Synthetic Biology Journal

   

Advances in electro-microbial synergistic systems for value-added conversion of carbon dioxide

HAN Lin1, GUO Yuman2, LI Yan2, CAO Hengheng2, LI Jiajing2, YANG Minghao2, WANG Mengmeng2, LI Jinping1, LV Yongqin1,2   

  1. 1.State Key Laboratory of Organic-Inorganic Composites,Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing,100029,China
    2.National Energy R&D Center for Biorefinery,Beijing Key Laboratory of Green Chemicals Biomanufacturing,Beijing Synthetic Bio-manufacturing Technology Innovation Center,College of Life Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China
  • Received:2025-07-01 Revised:2025-10-01 Published:2025-10-10
  • Contact: HAN Lin, LV Yongqin

电-微生物协同系统用于CO2高值转化的研究进展

韩林1, 郭禹曼2, 李燕2, 曹珩珩2, 李嘉婧2, 杨明浩2, 汪萌萌2, 李晋萍1, 吕永琴1,2   

  1. 1.有机无机复合材料全国重点实验室,北京软物质科学与工程高精尖创新中心,北京化工大学,北京 100029
    2.国家能源生物炼制研发中心,教育部生物能源国际合作联合实验室,绿色化学品生物制造北京市重点实验室,生命科学与技术学院,北京化工大学,北京 100029
  • 通讯作者: 韩林,吕永琴
  • 作者简介:韩林(1995—),男,博士研究生。研究方向为异位耦合电生物固碳。E-mail:mzkd1314@qq.com
    郭禹曼(1999—),女,博士研究生。研究方向为光/电驱动生物固碳。E-mail:2023400321@buct.edu.cn
    吕永琴(1983—),女,博士,教授,博士生导师。研究方向为光电驱动生物固碳,酶的分子改造和固定化,仿生抗体工程。国家重点研发计划首席科学家,国家优秀青年基金获得者。相关研究成果在PNAS、J. Am. Chem. Soc.、Matter、Adv. Energy Mater.、Adv. Sci.、Prog. Energ. Combust.等期刊发表SCI论文80余篇,申请发明专利三十余项。获侯德榜化工科学技术奖青年奖、教育部自然科学奖二等奖、石油化工联合会技术发明奖一等奖等奖项。先后主持了国家重点研发计划项目/课题、国家自然科学基金优秀青年基金项目、联合基金重点项目、国际合作项目等10余项。担任中国生物工程学会一碳生物技术专委会委员、中国化工学会青年工作委员会委员、中国生物工程学会生物催化专业委员会委员、中国化工学会女科技工作者委员会委员、中国微生物学会微生物代谢与生物制造专业委员会委员。担任5本SCI期刊的客座编辑和编委。E-mail:lvyq@mail.buct.edu.cn
  • 基金资助:
    国家重点研发计划(2024YFB4206300);国家自然科学基金(U22A20426);国家自然科学基金(22408017);国家自然科学基金(22122801);北京市自然科学基金(2244075)

Abstract:

With the escalating challenge of global climate change, the development of efficient and sustainable carbon dioxide (CO2) conversion technologies has become a forefront priority in energy and environmental research. Among the diverse strategies, the upgrading of CO2 into high-value, long-chain hydrocarbons (C3+) not only alleviates the greenhouse effect but also provides a transformative pathway toward carbon neutrality and a circular carbon economy. Electrocatalysis and biocatalysis have each demonstrated unique advantages, including mild operating conditions, tunable selectivity, and modular integration capacity. Nevertheless, when deployed independently, both approaches suffer from intrinsic bottlenecks, such as limited carbon fixation efficiency, suboptimal product selectivity, and long-term instability. In recent years, electro-microbial hybrid systems have emerged as a promising solution by synergistically coupling electrochemical reduction with microbial metabolism. In such systems, electrical energy can directly fuel microbial CO2 fixation, or electrocatalysts can reduce CO2 into C1/C2 intermediates (e.g., CO, formate, acetate) that subsequently serve as versatile carbon feedstocks for microbial pathways. Through rationally engineered metabolic networks, these intermediates are further upgraded into multicarbon products, such as butanol, hexanoic acid, and olefins, thereby bridging the gap between simple reduction chemistry and complex biochemical synthesis. Depending on the degree of spatial, temporal, and energetic coupling, these systems can be broadly classified into in situ electro-microbe interfaces and ex situ cascade configurations, each offering distinct advantages and challenges. This review provides a comprehensive overview of recent advances in electro-microbial CO2 conversion, with emphasis on key scientific and technological frontiers: (i) control of product selectivity through pathway engineering and catalyst design, (ii) elucidation of direct versus mediated electron transfer mechanisms, (iii) strategies for designing robust and conductive bio-electrode interfaces, and (iv) approaches to enhance system durability and scalability. Finally, by highlighting the convergence of synthetic biology, materials science, and systems engineering, we outline future research opportunities, including precision genetic regulation, high-throughput catalyst-microbe screening, and integrated device architectures. This review aims to deliver mechanistic insights and design principles that will guide the next generation of electro-microbial technologies for carbon-neutral chemical manufacturing.

Key words: electrocatalysis, microorganism, hybrid system, CO2 fixation

摘要:

随着全球气候变化问题的日益加剧,开发高效、可持续的CO2转化技术已成为国际研究的前沿课题。特别是将CO2升级转化为具有高附加值的长链碳氢化合物(C3及以上)不仅有助于缓解温室效应,还为实现碳中和和构建循环经济体系提供了新路径。在众多技术路线中,电催化与生物催化因其温和的反应条件、良好的可控性和可模块化集成特性,展现出广阔的发展前景。然而,两者在独立应用中分别存在产物选择性差、固碳效率低或系统稳定性不足等瓶颈问题。近年来,电催化与微生物催化的协同耦合策略逐渐成为研究热点。该策略利用电能为微生物固碳过程提供能量和还原力,或通过电催化将CO2还原为C1/C2中间产物(如CO、甲酸、乙酸等),进一步作为碳源被特定微生物利用,通过代谢途径高选择性合成丁醇、己酸、烯烃等多碳产物,实现对CO2的深度转化和资源化利用。根据电化学系统与生物系统在时间、空间及能量耦合方式的不同,该类系统可划分为电-菌原位耦合系统与电-菌异位耦合系统两大类。本文系统梳理了当前电-微生物细胞协同固碳转化合成化学品领域的研究进展,重点分析了不同耦合模式在产物分布调控、电子传递机制、界面构建策略及系统稳定性等方面的技术关键与科学挑战。进一步结合合成生物学、材料科学与反应工程的交叉融合趋势,提出了未来该领域在精准调控、高通量筛选与系统集成等方向的发展前景。本综述为推动电-微生物协同固碳转化技术的深入研究与实际应用提供了重要参考与理论支撑。

关键词: 电催化, 微生物, 耦合系统, CO2固定

CLC Number: