Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (6): 886-901.DOI: 10.12211/2096-8280.2021-019
• Invited Review • Previous Articles Next Articles
Yichen WAN1,2, Kongliang XU1,2, Renchao ZHENG1,2, Yuguo ZHENG1,2
Received:
2021-02-06
Revised:
2021-04-30
Online:
2022-01-21
Published:
2021-12-31
Contact:
Renchao ZHENG
万逸尘1,2, 许孔亮1,2, 郑仁朝1,2, 郑裕国1,2
通讯作者:
郑仁朝
作者简介:
基金资助:
CLC Number:
Yichen WAN, Kongliang XU, Renchao ZHENG, Yuguo ZHENG. In vitro biosynthesis of chemicals: pathway design, component assembly and applications-a review[J]. Synthetic Biology Journal, 2021, 2(6): 886-901.
万逸尘, 许孔亮, 郑仁朝, 郑裕国. 化学品体外生物合成途径设计、元件组装和应用[J]. 合成生物学, 2021, 2(6): 886-901.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-019
Fig. 1 Designing in vitro biosynthetic pathways via principle atom economy[In vitro reconstruction (left) of in vivo synthetic pathway from cell; Reverse construction (middle) in vitro pathway for production of didanosine via bioretrosynthesis; Redesigning a new pathway (right) for conversion of starch to fructose to achieve a higher conversion rate]
Fig. 3 Biomolecules for multi-enzyme assembly Peptides linkers (top left): fusing two or more enzymes together to fabricate a multi-enzyme system can be produced by gene fusion to introduce a peptide linker, which can bring heterogeneous enzymes into close proximity with peptide mediated conjugation. Scaffoldin (bottom left): for the construction of cohesin-dockerin based multi-enzymatic system, enzymes fused with dockerin and corresponding cohesins fused together to form a chimaeric scaffoldin via position-specific self-assembly of enzymes. DNA (top right): DNA self-assembling into one-, two- and three-dimensional nanostructures by complementary base-pairing makes DNA-bioconjugation a promising approach for self-organization of enzymes. Enzymes can be attached onto DNA strips by chemical conjugation such as click chemistry.
Fig. 4 In vitro biosynthesis pathway for conversion of starch and inorganic ammonia to glucosamine(Metabolites and product were starch, glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, glucosamine 6-phosphate, phosphate, and glucosamine. Enzymes involved were α-glucan phosphorylase, phosphoglucomutase, phosphoglucose isomerase, glucosamine 6-phosphate deaminase, and glucosamine 6-phosphate phosphatase)
化学品 | 原料 | 所使用的关键酶 | 参考文献 |
---|---|---|---|
氨基葡萄糖 | 淀粉 | 氨基葡萄糖-6-磷酸脱氨酶、氨基葡萄糖-6-磷酸磷酸酶等7种酶 | [ |
氨基葡萄糖 | 甲壳素 | 甲壳素酶、N-乙酰葡萄糖胺去乙酰酶 | [ |
N-乙酰氨基葡萄糖 | 丙酮酸 | N-乙酰谷氨酸合酶等4种酶 | [ |
甘油葡萄糖苷 | 蔗糖、麦芽糖 | 葡萄糖基甘油磷酸酶、蔗糖磷酸酶、麦芽糖磷酸酶 | [ |
葡萄糖-6-磷酸 | 甲醇 | 甲醇脱氢酶、3-己糖-6-磷酸合酶、6-磷酸-3-己糖异构酶 | [ |
果糖 | 淀粉 | 转醛缩酶、3-磷酸甘油醛磷酸酶等5种酶 | [ |
果糖-6-磷酸 | 3-磷酸甘油醛 | 基于蛋白支架的多酶组装体(果糖-1, 6-双磷酸酶、磷酸丙糖异构酶、醛缩酶) | [ |
果糖-6-磷酸 | 磷酸二羟基丙酮、3-磷酸甘油醛 | 基于蛋白支架的多酶组装体(磷酸丙糖异构酶、醛缩酶、果糖-1, 6-二磷酸酶) | [ |
果糖-1, 6-二磷酸 | 麦芽糊精 | α-葡聚糖磷酸化酶、焦磷酸磷酸果糖激酶等4种酶 | [ |
2-脱氧-5-核糖 | 淀粉 | 脱氧-D-核糖-5-磷酸醛缩酶等11种酶 | [ |
2-脱氧-5-核糖 | 果糖 | 脱氧核糖醛缩酶等5种酶 | [ |
D-塔格糖 | D-半乳糖 | 基于支架蛋白的多酶组装体(β-琼脂酶、脱水半乳糖苷酶、L-阿拉伯糖异构酶) | [ |
甘露聚糖 | α-D-甘露糖-1-磷酸、甘露糖 | 热活性糖苷磷酸化酶 | [ |
甘露糖 | 淀粉 | 甘露糖-6-磷酸磷酸酶等6种酶 | [ |
木酮糖-5-磷酸 | 果糖-1,6-二磷酸 | 木酮糖激酶等3种酶 | [ |
Tab. 1 In vitro biosynthesis of carbohydrates and its derivatives, including glucosamine, N-acetyl glucosamine, glycerol glucoside, glucose-6-phosphate, fructose, fructose-6-phosphate, fructose-1,6-diphosphate, 2-deoxy-5-ribose, d-tagatose, mannose and xylulose-5-phosphate.
