Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (3): 385-394.DOI: 10.12211/2096-8280.2020-065
• Invited Review • Previous Articles
DU Quansheng1(), HONG Wei2, ZU Yan3
Received:
2020-05-19
Revised:
2020-07-13
Online:
2020-09-29
Published:
2020-06-30
Contact:
DU Quansheng
通讯作者:
杜全生
作者简介:
杜全生,(1980—),男,博士,副研究员,研究方向为遗传学。E-mail:duqs@nsfc.gov.cn
CLC Number:
DU Quansheng, HONG Wei, ZU Yan. Grant and funding for synthetic biology at NSFC from 2010 to 2019[J]. Synthetic Biology Journal, 2020, 1(3): 385-394.
杜全生, 洪伟, 祖岩. 2010—2019年国家自然科学基金资助合成生物学领域情况[J]. 合成生物学, 2020, 1(3): 385-394.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-065
1 | WU Y, LI B Z, ZHAO M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X[J]. Science, 2017, 355(6329): aaf4706. |
2 | XIE Z X, LI B Z, MITCHELL L A, et al. “Perfect” designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6329): eaaf4704. |
3 | QIN Z, STOILOV P, ZHANG X, et al. SEASTAR: systematic evaluation of alternative transcription start sites in RNA[J].Nucleic Acids Research, 2018, 46(8): e45. |
4 | CUI J, CUI H, YANG M, et al. Tongue coating microbiome as a potential biomarker for gastritis including precancerous cascade[J]. Protein Cell, 2019, 10(7): 496-509. |
5 | MIAO Z, DENG K, WANG X, et al. DEsingle for detecting three types of differential expression in single-cell RNA-seq data[J]. Bioinformatics, 2018, 34(18): 3223-3224. |
6 | CHEN W H, QIN Z J, WANG J, et al. The MASTER (methylation-assisted tailorable ends rational) ligation method for seamless DNA assembly[J]. Nucleic Acids Research, 2013, 41(8): e93. |
7 | LU AN G, LU X. Tailoring cyanobacterial cell factory for improved industrial properties[J]. Biotechnology Advances, 2018, 36(2): 430-442. |
8 | LUAN G, ZHANG S, LU X. Engineering Cyanobacteria chassis cells toward more efficient photosynthesis[J]. Current Opinion in Biotechnology, 2020, 62: 1-6. |
9 | ZHANG L, LIANG Y, WU W, et al. Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase[J]. Biotechnology for Biofuels, 2016, 9(1): 80. |
10 | LIU W, LUO Z, WANG Y, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods[J]. Nature Communications, 2018, 9(1): 1936. |
11 | LIN Y, ZOU X, ZHENG Y, et al. Improving chromosome synthesis with a semiquantitative phenotypic assay and refined assembly strategy[J]. ACS Synthetic Biology, 2019, 8(10): 2203-2211. |
12 | JIAO Z, FENGHUI QIAN, FENG D, et al. De novo engineering of Corynebacterium glutamicum for l-proline production[J]. ACS Synthetic Biology, 2020, DOI: https://doi.org/10.1021/acssynbio.0c00249 . |
13 | SHAO J, WANG M, YU G, et al. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation[J]. Proceedings of The National Academy of Sciences of The United States of America, 2018, 115(29): 6722-6730. |
14 | XIE M, YE H, WANG H, et al. beta-cell-mimetic designer cells provide closed-loop glycemic control[J]. Science, 2016, 354(6317): 1296-1301. |
15 | ZHANG Z B, WANG Q Y, KE Y X, et al. Design of tunable oscillatory dynamics in a synthetic NF-kappaB signaling circuit[J]. Cell Systems, 2017, 5(5): 460-470. |
16 | LIU R, ZHU F, LU L, et al. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli [J]. Metabolic Engineering, 2014, 22: 10-21. |
17 | GUO D, ZHU J, DENG Z, et al. Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways[J]. Metabolic Engineering, 2014, 22: 69-75. |
18 | WU T, YE L, ZHAO D, et al. Membrane engineering-A novel strategy to enhance the production and accumulation of beta-carotene in Escherichia coli [J]. Metabolic Engineering, 2017, 43(Pt A): 85-91. |
19 | LI Q, FAN F, GAO X, et al. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli [J]. Metabolic Engineering, 2017, 44: 13-21. |
20 | ZHU X, ZHAO D, QIU H, et al. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway[J]. Metabolic Engineering, 2017, 43(Pt A): 37-45. |
21 | GU Y, XU X, WU Y, et al. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications[J]. Metabolic Engineering, 2018, 50: 109-121. |
22 | WU Y, CHEN T, LIU Y, et al. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis[J]. Nucleic Acids Research, 2020, 48(2):996-1009. |
23 | NIU T, LIU Y, LI J, et al. Engineering a glucosamine-6-phosphate responsive glmS ribozyme switch enables dynamic control of metabolic flux in Bacillus subtilis for overproduction of N-acetylglucosamine[J]. ACS Synthetic Biology 2018, 7(10): 2423-2435. |
24 | SHAO Y, LU N, XUE X, et al. Creating functional chromosome fusions in yeast with CRISPR-Cas9[J]. Nature Protocols, 2019, 14(8): 2521-2545. |
25 | ZHANG Y, WEN W H, PU J Y,et al. Extracellularly oxidative activation and inactivation of matured prodrug for cryptic self-resistance in naphthyridinomycin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44): 11232-11237. |
26 | LI W N, MA L, SHEN X L,et al. Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production[J]. Nature Communications, 2019, 10(1): 3337. |
27 | XU J Y, XU Y, XU Z, et al. Protein acylation is a general regulatory mechanism in biosynthetic pathway of acyl-CoA-derived natural products[J]. Cell Chemical Biology, 2018, 25(8): 984-995. |
28 | LUO Y Z, LI B Z, LIU D, et al. Engineered biosynthesis of natural products in heterologous hosts[J]. Chemical Society Reviews, 2015, 44(15): 5265-5290. |
29 | TAN Z T, ZHU C J, FU J W, et al. Regulating cofactor balance in vivo with a synthetic flavin analogue[J]. Angewandte Chemie-International Edition, 2018, 57(50): 16464-16468. |
30 | CAO W, MA W, WANG X, et al. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.[J]. Scientific Reports, 2016, 6(1): 32640. |
31 | LIU Z, LI X, ZHANG J T, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2[J]. Nature, 2016, 530(7588): 98-102. |
32 | YU X, QIU W, YANG L, et al. Defining multistep cell fate decision pathways during pancreatic development at single‐cell resolution[J]. The EMBO Journal, 2019, 38(8): e100164. |
33 | LU Y L, ZHOU Y P, TIAN W D. Combining Hi-C data with phylogenetic correlation to predict the target genes of distal regulatory elements in human genome[J]. Nucleic Acids Research, 2013, 41(22). |
34 | ZHENG X, CHENG Q, YAO F, et al. Biosynthesis of the pyrrolidine protein synthesis inhibitor anisomycin involves novel gene ensemble and cryptic biosynthetic steps[J]. Proceedings of The National Academy of Sciences of The United States of America, 2017, 114(16):4 135-4140. |
35 | ZHANG Y, ZOU Y, BROCK N L, et al. Characterization of 2-oxindole forming heme enzyme MarE, expanding the functional diversity of the tryptophan dioxygenase superfamily[J]. Journal of The American Chemical Society, 2017, 139(34): 11887-11894. |
36 | HUANG T, DUAN Y, ZOU Y, et al. NRPS protein MarQ catalyzes flexible adenylation and specific S-methylation[J].ACS Chemical Biology, 2018, 13(9): 2387-2391. |
37 | YANG J, JIANG S, LIU X, et al. Aptamer-binding directed DNA origami pattern for logic gates[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 34054-34060. |
38 | YIN L, GUO X, LIU L, et al. Self-assembled multimeric-enzyme nanoreactor for robust and efficient biocatalysis[J]. ACS Biomaterials Science & Engineering, 2018, 4(6): 2095-2099. |
39 | HUANG C, YANG C, FANG Z, et al. Discovery of stealthin derivatives and implication of the amidotransferase FlsN3 in the biosynthesis of nitrogen-containing fluostatins[J]. Marine Drugs, 2019, 17(3): 150. |
40 | ZHANG D, ZHANG F, LIU W, et al. A KAS-III heterodimer in lipstatin biosynthesis nondecarboxylatively condenses C8 and C14 fatty acyl-CoA substrates by a variable mechanism during the establishment of a C22 aliphatic skeleton.[J]. Journal of the American Chemical Society, 2019, 141(9): 3993-4001. |
41 | WANG J, LIU Y, LIU Y, et al. Time-resolved protein activation by proximal decaging in living systems[J]. Nature, 2019, 569(7757): 509-513. |
42 | JI Z, NIE Q, YIN Y, et al. Activation and characterization of a cryptic gene cluster reveal two series of aromatic polyketides biosynthesized by divergent tic tailoring pathways[J]. Angewandte Chemie-International Edition,2019, 58: 18046-18054. |
