Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (1): 46-58.DOI: 10.12211/2096-8280.2020-061
• Invited Review • Previous Articles Next Articles
Pan WANG1,2, Chenhui ZHU1,2, Jing ZHAO1,2, Daidi FAN1,2
Received:
2020-04-28
Revised:
2020-09-17
Online:
2021-03-12
Published:
2021-03-22
Contact:
Daidi FAN
王盼1,2, 朱晨辉1,2, 赵婧1,2, 范代娣1,2
通讯作者:
范代娣
作者简介:
王盼(1989-),女,博士,讲师,主要研究方向为微生物酶学。E-mail:panwanghgxy@nwu.edu.cn基金资助:
CLC Number:
Pan WANG, Chenhui ZHU, Jing ZHAO, Daidi FAN. Research progress of synthetic biology in the field of protein functional materials[J]. Synthetic Biology Journal, 2021, 2(1): 46-58.
王盼, 朱晨辉, 赵婧, 范代娣. 合成生物学在蛋白质功能材料领域的研究进展[J]. 合成生物学, 2021, 2(1): 46-58.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-061
材料蛋白 | 重复单元 |
---|---|
蛛丝蛋白 | poly-Ala,Gly-Gly-X,Gly-Pro-Gly-Gln-Gln |
胶原蛋白 | Gly-X-Y |
蚕丝蛋白 | Gly-Ala-Gly-Ala-Gly-Se |
弹性蛋白 | Val-Pro-Gly-X-Gly |
Tab. 1 The repetitive units of material proteins
材料蛋白 | 重复单元 |
---|---|
蛛丝蛋白 | poly-Ala,Gly-Gly-X,Gly-Pro-Gly-Gln-Gln |
胶原蛋白 | Gly-X-Y |
蚕丝蛋白 | Gly-Ala-Gly-Ala-Gly-Se |
弹性蛋白 | Val-Pro-Gly-X-Gly |
1 | VERT M, DOI Y, HELLWICH K H, et al. Terminology for biorelated polymers and applications[J]. Pure & Applied Chemistry, 2014, 84(2):377-410. |
2 | BLUME J, SCHWOTZER W. Medical products and their application range[M]. Berlin: Springer-verlag, 2010:213-224. |
3 | WANG X, KIM H J, WONG C, et al. Fibrous proteins and tissue engineering[J]. Materials Today, 2006, 9(12):44-53. |
4 | GIROTTI A, FERNÁNDEZ C A, LÓPEZ I M, et al. Elastin-like recombinamers: biosynthetic strategies and biotechnological applications[J]. Biotechnology Journal, 2011, 6(10):1174-1186. |
5 | YIGIT S, DINJASKI N, KAPLAN D L. Fibrous proteins: at the crossroads of genetic engineering and biotechnological applications[J]. Biotechnology & Bioengineering, 2016, 113(5):913-929. |
6 | DESAI M S, LEE S W. Protein-based functional nanomaterial design for bioengineering applications[J]. Wiley Interdisciplinary Reviews Nanomedicine & Nanobiotechnology, 2015, 7(1):69-97. |
7 | JIA T J, WANG Y Y, DOU Y Y, et al. Moisture sensitive smart yarns and textiles from self‐balanced silk fiber muscles[J]. Advanced Functional Materials, 2019, 29(18). DOI: 10.1002/adfm. 201808241. |
8 | HUANG W, LING S, LI C, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology[J]. Chemical Society Reviews, 2018, 47(17):6486-6504. |
9 | ZHOU Z, SHI Z, CAI X, et al. The use of functionalized silk fibroin films as a platform for optical diffraction-based sensing applications[J]. Advanced Materials, 2017, 29(15). DOI: 10.1002/adma.201605471. |
10 | 宫永宽. 仿生胶粘剂研究发展前景诱人[J]. 粘接, 2014, 11:87-91. |
GONG Y K. Research development on biomimetic adhesives showing attractive prospects[J]. Adhesion, 2014, 11:87-91. | |
11 | 刘加鹏. 海洋贻贝粘附蛋白新型生物粘合剂的研究[D]. 厦门:厦门大学, 2008. |
LIU J P. Research on a novel bioadhesive made of marine mussel adhesive protein[D]. Xiamen: Xiamen University, 2008. | |
12 | QI H, ZHENG W, ZHOU X, et al. A mussel-inspired chimeric protein as a novel facile antifouling coating[J]. Chemical Communications, 2018, 54:11328-11331. |
13 | QI H, ZHENG W, ZHANG C, et al. A novel mussel-inspired universal surface functionalization strategy: protein-based coating with site-specific posttranslational modification in vivo[J]. ACS Applied Materials & Interfaces, 2019, 11(13):12846-12853. |
