, WAY J C, et al. Rerouting carbon flux to enhance photosynthetic productivity[J]. Applied and Environmental Microbiology, 2012, 78(8): 2660-2668. |
36 | SMITH M J, FRANCIS M B. A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals[J]. ACS Synthetic Biology, 2016, 5(9): 955-961. |
37 | HAYS S G, YAN L L W, SILVER P A, et al. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction[J]. Journal of Biological Engineering, 2017, 11: 4. |
38 | LI T, LI C-T, BUTLER K, et al. Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform[J]. Biotechnology for Biofuels, 2017, 10(1):55. |
39 | LI T T, JIANG L Q, HU Y F, et al. Creating a synthetic lichen: mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413[J]. Algal Research, 2020, 45:101755. |
40 | GOODWIN C R, COVINGTON B C, DEREWACZ D K, et al. Structuring microbial metabolic responses to multiplexed stimuli via self-organizing metabolomics maps[J]. Chemistry & Biology, 2015, 22(5): 661-670. |
41 | PONOMAROVA O, PATIL K R. Metabolic interactions in microbial communities: untangling the Gordian knot[J]. Current Opinion in Microbiology, 2015, 27: 37-44. |
42 | BERTRAND S, BOHNI N, SCHNEE S, et al. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery[J]. Biotechnology Advances, 2014, 32(6): 1180-1204. |
43 | HARWANI D, BEGANI J, LAKHANI J. Co-cultivation strategies to induce de novo synthesis of novel chemical scaffolds from cryptic secondary metabolite gene clusters [M]// GEHLOT P, SINGH J. Fungi and their role in sustainable development: current perspectives. Springer, 2018: 617-631. |
44 | TAN Z Q, LEOW H Y, LEE D C W, et al. Co-culture systems for the production of secondary metabolites: current and future prospects[J]. The Open Biotechnology Journal, 2019, 13(1): 18-26. |
45 | MOUSSA M, EBRAHIM W, BONUS M, et al. Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers[J]. RSC Advances, 2019, 9(3): 1491-1500. |
46 | MA Y J, ZHENG L P, WANG J W. Inducing perylenequinone production from a bambusicolous fungus Shiraia sp. S9 through co-culture with a fruiting body-associated bacterium Pseudomonas fulva SB1[J]. Microbial Cell Factories, 2019, 18(1): 121. |
47 | HOSHINO S, WONG C P, OZEKI M, et al. Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium[J]. The Journal of Antibiotics, 2018, 71(7):653-657. |
48 | KHALIL Z G, CRUZ-MORALES P, LICONA-CASSANI C, et al. Inter-Kingdom beach warfare: microbial chemical communication activates natural chemical defences[J]. The ISME Journal, 2019, 13(1): 147-158. |
49 | ARORA D, CHASHOO G, SINGAMANENI V, et al. Bacillus amyloliquefaciens induces production of a novel blennolide K in coculture of Setophoma terrestris[J]. Journal of Applied Microbiology, 2018, 124(3):730-739. |
50 | ZHOU Q Y, YANG X Q, ZHANG Z X, et al. New azaphilones and tremulane sesquiterpene from endophytic Nigrospora oryzae cocultured with Irpex lacteus[J]. Fitoterapia, 2018, 130: 26-30. |
51 | NG W L, BASSLER B L. Bacterial quorum-sensing network architectures[J]. Annual Review of Genetics, 2009, 43: 197-222. |
52 | DAVIS R M, MULLER R Y, HAYNES K A. Can the natural diversity of quorum-sensing advance synthetic biology?[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 30. |
53 | KYLILIS N, TUZA Z A, STAN G B, et al. Tools for engineering coordinated system behaviour in synthetic microbial consortia[J]. Nature Communications, 2018, 9(1): 2677. |
54 | SCOTT S R, HASTY J. Quorum sensing communication modules for microbial consortia[J]. ACS Synthetic Biology, 2016, 5(9): 969-977. |
55 | CHEN Y, KIM J K, HIRNING A J, et al. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251):986-989. |
56 | SCOTT S R, DIN M O, BITTIHN P, et al. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis[J]. Nature Microbiology, 2017, 2: 17083. |
57 | MCCARDELL R D, HUANG S, GREEN L N, et al. Control of bacterial population density with population feedback and molecular sequestration[EB/OL]. bioRxiv, 2017, DOI:10.1101/225045. |
58 | THOMPSON J A, OLIVEIRA R A, DJUKOVIC A, et al. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota[J]. Cell Reports, 2015, 10(11):1861-1871. |
59 | STEPHENS K, POZO M, TSAO C Y, et al. Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition[J]. Nature Communications, 2019, 10(1): 4129. |
60 | AUTEBERT J, COUDERT B, F-C BIDARD, et al. Microfluidic: an innovative tool for efficient cell sorting[J]. Methods, 2012, 57(3):297-307. |