43 | MA W, CAO W, ZHANG B, et al. Engineering a pyridoxal 5'-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis[J]. Scientific Reports, 2015, 5(1): 15630-15630. |
44 | 钱万强, 江海燕, 朱庆平, 等. 国内外合成生物学资助体系及产业投入分析[J].中国基础科学, 2014(1): 49-52. |
QIAN W Q, JIANG H Y, ZHU Q P, et al. Analysis of the funding systems and industry investment of synthetic biology in China and main developed countries[J]. China Basic Science, 2014(1): 49-52. | |
45 | 杜瑾, 刘夺, 赵广荣, 等. 合成生物学学科发展概况[J].中国科学基金, 2011, 25(3): 143-147. |
DU J, LIU D, ZHAO G R, et al. General situation on the disciplinary development in synthetic biology[J]. Science Foundation in China, 2011, 25(3): 143-147. | |
46 | 赵国屏. 合成生物学——生物工程产业化发展的新时期[J].生物产业技术, 2019(1): 2. |
Zhao G P. Synthetic biology——The new era of industrial development of bioengineering[J]. Biotechnology & Business, 2019(1): 2. | |
47 | SLEATOR R D. JCVI-syn3.0-A synthetic genome stripped bare![J]. Bioengineered, 2016, 7(2): 53-56. |
48 | 马延和, 江会锋, 娄春波, 等. 合成生物与生物安全[J].中国科学院院刊, 2016, 31(4): 432-438. |
MA Y H, JIANG H F, LOU C B, et al. Synthetic life and biosecurity[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(4): 432-438. | |
49 | 肖尧. 美国国家科学院发布《合成生物学时代的生物防御》报告[J].科技中国, 2018(7): 106-106. |
XIAO R. Biodefense in the age of synthetic biology[J]. China Scitechnology Business, 2018(7): 106. | |
50 | 刘晓, 曾艳, 王力为, 等. 创新政策体系保障合成生物学科技与产业发展[J].中国科学院院刊, 2018, 33(11): 1260-1268. |
LIU X, ZENG Y, WANG L W, et al. Innovative policy system to ensure the development of synthetic biology[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1260-1268. | |
51 | 周光明, 陈大明, 熊燕, 等. 英国合成生物学规划及其影响与启示[J].中国细胞生物学学报, 2019, 41(11): 2091-2100. |
ZHOU G M, CHEN D M, XIONG Y, et al. UK synthetic biology strategic planning and its enlightenment[J]. Chinese Journal of Cell Biology, 2019, 41(11): 2091-2100. | |
52 | 王璞玥, 唐鸿志, 吴震州, 等. “合成生物学”研究前沿与发展趋势[J].中国科学基金, 2018, 32(5): 545-551. |
WANG P Y, TANG H Z, WU Z Z, et al. Frontiers and trends in synthetic biology[J]. Science Foundation in China, 2018, 32(5): 545-551. |
[1] | GAO Ge, BIAN Qi, WANG Baojun. Synthetic genetic circuit engineering: principles, advances and prospects [J]. Synthetic Biology Journal, 2025, 6(1): 45-64. |
[2] | LI Jiyuan, WU Guosheng. Two hypothesises for the origins of organisms from the synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(1): 190-202. |
[3] | JIAO Hongtao, QI Meng, SHAO Bin, JIANG Jinsong. Legal issues for the storage of DNA data [J]. Synthetic Biology Journal, 2025, 6(1): 177-189. |
[4] | TANG Xinghua, LU Qianneng, HU Yilin. Philosophical reflections on synthetic biology in the Anthropocene [J]. Synthetic Biology Journal, 2025, 6(1): 203-212. |
[5] | XU Huaisheng, SHI Xiaolong, LIU Xiaoguang, XU Miaomiao. Key technologies for DNA storage: encoding, error correction, random access, and security [J]. Synthetic Biology Journal, 2025, 6(1): 157-176. |
[6] | SHI Ting, SONG Zhan, SONG Shiyi, ZHANG Yi-Heng P. Job. In vitro BioTransformation (ivBT): a new frontier of industrial biomanufacturing [J]. Synthetic Biology Journal, 2024, 5(6): 1437-1460. |
[7] | CHAI Meng, WANG Fengqing, WEI Dongzhi. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. |
[8] | SHAO Mingwei, SUN Simian, YANG Shimao, CHEN Guoqiang. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, 5(6): 1419-1436. |
[9] | CHEN Yu, ZHANG Kang, QIU Yijing, CHENG Caiyun, YIN Jingjing, SONG Tianshun, XIE Jingjing. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168. |
[10] | ZHENG Haotian, LI Chaofeng, LIU Liangxu, WANG Jiawei, LI Hengrun, NI Jun. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[11] | CHEN Ziling, XIANG Yangfei. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[12] | CAI Bingyu, TAN Xiangtian, LI Wei. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[13] | XIE Huang, ZHENG Yilei, SU Yiting, RUAN Jingyi, LI Yongquan. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[14] | ZHA Wenlong, BU Lan, ZI Jiachen. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[15] | HUI Zhen, TANG Xiaoyu. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||