14 | KOEPPEL A, HOLLAND C. Progress and trends in artificial silk spinning: a systematic review[J]. ACS Biomaterials Science & Engineering, 2017, 3(3):226-237. |
15 | MARLENE A, JAN J, ANNA R. Silk spinning in silkworms and spiders[J]. International Journal of Molecular Sciences, 2016, 17(8). DOI: 10.3390/ijms17081290. |
16 | RISING A, WIDHE M, JOHANSSON J, et al. Spider silk proteins: recent advances in recombinant production, structure-function relationships and biomedical applications[J]. Cellular & Molecular Life Sciences, 2011, 68(2):169-184. |
17 | HINMAN M B, JONES J A, LEWIS R V. Synthetic spider silk: a modular fiber[J]. Trends in Biotechnology, 2000, 18(9):374-379. |
18 | JULIO B, OLSEN D, POLAREK J W. Recombinant microbial systems for the production of human collagen and gelatin[J]. Applied Microbiology and Biotechnology, 2005, 69(3):245-252. |
19 | WANG J N, YAN S Q, LU C D, et al. Biosynthesis and characterization of typical fibroin crystalline polypeptides of silkworm bombyx mori[J]. Materials Science & Engineering, 2009, 29(4):1321-1325. |
20 | YAMAUCHI M, TAGA Y, HATTORI S, et al. Analysis of collagen and elastin cross-links[J]. Methods in Cell Biology, 2017, 143:115-132. |
21 | WEN R, WANG K, LIU X, et al. Molecular cloning and analysis of the full-length aciniform spidroin gene from Araneus ventricosus[J]. International Journal of Biological Macromolecules, 2018, 117:1352-1360. |
22 | WEN R, LIU X, MENG Q. Characterization of full-length tubuliform spidroin gene from Araneus ventricosus[J]. International Journal of Biological Macromolecules, 2017, 105(1):702-710. |
23 | SIMMONS A H, MICHAL C A, JELINSKI L W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk[J]. Science, 1996, 271(5245):84-87. |
24 | MEYERS M A, MCKITTRICK J, CHEN P Y. Structural biological materials: critical mechanics-materials connections[J]. Science, 2013, 339(6121):773-779. |
25 | SIMMONS A, RAY E, JELINSKI L W. Solid-state 13C NMR of nephila clavipes dragline silk establishes structure and identity of crystalline regions[J]. Macromolecules, 1994, 27(18):5235-5237. |
26 | CHANG D K, VENKATACHALAM C M, PRASAD K U, et al. Nuclear overhauser effect and computational characterization of the β-spiral of the polypentapeptide of elastin[J]. Journal of Biomolecular Structure & Dynamics, 1989, 6(5):851-858. |
27 | BEEK J D VAN, HESS S, VOLLRATH F, et al. The molecular structure of spider dragline silk: folding and orientation of the protein backbone.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16):10266-10271. |
28 | HUEMMERICH D, HELSEN C W, QUEDZUWEIT S, et al. Primary structure elements of spider dragline silks and their contribution to protein solubility[J]. Biochemistry, 2004, 43(42):13604-13612. |
29 | SPONNER A, UNGER E, GROSSE F, et al. Conserved C-Termini of spidroins are secreted by the major ampullate glands and retained in the silk thread[J]. Biomacromolecules, 2004, 5(3):840-845. |
30 | JIN H J, KAPLAN D L. Mechanism of silk processing in insects and spiders[J]. Nature, 2003, 424(6952):1057-1061. |
31 | PRINCE J T, MCGRATH K P, DIGIROLAMO C M, et al. Construction, cloning, and expression of synthetic genes encoding spider dragline silk[J]. Biochemistry, 1995, 34(34):10879-10885. |
32 | SZELA S, AVTGES P, VALLUZZI R, et al. Reduction-oxidation control of β-sheet assembly in genetically engineered silk[J]. Biomacromolecules, 2000, 1(4):534-542. |