61 | KOCH S, BENNDORF D, FRONK K, et al. Predicting compositions of microbial communities from stoichiometric models with applications for the biogas process[J]. Biotechnology for Biofuels, 2016, 9(1):17. |
62 | MILNE C B, KIM P J, EDDY J A, et al. Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology[J]. Biotechnology Journal, 2009, 4(12): 1653-1670. |
63 | MILLER I J, VANEE N, FONG S S, et al. Lack of overt genome reduction in the bryostatin-producing bryozoan symbiont ''candidatus endobugula sertula''[J]. Applied and Environmental Microbiology, 2016, 82(22): 6573-6583. |
64 | STOLYAR S, DIEN S VAN, HILLESLAND K L, et al. Metabolic modeling of a mutualistic microbial community[J]. Molecular System Biology, 2007, 3(1): 92. |
65 | SALIMI F, ZHUANG K, MAHADEVAN R. Genome‐scale metabolic modeling of a clostridial co‐culture for consolidated bioprocessing[J]. Biotechnology Journal, 2010, 5(7):726-738. |
66 | KONG W, MELDGIN D R, COLLINS J J, et al. Designing microbial consortia with defined social interactions[J]. Nature Chemical Biology, 2018, 14(8): 821-829. |
67 | MCCULLY A L, LASARRE B, MCKINLAY J B. Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism[J]. Environmental Microbiology, 2017, 19(9): 3538-3550. |
68 | TSOI R, WU F L, ZHANG C, et al. Metabolic division of labor in microbial systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2526-2531. |
69 | GUERRA-BUBB J, CROTEAU R, WILLIAMS R M. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites[J]. Natural Product Reports, 2012, 29(6): 683-696. |
70 | NITSCHKE M, PASTORE G M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater[J]. Bioresource Technology, 2006, 97(2): 336-341. |
71 | TAO K Y, LIU X Y, CHEN X P, et al. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis[J]. Bioresource Technology, 2017, 224:327-332. |
[1] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
[2] | Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 239-253. |
[3] | Qiang ZHOU, Dawei ZHOU, Jingxiang SUN, Jingnan WANG, Wankui JIANG, Wenming ZHANG, Yujia JIANG, Fengxue XIN, Min JIANG. Research progress in synthesis of astaxanthin by microbial fermentation [J]. Synthetic Biology Journal, 2024, 5(1): 126-143. |
[4] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[5] | Jiayu DONG, Min LI, Zonghua XIAO, Ming HU, Yudai MATSUDA, Weiguang WANG. Recent advances in heterologous production of natural products using Aspergillus oryzae [J]. Synthetic Biology Journal, 2022, 3(6): 1126-1149. |
[6] | Shiming TANG, Jiyuan HU, Suiping ZHENG, Shuangyan HAN, Ying LIN. Designing, building and rapid prototyping of biosynthesis module based on cell-free system [J]. Synthetic Biology Journal, 2022, 3(6): 1250-1261. |
[7] | Lu YANG, Xudong QU. Application of imine reductase in the synthesis of chiral amines [J]. Synthetic Biology Journal, 2022, 3(3): 516-529. |
[8] | Huibin WANG, Changli CHE, Song YOU. Recent advances of enzymatic synthesis of organohalogens catalyzed by Fe/αKG-dependent halogenases [J]. Synthetic Biology Journal, 2022, 3(3): 545-566. |
[9] | Jiaoyu JIN, Jiahai ZHOU. The mystery of Z-genome biosynthesis has been elucidated [J]. Synthetic Biology Journal, 2022, 3(1): 1-5. |
[10] | Jiuzhou CHEN, Yu WANG, Wei PU, Ping ZHENG, Jibin SUN. Advances and perspective on bioproduction of 5-aminolevulinic acid [J]. Synthetic Biology Journal, 2021, 2(6): 1000-1016. |
[11] | Yichen WAN, Kongliang XU, Renchao ZHENG, Yuguo ZHENG. In vitro biosynthesis of chemicals: pathway design, component assembly and applications-a review [J]. Synthetic Biology Journal, 2021, 2(6): 886-901. |
[12] | Shuqi GUO, Ziyue JIAO, Qiang FEI. Progress in construction and applications of methanotrophic cell factory for chemicals biosynthesis [J]. Synthetic Biology Journal, 2021, 2(6): 1017-1029. |
[13] | Liangbin XIONG, Lu SONG, Yunqiu ZHAO, Kun LIU, Yongjun LIU, Fengqing WANG, Dongzhi WEI. Green biomanufacturing of steroids: from biotransformation to de novo synthesis by microorganisms [J]. Synthetic Biology Journal, 2021, 2(6): 942-963. |
[14] | Jianming LYU, Huan ZHAO, Dan HU, Hao GAO. Biosynthesis of alkyne moiety in natural products and application of alkyne biosynthetic machineries [J]. Synthetic Biology Journal, 2021, 2(5): 734-750. |
[15] | Zhen FAN, Haixue PAN, Gongli TANG. Engineered yeast facilitates rapid and systematic mining of fungal chimeric terpene synthases [J]. Synthetic Biology Journal, 2021, 2(5): 666-673. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||