Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (1): 92-102.DOI: 10.12211/2096-8280.2020-036
• Invited Review • Previous Articles Next Articles
Cong RAO1, Xuan YUN1, Yi YU1, Zixin DENG1,2
Received:
2020-03-26
Revised:
2020-04-19
Online:
2020-07-07
Published:
2020-02-25
Contact:
Yi YU,Zixin DENG
饶聪1, 云轩1, 虞沂1, 邓子新1,2
通讯作者:
虞沂,邓子新
作者简介:
饶聪(1996-),男,硕士研究生。|虞沂(1978—),男,教授,博士生导师,研究方向为天然产物化学生物学。E-mail: 基金资助:
CLC Number:
Cong RAO, Xuan YUN, Yi YU, Zixin DENG. Recent progress of synthetic biology applications in microbial pharmaceuticals research[J]. Synthetic Biology Journal, 2020, 1(1): 92-102.
饶聪, 云轩, 虞沂, 邓子新. 微生物药物的合成生物学研究进展[J]. 合成生物学, 2020, 1(1): 92-102.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-036
1 | NEWMAN David J, CRAGG Gordon M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. Journal of Natural Product, 2020, 83 (3): 770-803. |
2 | BERDY J. Thoughts and facts about antibiotics: where we are now and where we are heading[J]. Journal of Antibiotics, 2012, 65(8): 385-395. |
3 | KELWICK R, MACDONALD J T, WEBB A J, et al. Developments in the tools and methodologies of synthetic biology[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 60. |
4 | MUKHERJEE S, STAMATIS D, BERTSCH J, et al. Genomes OnLine database (GOLD) v.7: updates and new features[J]. Nucleic Acids Research, 2019, 47 (D1): 649-659. |
5 | SMANSKI M J, ZHOU H, CLAESEN J, et al. Synthetic biology to access and expand nature’s chemical diversity[J]. Nature Reviews Microbiology, 2016,14 (3):135-149. |
6 | BLIN Kai, PASCAL ANDREU Victòria, DE LOS SANTOS Emmanuel L C, et al. The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters[J]. Nucleic Acids Research, 2018, 47 (D1): 625-630. |
7 |
NAVARRO MU OZ Jorge C, SELEM MOJICA Nelly, MULLOWNEY Michael W, et al. A computational framework for systematic exploration of biosynthetic diversity from large-scale genomic data[J]. bioRxiv., 2018: 445270.DOI: 10.110/445270
DOI |
8 | Gökcen ERASLAN, Žiga AVSEC, GAGNEUR Julien, et al. Deep learning: new computational modelling techniques for genomics[J]. Nature Reviews Genetics, 2019, 20 (7): 389-403. |
9 | TIETZ Jonathan I, SCHWALEN Christopher J, PATEL Parth S, et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape[J]. Nature Chemical Biology, 2017, 13 (5): 470-478. |
10 | HU Qiannan, DENG Zhe, HU Huanan, et al. RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity[J]. Bioinformatics, 2011, 27 (17): 2465-2467. |
11 | CHENG Xingxiang, SUN Dandan, ZHANG Dachuan, et al. RxnBLAST: molecular scaffold and reactive chemical environment feature extractor for biochemical reactions[J]. Bioinformatics, 2020,36(9): 2946-2947. |
12 |
ZHANG Tong, TIAN Yu, YUAN Le, et al. Bio2Rxn: sequence-based enzymatic reaction predictions by a consensus strategy[J]. Bioinformatics, 2020. DOI: 10.1093/bio in formatics/baa135.