33 | BOWEN C H, BIN D, SARGENT C J, et al. Recombinant spidroins fully replicate primary mechanical properties of natural spider silk[J]. Biomacromolecules, 2018, 19(9):3853-3860. |
34 | JONATHAN R M, CHRISTOPHER R, ASHUTOSH C. A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures[J]. Biomacromolecules, 2013, 14(8):2866-2872. |
35 | MEYER D E, CHILKOTI A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides[J]. Biomacromolecules, 2004, 5(3):846-851. |
36 | WRIGHT E R, CONTICELLO V P. Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences[J]. Advanced Drug Delivery Reviews, 2002, 54(8):1057-1073. |
37 | YANG S, WEI S, MAO Y, et al. Novel hemostatic biomolecules based on elastin-like polypeptides and the self-assembling peptide RADA-16[J]. BMC Biorechnology, 2018,18(1):12-20. |
38 | HERSEL U, DAHMEN C, KESSLER H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond[J]. Biomaterials, 2003, 24(24):4385-4415. |
39 | DU C, WANG M, LIU J, et a1. Improvement of thermostability of recombinant collagenc-like protein by incorporating a foldon sequence[J]. Applied Microbiology and Biotechnology, 2008, 79(2): 195-202. |
40 | LI L, TONG Z, JIA X, et al. Resilin-like polypeptide hydrogels engineered for versatile biological function[J]. Soft Matter, 2012, 9(3):665-673. |
41 | SEO N, RUSSELL B H, RIVERA J J, et al. An engineered alpha1 integrin-binding collagenous sequence[J]. Journal of Biological Chemistry, 2010, 285:31046-31054. |
42 | STOICHEVSKA V, AN B, PENG Y Y, et al. Formation of multimers of bacterial collagens through introduction of specific sites for oxidative cross-linking[J]. Journal of Biomedical Materials Research Part A, 2016, 104(9): 2369-2376. |
43 | 金玲玲. 含多种人工设计功能域胶原蛋白的高效制备及应用开发[D]. 杭州: 浙江大学, 2018. |
JIN L L. Efficient expression and purification of designer collagens for biomedical applications[D]. Hangzhou: Zhejiang University, 2018. | |
44 | FAHNESTOCK S R, IRWIN S L. Synthetic spider dragline silk proteins and their production in Escherichia coli[J]. Applied Microbiology and Biotechnology,1997, 47 (1): 23-32. |
45 | TIAN Z F, ZHAO H R, YI H G, et al. Recombinant cloning of gene sequence encoding silk fibroin heavy chain[J]. Advanced Materials Research, 2013, 796:83-86. |
46 | BOWEN C H, DAI B, SARGENT C J, et al. Recombinant spidroins fully replicate primary mechanical properties of natural spider silk.[J]. Biomacromolecules, 2018, 19(9): 3853-3860. |
47 | XIAO X, QIAN Z, CHANG S K, et al. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(32):14059-14063. |
48 | SHI J J, MA X X, GAO Y, et al. Hydroxylation of human type Ⅲ collagen alpha chain by recombinant coexpression with a viral prolyl 4-hydroxylase in Escherichia coli[J]. Protein Journal, 2017, 36(4):322-331. |
49 | HE J, MA X X, ZHANG F L, et al. New strategy for expression of recombinant hydroxylated human collagen α1 (Ⅲ) chains in Pichia pastoris GS115[J]. Biotechnology & Applied Biochemistry, 2014, 62(3): 293-299. |
50 | 李伟娜, 尚子方, 段志广, 等. 毕赤酵母高密度发酵产Ⅲ型类人胶原蛋白及其胃粘膜修复功能[J]. 生物工程学报, 2017, 33(4):672-682. |
LI W N, SHANG Z F, DUAN Z G, et al. Production of gastric-mucosa protective collagen Ⅲ by Pichia pastoris[J]. Chinese Journal of Biotechnology, 2017, 33(4): 672-682. | |
51 | YANG B, AYYADURAI N, YUN H, et al. In vivo residue-specific dopa-incorporated engineered mussel bioglue with enhanced adhesion and water resistance[J]. Angewandte Chemie International Edition, 2014, 53(49):13360-13364. |
52 | JIA Q L, LUO Y E, FAN D D. Application of molecular chaperone to increase the expression of soluble human-like collagen in Escherichia coli[J]. BioTechnology: An Indian Journal, 2013, 7(12):531-536. |
53 | JIA Q, LUO Y E, FAN D D, et al. The different roles of chaperone teams on over-expression of human-like collagen in recombinant Escherichia coli[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(6):2843-2850. |
54 | SUN L P, XIONG Y J, BASHAN A, et al. A recombinant collagen-mRNA platform for controllable protein synthesis[J]. ChemBioChem, 2015, 16, 1415-1419. |
55 | XUE W J, FAN D D, SHANG L,et al. Production of biomass and recombinant human-like collagen in Escherichia coli processes with different CO2 pulses[J]. Biotechnology Letters, 2009, 31(2):221-226. |
56 | XUE W, FAN D D, SHANG L, et al. Effects of acetic acid and its assimilation in fed-batch cultures of recombinant Escherichia coli containing human-like collagen cDNA[J]. Journal of Bioscience and Bioengineering, 2010, 109(3):257-261. |
57 | CHI L, FAN D D, MA X X, et al. A genetic algorithm for the optimization of the thermoinduction protocol for high-level production of recombinant human-like collagen from Escherichia coli[J]. Biotechnology & Applied Biochemistry, 2011, 58(3):175-184. |
58 | GUO J Q, LUO Y E, FAN D D, et al. Medium optimization based on the metabolic-flux spectrum of recombinant Escherichia coli for high expression of human-like collagen II[J]. Biotechnology & Applied Biochemistry, 2010, 57(2):55-62. |
59 | AZAM A, LI C, METCALF K J, et al. Type III secretion as a generalizable strategy for the production of full-length biopolymer-forming proteins[J]. Biotechnology & Bioengineering, 2016, 113(11):2313-2320. |
60 | OTERO J M, NIELSEN J. Industrial systems biology[J]. Biotechnology & Bioengineering, 2010, 105(3):439-460. |
61 | ZACHARY A K, COLTON J L, ADAM M F, et al. Next-generation genome-scale models for metabolic engineering[J]. Current Opinion in Biotechnology, 2015, 35:23-29. |
62 | 刘立明, 陈坚. 基因组规模代谢网络模型构建及其应用[J]. 生物工程学报, 2010, 26(9):1176-1186. |
LIU L M, CHEN J. Reconstruction and application of genome-scale metabolic network model[J]. Chinese Journal of Biotechnology, 2010, 26(9):1176-1186. | |
63 | YE R, HUANG M, LU H, et al. Comprehensive reconstruction and evaluation of Pichia pastoris genome-scale metabolic model that accounts for 1243 ORFs[J]. Bioresources and Bioprocessing, 2017, 4(1):22-34. |
64 | PAN R, ZHANG J, SHEN W, al et, Sequential deletion of Pichia pastoris genes by a self-excisable cassette[J]. FEMS Yeast Research, 2011, 11(3):292-298. |
65 | ZHANG Y, CAI J, SHANG X, et al. A new genome-scale metabolic model of Corynebacterium glutamicum and its application[J]. Biotechnology for Biofuels, 2017, 10:169-185. |
66 | ZHANG Y, ZHANG Y, SHANG X, et al. Reconstruction of tricarboxylic acid cycle in corynebacterium glutamicum with a genome-scale metabolic network model for trans-4-hydroxyproline production[J]. Biotechnology for Biofuels, 2019, 116(1):99-109. |
67 | ZHAO L, YE B, ZHANG Q, et al. Construction of second generation protease‐deficient hosts of Bacillus subtilis for secretion of foreign proteins[J]. Biotechnology and Bioengineering, 2019, 116(8): 2052-2060. |
68 | WENINGER A, HATZL A M, SCHMID C, et al. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris[J]. Journal of Biotechnology, 2016, 235:139-149. |
69 | ZHANG X L, XIA L J, DAY B A, et al. CRISPR/Cas9 initiated transgenic silkworms as a natural spinner of spider silk[J]. Biomacromolecules, 2019, 20(6):2252-2264. |
70 | NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305). DOI: 10.1126/science.aaf8729. |
71 | JIANG J, ZHANG S, QIAN Z, et al. Protein Bricks: 2D and 3D bio-nanostructures with shape and function on demand[J]. Advanced Materials, 2018, 30(20). DOI: 10.1002/adma. 20170519. |
72 | LIU W P, ZHOU Z T, ZHANG S Q, et al. Precise protein photolithography (P-3): high performance biopatterning using silk fibroin light chain as the resist[J]. Advanced Science, 2017, 4(9):1700191-1700200. |
73 | SCHACHT K, JUNGST T, SCHWEINLIN M, et al. Biofabrication of cell-loaded 3D spider silk constructs[J]. Angewandte Chemie International Edition, 2015, 54(9):2816-2820. |
74 | 吕亚维, 王睿劼, 张雨靖, 等. 重组贻贝黏蛋白Mgfp-5的表达及功能评价[J]. 基因组学与应用生物学, 2017, 36(10):4108-4115. |
LV Y W, WANG R J, ZHANG Y J, et al. The expression and function evaluation of the recombinated mussel adhesive protein Mgfp-5[J]. Genomics and Applied Biology, 2017, 36(10):4108-4115. | |
75 | JO Y K, KIM H J, JEONG Y, et al. Biomimetic surface engineering of biomaterials by using recombinant mussel adhesive proteins[J]. Advanced Materials Interfaces, 2018, 5(9):1800068-1800081. |
76 | JO Y K, CHOI B H, ZHOU C, et al. Bioengineered mussel glue incorporated with a cell recognition motif as an osteostimulating bone adhesive for titanium implants[J]. Journal of Materials Chemistry B, 2015, 3(41):8102-8114. |
77 | HONG J M, KIM B J, SHIM J H, et al. Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins[J]. Acta Biomaterialia, 2012, 8(7):2578-2586. |
78 | KANG T Y, LEE J H, KIM B J, et al. In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins[J]. Biofabrication, 2015, 7(1):015007-015018. |
79 | JO Y K, CHOI B H, KIM C S, et al. Diatom-inspired silica nanostructure coatings with controllable microroughness using an engineered mussel protein glue to accelerate bone growth on titanium-based implants[J]. Advanced Materials, 2017, 29(46):1704906-1704915. |
80 | RODRIGUEZ-CABELLO J C, ARIAS F J, RODRIGO M A, et al. Elastin-like polypeptides in drug delivery[J]. Advanced Drug Delivery Reviews, 2016, 97:85-100. |
81 | WANG W, JASHNANI A, ALURI S R, et al. A thermo-responsive protein treatment for dry eyes[J]. Journal of Controlled Release, 2015, 199:156-167. |
82 | MCDANIEL J R, BHATTACHARYYA J, VARGO K B, et al. Self-assembly of thermally responsive nanoparticles of a genetically encoded peptide polymer by drug conjugation[J]. Angewandte Chemie International Edition, 2013, 52(6):1683-1687. |
83 | JANG Y, CHAMPION J A. Self-assembled materials made from functional recombinant proteins[J]. Accounts of Chemical Research, 2016, 49(10):2188-2198. |
84 | LI X, FAN D D, ZHU C H, et al. Effects of self-assembled fibers on the synthesis, characteristics and biomedical applications of CCAG hydrogels[J]. Journal of Materials Chemistry B, 2014, 2(9):1234-1249. |
85 | LI X, XUE W J, LIU Y N, et al. A novel multifunctional materials PB hydrogels and PBH hydrogels as soft filler for tissue engineering[J]. Journal of Materials Chemistry B, 2015, 3: 4742-4755. |
86 | SONG X, ZHU C H, FAN D D, et al. A novel human-like collagen hydrogel scaffold with porous structure and sponge-like properties[J]. Ploymers, 2017, 9(12):638-654. |
87 | PAN H, FAN D D, CAO W, et al. Preparation and characterization of breathable hemostatic hydrogel dressings and determination of their effects on full-thickness defects[J]. Polymers, 2017, 9(12):727-755. |
88 | ZHU C H, FAN D D, WANG Y Y. Human-like collagen/hyaluronic acid 3D scaffolds for vascular tissue engineering[J]. Materials Science & Engineering C-Materials for Biological Applications, 2014, 34:393-401. |
89 | CHEN L, ZHU C, FAN D D, et al. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: Electrospun mechanism and biocompatibility[J]. Journal of Biomedical Materials Research Part A, 2011, 99A(3):395-409. |
90 | ZHU C, FAN D D, MA X, et al. Effects of chitosan on properties of novel human-like collagen/chitosan hybrid vascular scaffold[J]. Journal of Bioactive and Compatible Polymers, 2009, 24(6):560-576. |
91 | 范代娣,马晓轩,米钰,等. 一种可生物降解止血海绵材料及其制备方法[P]. 200610041913.3. 2006-08-23. |
FAN D D, MA X X, MI Y, et al. A biodegradable hemostatic sponge material and its preparation method[P]. 200610041913.3. 2006-08-23. | |
92 | JASTRZEBSKA K, KUCHARCZYK K, FLORCZAK A, et al. Silk as an innovative biomaterial for cancer therapy[J]. Reports of Practical Oncology & Radiotherapy, 2015, 20(2): 87-98. |
93 | ISHIHARA J, ISHIHARA A, SASAKI K, et al. Targeted antibody and cytokine cancer immunotherapies through collagen affinity[J]. Science Translational Medicine, 2019, 11(487): 3259-3270. |
94 | GOMES S, LEONOR I B, MANO J F, et al. Natural and genetically engineered proteins for tissue engineering[J]. Progress in Polymer Science, 2012, 37(1): 1-17. |
95 | WANG Y, WANG F, XU S, et al. Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application[J]. Acta Biomaterialia, 2019, 86: 148-157. |
96 | WANG F, WANG Y, TIAN C, et al. Fabrication of the FGF1-functionalized sericin hydrogels with cell proliferation activity for biomedical application using genetically engineered Bombyx mori (B. mori) silk[J]. Acta Biomaterialia, 2018, 79: 239-252. |
97 | ZHANG W, CHEN L K, CHEN J L, et al. Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial[J]. Advanced Healthcare Materials, 2017, 6(10). DOI: 10.1002/adhm.201700121. |
98 | HE S, SHI D, HAN Z, et al. Heparinized silk fibroin hydrogels loading FGF1 promote the wound healing in rats with full-thickness skin excision[J]. Biomedical Engineering Online, 2019, 18(1):97-108. |
99 | LEE W, ZHOU Z, CHEN X, et al. A rewritable optical storage medium of silk proteins using near-field nano-optics[J]. Nature Nanotechnology, 2020. DOI: 10.1038/s41565-020-0755-9. |
100 | WANG C, XIA K, ZHANG Y, et al. Silk-based advanced materials for soft electronics[J]. Accounts of Chemical Research, 2019, 52(10): 2916-2927. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[3] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[4] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[5] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[7] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[8] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[9] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[10] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[11] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[12] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[13] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[14] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[15] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||