DOI |
13 | TU Weizhong, ZHANG Haoran, LIU Juan, et al. BioSynther: a customized biosynthetic potential explorer[J]. Bioinformatics, 2015, 32 (3): 472-473. |
14 | DING Shaozhen, LIAO Xiaoping, TU Weizhong, et al. EcoSynther: a customized platform to explore biosynthetic potential in E. coli[J]. ACS Chemical Biology, 2017, 12 (11), 2823-2829. |
15 | HAMEDIRAD Mohammad, CHAO Ran, WEISBERG Scott, et al. Towards a fully automated algorithm driven platform for biosystems design[J]. Nature Communications, 2019, 10 (1): 5150. |
16 | HERRMANN S, SIEGL T, LUZHETSKA M, et al. Site-specific recombination strategies for engineering actinomycete genomes[J]. Applied and Environmental Microbiology, 2012, 78 (6): 1804-1812. |
17 | JIANG W, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31 (3): 233-239. |
18 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337 (6096): 816-821. |
19 | COBB Ryan E, WANG Yajie, ZHAO Huimin. High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2015, 4 (6): 723-728. |
20 | ZHANG M M, WONG F T, WANG Y, et al. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J]. Nature Chemical Biology, 2017, 13: 607-609. |
21 | WANG Hailong, LI Zhen, JIA Ruonan, et al. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression[J]. Nature Protocols, 2016, 11 (7): 1175-1190. |
22 | BU Qingting, YU Pin, WANG Jue, et al. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches[J]. Microbial Cell Factories, 2019, 18 (1): 16. |
23 | KALLIFIDAS Dimitris, JIANG Guangde, DING Yousong, et al. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters[J]. Microbial Cell Factories, 2018, 17 (1): 25. |
24 | LUO X, REITER M A, D'ESPAUX L,et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567 (7746): 123-126. |
25 | JUNG W S, LEE S K, HONG J S, et al. Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae[J]. Applied Microbiology and Biotechnology, 2006, 72 (4): 763-769. |
26 | PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496 (7446): 528-532. |
27 | LI Sicong, GUO Junhong, REVA Anna, et al. Methyltransferases of gentamicin biosynthesis[J]. PNAS, 2018, 115 (6): 1340. |
28 | BURY Priscila dos Santos, HUANG Fanglu, LI Sicong, et al. Structural basis of the selectivity of GenN, an aminoglycoside N-methyltransferase involved in gentamicin biosynthesis[J]. ACS Chemical Biology, 2017, 12 (11): 2779-2787. |
29 | TAO Weixin, CHEN Li, ZHAO Chunhua, et al. In vitro packaging mediated one-step targeted cloning of natural product pathway[J]. ACS Synthetic Biology, 2019, 8 (9): 1991-1997. |
30 | CUI Li, ZHU Ying, GUAN Xiaoqing, et al. De novo biosynthesis of β-valienamine in engineered Streptomyces hygroscopicus 5008[J]. ACS Synthetic Biology, 2016, 5 (1): 15-20. |
31 | CUI Li, WEI Xiaodong, WANG Xinran, et al. A validamycin shunt pathway for valienamine synthesis in engineered Streptomyces hygroscopicus 5008[J]. ACS Synthetic Biology, 2020, 9(2), 294-303. |
32 | ZHAO Q, LUO Y, ZHANG X, et al. A severe leakage of intermediates to shunt products in acarbose biosynthesis[J]. Nature Communications, 2020, 11 (1): 1468. |
33 | CHEN Wenqing, QI Jianzhao, WU Pan, et al. Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43 (2): 401-417. |
34 | QI Jianzhao, WAN Dan, MA Hongmin, et al. Deciphering carbamoylpolyoxamic acid biosynthesis reveals unusual acetylation cycle associated with tandem reduction and sequential hydroxylation[J]. Cell Chemical Biology, 2016, 23 (8): 935-944. |
35 | CHEN Wenqing, LI Yan, LI Jie, et al. An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis[J]. Protein & Cell, 2016, 7 (9): 673-683. |
36 | WU Pan, WAN Dan, XU Gudan, et al. An unusual Protector-Protégé strategy for the biosynthesis of purine nucleoside antibiotics[J]. Cell Chemical Biology, 2017, 24 (2): 171-181. |
37 |
ZHANG Meng, ZHANG Peichao, XU Gudan, et al. Comparative investigation into formycin A and pyrazofurin A biosynthesis reveals branch pathways for the construction of C-nucleoside scaffolds[J]. Applied and Environmental Microbiology, 2019. DOI:10.1128/AEM.01971-19.
DOI |
38 | LIU Yan, GONG Rong, LIU Xiaoqin, et al. Discovery and characterization of the tubercidin biosynthetic pathway from Streptomyces tubercidicus NBRC 13090[J]. Microbial Cell Factories, 2018, 17 (1): 131. |
39 |
XU Gudan, KONG Liyuan, GONG Rong, et al. Coordinated biosynthesis of the purine nucleoside antibiotics aristeromycin and coformycin in actinomycetes[J]. Applied and Environmental Microbiology, 2018, 84 (22).DOI: 10.1128/AEM.01860-18.
DOI |
40 | ZHANG Yi, CHEN Manyun, BRUNER Steven D, et al. Heterologous production of microbial ribosomally synthesized and post-translationally modified peptides[J]. Frontiers in Microbiology, 2018, 9: 1801. |
41 | ZHENG Qingfei, FANG Hui, LIU Wen. Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics[J]. Organic & Biomolecular Chemistry, 2017, 15 (16): 3376-3390. |
42 | QIU Yanping, DU Yanan, WANG Shoufeng, et al. Radical S-adenosylmethionine protein NosN forms the side ring system of nosiheptide by functionalizing the polythiazolyl peptide S-conjugated indolic moiety[J]. Organic Letters, 2019, 21 (5): 1502-1505. |
43 | LIU Jingyu, LIN Zhi, CHEN Hua, et al. Biosynthesis of the central piperidine nitrogen heterocycle in series a thiopeptides[J]. Chinese Journal of Chemistry, 2019, 37 (1): 35-41. |
44 | WANG Jian, LIN Zhi, BAI Xuebing, et al. Optimal design of thiostrepton-derived thiopeptide antibiotics and their potential application against oral pathogens[J]. Organic Chemistry Frontiers, 2019, 6 (8): 1194-1199. |
45 | MO Tianlu, LIU Wanqiu, JI Wenjuan, et al. Biosynthetic insights into Linaridin natural products from genome mining and Precursor peptide mutagenesis[J]. ACS Chemical Biology, 2017, 12 (6): 1484-1488. |
46 | BIAN Guangkai, HAN Yichao, HOU Anwei, et al. Releasing the potential power of terpene synthases by a robust precursor supply platform[J]. Metabolic Engineering, 2017, 42: 1-8. |
47 | BIAN Guangkai, HOU Anwei, YUAN Yujie, et al. Metabolic engineering-based rapid characterization of a sesquiterpene cyclase and the skeletons of Fusariumdiene and Fusagramineol from Fusarium graminearum[J]. Organic Letters, 2018, 20 (6): 1626-1629. |
48 | CHENG S, LIU X, JIANG G, et al. Orthogonal engineering of biosynthetic pathway for efficient production of Limonene in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2019, 8 (5): 968-975. |
49 | KANG Wei, MA Tian, LIU Min, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10 (1): 1-11. |
50 | WANG Weishan, LI Shanshan, LI Zilong, et al. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces[J]. Nature Biotechnology, 2020, 38 (1): 76-83. |
51 | YOU Di, WANG Miaomiao, YIN Bincheng, et al. Precursor supply for Erythromycin biosynthesis: Engineering of propionate assimilation pathway based on propionylation modification[J]. ACS Synthetic Biology, 2019, 8 (2): 371-380. |
52 | PALAZZOTTO E, TONG Y, LEE S Y, et al. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery[J]. Biotechnology Advances, 2019, 37 (6): 107366. |
[1] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[2] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
[3] | Zhonghu BAI, He REN, Jianqi NIE, Yang SUN. The recent progresses and applications of in-parallel fermentation technology [J]. Synthetic Biology Journal, 2023, 4(5): 904-915. |
[4] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[5] | Zhehui HU, Juan XU, Guangkai BIAN. Application of automated high-throughput technology in natural product biosynthesis [J]. Synthetic Biology Journal, 2023, 4(5): 932-946. |
[6] | Huan LIU, Qiu CUI. Advances and applications of ambient ionization mass spectrometry in screening of microbial strains [J]. Synthetic Biology Journal, 2023, 4(5): 980-999. |
[7] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. |
[8] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[9] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[10] | Fanzhong ZHANG, Changjun XIANG, Lihan ZHANG. Advances and applications of evolutionary analysis and big-data guided bioinformatics in natural product research [J]. Synthetic Biology Journal, 2023, 4(4): 629-650. |
[11] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[12] | Zhi SUN, Ning YANG, Chunbo LOU, Chao TANG, Xiaojing YANG. Rational design for functional topology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2023, 4(3): 444-463. |
[13] | Qilong LAI, Shuai YAO, Yuguo ZHA, Hong BAI, Kang NING. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials [J]. Synthetic Biology Journal, 2023, 4(3): 611-627. |
[14] | Qiaozhen MENG, Fei GUO. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example [J]. Synthetic Biology Journal, 2023, 4(3): 571-589. |
[15] | Sheng WANG, Zechen WANG, Weihua CHEN, Ke CHEN, Xiangda PENG, Fafen OU, Liangzhen ZHENG, Jinyuan SUN, Tao SHEN, Guoping ZHAO. Design of synthetic biology components based on artificial intelligence and computational biology [J]. Synthetic Biology Journal, 2023, 4(3): 422-443. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||