化学品 | 原料 | 所使用的关键酶 | 参考文献 |
---|---|---|---|
氨基葡萄糖 | 淀粉 | 氨基葡萄糖-6-磷酸脱氨酶、氨基葡萄糖-6-磷酸磷酸酶等7种酶 | [ |
氨基葡萄糖 | 甲壳素 | 甲壳素酶、N-乙酰葡萄糖胺去乙酰酶 | [ |
N-乙酰氨基葡萄糖 | 丙酮酸 | N-乙酰谷氨酸合酶等4种酶 | [ |
甘油葡萄糖苷 | 蔗糖、麦芽糖 | 葡萄糖基甘油磷酸酶、蔗糖磷酸酶、麦芽糖磷酸酶 | [ |
葡萄糖-6-磷酸 | 甲醇 | 甲醇脱氢酶、3-己糖-6-磷酸合酶、6-磷酸-3-己糖异构酶 | [ |
果糖 | 淀粉 | 转醛缩酶、3-磷酸甘油醛磷酸酶等5种酶 | [ |
果糖-6-磷酸 | 3-磷酸甘油醛 | 基于蛋白支架的多酶组装体(果糖-1, 6-双磷酸酶、磷酸丙糖异构酶、醛缩酶) | [ |
果糖-6-磷酸 | 磷酸二羟基丙酮、3-磷酸甘油醛 | 基于蛋白支架的多酶组装体(磷酸丙糖异构酶、醛缩酶、果糖-1, 6-二磷酸酶) | [ |
果糖-1, 6-二磷酸 | 麦芽糊精 | α-葡聚糖磷酸化酶、焦磷酸磷酸果糖激酶等4种酶 | [ |
2-脱氧-5-核糖 | 淀粉 | 脱氧-D-核糖-5-磷酸醛缩酶等11种酶 | [ |
2-脱氧-5-核糖 | 果糖 | 脱氧核糖醛缩酶等5种酶 | [ |
D-塔格糖 | D-半乳糖 | 基于支架蛋白的多酶组装体(β-琼脂酶、脱水半乳糖苷酶、L-阿拉伯糖异构酶) | [ |
甘露聚糖 | α-D-甘露糖-1-磷酸、甘露糖 | 热活性糖苷磷酸化酶 | [ |
甘露糖 | 淀粉 | 甘露糖-6-磷酸磷酸酶等6种酶 | [ |
木酮糖-5-磷酸 | 果糖-1,6-二磷酸 | 木酮糖激酶等3种酶 | [ |
Fig. 5 In vitro biosynthesis pathway for conversion of D-glucuronic acid to α-ketoglutarate(Metabolites and product were D-glucuronate, D-glucarate, 5-keto-4-deoxy-glucarate, α-ketoglutaricsemialdehyde and α-ketoglutarate. Enzymes involved were uronate dehydrogenase, glucarate dehydratase, 5-keto-4-deoxy-glucarate dehydratase, α-ketoglutaric semialdehyde dehydrogenase and NADH oxidase)
化学品 | 原料 | 所使用的关键酶 | 参考文献 |
---|---|---|---|
α-酮戊二酸 | D-葡萄糖醛酸 | α-酮戊二酸半醛脱氢酶、5-酮-4-脱氧葡萄糖酸脱水酶 | [ |
丙酮酸 | 甲壳素 | 烯醇化酶等12种酶 | [ |
乳酸 | 葡萄糖 | 葡萄糖酸脱水酶、乳酸脱氢酶 | [ |
D-2-氨基丁酸 | L-苏氨酸 | L-苏氨酸裂解酶、D-氨基酸脱氢酶 | [ |
半胱氨酸 | 葡萄糖 | 邻磷酸丝氨酸巯基化酶等11种酶 | [ |
葡糖二酸 | 蔗糖 | 肌醇加氧酶、尿酸脱氢酶 | [ |
Tab. 2 In vitro biosynthesis for organic acid chemicals, including α-ketoglutarate, pyruvate, lactic acid, D-2-aminobutyric acid, cysteine and glucaric acid
化学品 | 原料 | 所使用的关键酶 | 参考文献 |
---|---|---|---|
α-酮戊二酸 | D-葡萄糖醛酸 | α-酮戊二酸半醛脱氢酶、5-酮-4-脱氧葡萄糖酸脱水酶 | [ |
丙酮酸 | 甲壳素 | 烯醇化酶等12种酶 | [ |
乳酸 | 葡萄糖 | 葡萄糖酸脱水酶、乳酸脱氢酶 | [ |
D-2-氨基丁酸 | L-苏氨酸 | L-苏氨酸裂解酶、D-氨基酸脱氢酶 | [ |
半胱氨酸 | 葡萄糖 | 邻磷酸丝氨酸巯基化酶等11种酶 | [ |
葡糖二酸 | 蔗糖 | 肌醇加氧酶、尿酸脱氢酶 | [ |
Fig. 6 In vitro biosynthesis pathway for conversion of glucose to ethanol(Metabolites and product were glucose, gluconate, 2-keto-3-desoxy-gluconate, pyruvate, glyceraldehyde, glycerate, acetaldehyde and ethanol. Enzymes involved were glucose dehydrogenase, dihydroxy acid dehydratase, 2-keto-3-desoxygluconate aldolase, glyceraldehyde dehydrogenase, pyruvate decarboxylase, alcohol dehydrogenase)
化学品 | 原料 | 所使用的关键酶 | 参考文献 |
---|---|---|---|
乙醇 | 葡萄糖 | 丙酮酸脱羧酶等6种酶 | [ |
异丁醇 | 葡萄糖 | 乙酰乳酸合酶等9种酶 | [ |
1, 3-丙二醇 | 甘油 | 甘油脱水酶等3种酶 | [ |
正丁醇 | 葡萄糖 | 3-羟酰基辅酶A脱氢酶等16种酶 | [ |
二氨基山梨醇 | 异山梨醇 | 基于连接肽的多酶组装体(ω-氨基转移酶、醇脱氢酶) | [ |
肌醇 | 淀粉 | 肌醇单磷酸酶等4个酶 | [ |
Tab. 3 In vitro biosynthesis for alcohol chemicals, including ethanol, isobutanol, 1,3-propanediol, butanol, diaminosorbitol and inositol
化学品 | 原料 | 所使用的关键酶 | 参考文献 |
---|---|---|---|
乙醇 | 葡萄糖 | 丙酮酸脱羧酶等6种酶 | [ |
异丁醇 | 葡萄糖 | 乙酰乳酸合酶等9种酶 | [ |
1, 3-丙二醇 | 甘油 | 甘油脱水酶等3种酶 | [ |
正丁醇 | 葡萄糖 | 3-羟酰基辅酶A脱氢酶等16种酶 | [ |
二氨基山梨醇 | 异山梨醇 | 基于连接肽的多酶组装体(ω-氨基转移酶、醇脱氢酶) | [ |
肌醇 | 淀粉 | 肌醇单磷酸酶等4个酶 | [ |
化学品 | 原料 | 所使用的关键酶 | 参考文献 |
---|---|---|---|
异戊二烯 | 葡萄糖 | 异戊二烯合酶等12种酶 | [ |
间苯三酚 | 甲酸 | 间苯三酚合酶 | [ |
Islatravir | 乙炔基甘油、核碱基 | 嘌呤核苷磷酸化酶等9种酶 | [ |
柚皮素 | 对香豆酸 | 查尔酮异构酶等3种酶 | [ |
脱氧肌苷 | 双脱氧核糖 | 嘌呤核苷磷酸化酶等3种酶 | [ |
胞苷-5-单磷酸 | 胞苷 | 胞苷激酶 | [ |
氮霉素 | L-精氨酸 | 二氢二吡啶甲酸合酶 | [ |
3-羟基丁酰基CoA | 泛硫乙胺 | 甲羟戊酸激酶等7种酶 | [ |
柠檬烯 | 葡萄糖 | 柠檬烯合酶等12种酶 | [ |
蒎烯 | 葡萄糖 | 蒎烯合酶等12种酶 | [ |
桧烯 | 葡萄糖 | 柠檬烯合酶等12种酶 | [ |
L-谷胱甘肽 | 谷氨酸、半胱氨酸、甘氨酸 | 谷胱甘肽合酶 | [ |
Tab. 4 In vitro biosynthesis for other chemicals, including isoprene, phloroglucinol, islatravir, naringenin, deoxyinosine, cytidine-5-monophosphate, azomycin, 3-hydroxybutyryl limonene, pinene, hinokene and L-glutathione
化学品 | 原料 | 所使用的关键酶 | 参考文献 |
---|---|---|---|
异戊二烯 | 葡萄糖 | 异戊二烯合酶等12种酶 | [ |
间苯三酚 | 甲酸 | 间苯三酚合酶 | [ |
Islatravir | 乙炔基甘油、核碱基 | 嘌呤核苷磷酸化酶等9种酶 | [ |
柚皮素 | 对香豆酸 | 查尔酮异构酶等3种酶 | [ |
脱氧肌苷 | 双脱氧核糖 | 嘌呤核苷磷酸化酶等3种酶 | [ |
胞苷-5-单磷酸 | 胞苷 | 胞苷激酶 | [ |
氮霉素 | L-精氨酸 | 二氢二吡啶甲酸合酶 | [ |
3-羟基丁酰基CoA | 泛硫乙胺 | 甲羟戊酸激酶等7种酶 | [ |
柠檬烯 | 葡萄糖 | 柠檬烯合酶等12种酶 | [ |
蒎烯 | 葡萄糖 | 蒎烯合酶等12种酶 | [ |
桧烯 | 葡萄糖 | 柠檬烯合酶等12种酶 | [ |
L-谷胱甘肽 | 谷氨酸、半胱氨酸、甘氨酸 | 谷胱甘肽合酶 | [ |
Fig. 7 In vitro biosynthesis pathway for conversion of ethynyl glycerol, acetaldehyde and guanine to islatravir[Metabolites and product were ethynyl glycerol, (R)-enantiomer of aldehyde, 2-ethynylglyceraldehyde 3-phosphate and islatravir. Enzymes involved were galactose oxidase, horseradish peroxidase, catalase, pantothenate kinase, acetate kinase, deoxyribose 5-phosphate aldolase, phosphopentomutase and purine nucleoside phosphorylase]
1 | LU Y. Biosynthetic inorganic chemistry [J]. Angewandte Chemie International Edition2006, 45(34): 5588-5601. |
2 | 王文豪, 闻鹏飞, 许孔亮, 等. 工业环境下酶蛋白的催化行为与适应性改造研究进展[J]. 生物工程学报, 2019, 35(10): 1857-1869. |
WANG W H, WEN P F, XU K L, al et, Catalysis of enzymes under industrial environment and their adaptive modifications: a review [J]. Chinese Journal of Biotechnology, 2019, 35(10): 1857-1869. | |
3 | SHELDON R A, WOODLEY J M. Role of biocatalysis in sustainable chemistry [J]. Chemical Reviews, 2018, 118(2): 801-838. |
4 | SIGRIST R, COSTA B Z DA, MARSAIOLI A J, et al. Nature-inspired enzymatic cascades to build valuable compounds[J]. Biotechnology Advances, 2015, 33(5): 394-411. |
5 | ZHANG Y H. Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges[J]. Biotechnology Advances, 2015, 33(7): 1467-1483. |
6 | NYERGES Á, CSÖRGŐ B, NAGY I, et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2502-2507. |
7 | LIAN J Z, HAMEDIRAD M, HU S M, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nature Communications, 2017, 8(1): 1688-1696. |
8 | JESCHEK M, GERNGROSS D, PANKE S. Combinatorial pathway optimization for streamlined metabolic engineering[J]. Current Opinion in Biotechnology, 2017, 47: 142-151. |
9 | JESCHEK M, GERNGROSS D, PANKE S. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort[J]. Nature Communications, 2016, 7: 11163. |
10 | MEADOWS A L, HAWKINS K M, TSEGAYE Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production [J]. Nature, 2016, 537(7622): 694-697. |
11 | ZHANG Y H, SUN J, ZHONG J J. Biofuel production by in vitro synthetic enzymatic pathway biotransformation[J]. Current Opinion in Biotechnology, 2010, 21(5): 663-669. |
12 | KORMAN T P, SAHACHARTSIRI B, LI D, et al. A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates[J]. Protein Science, 2014, 23(5): 576-585. |
13 | YE X T, HONDA K, SAKAI T, et al. Synthetic metabolic engineering - a novel, simple technology for designing a chimeric metabolic pathway[J]. Microbial Cell Factories, 2012, 11: 120. |
14 | MENG D D, WEI X L, BAI X, et al. Artificial in vitro synthetic enzymatic biosystem for the one-pot sustainable biomanufacturing of glucosamine from starch and inorganic ammonia[J]. ACS Catalysis, 2020, 10(23): 13809-13819. |
15 | BEER B, PICK A, SIEBER V. In vitro metabolic engineering for the production of α-ketoglutarate[J]. Metabolic Engineering, 2017, 40: 5-13. |
16 | GUTERL J K, GARBE D, CARSTEN J, et al. Cell-free metabolic engineering: production of chemicals by minimized reaction cascades [J]. ChemSusChem, 2012, 5(11): 2165-2172. |
17 | ZHANG T G, YANG J G, TIAN C Y, et al. High-yield biosynthesis of glucosylglycerol through coupling phosphorolysis and transglycosylation reactions[J]. Journal of Agricultural and Food Chemistry, 2020, 68(51): 15249-15256. |
18 | HONDA K, KIMURA K, NINH P H, et al. In vitro bioconversion of chitin to pyruvate with thermophilic enzymes [J]. Journal of Bioscience and Bioengineering, 2017, 124/125/126/127/128/129(3): 296-301. |
19 | RIECKENBERG F, ARDAO I, RUJANANON R, et al. Cell-free synthesis of 1,3-propanediol from glycerol with a high yield [J]. Engineering in Life Sciences, 2014, 14(4): 380-386. |
20 | HUFFMAN M A, FRYSZKOWSKA A, ALVIZO O. Design of an in vitro biocatalytic cascade for the manufacture of islatravir [J]. Science, 2019, 366(6470): 1255-1259. |
21 | HEDGES J B, RYAN K S. In vitro reconstitution of the biosynthetic pathway to the nitroimidazole antibiotic azomycin[J]. Angewandte Chemie International Edition, 2019, 58(34): 11647-11651. |
22 | MORADIAN A, BENNER S A. A biomimetic biotechnological process for converting starch to fructose: thermodynamic and evolutionary considerations in applied enzymology[J]. Journal of the American Chemical Society, 1992, 114(18): 6980-6987. |
23 | KRUTSAKORN B, HONDA K, YE X T, et al. In vitro production of n-butanol from glucose[J]. Metabolic Engineering, 2013, 20: 84-91. |
24 | RUALES-SALCEDO A V, HIGUITA J C, FONTALVO J, et al. Design of enzymatic cascade processes for the production of low-priced chemicals[J]. Zeitschrift fur Naturforschung C, Journal of Biosciences, 2019, 74(3/4): 77-84. |
25 | DUDLEY Q M, KARIM A S, JEWETT M C. Cell-free metabolic engineering: biomanufacturing beyond the cell[J]. Biotechnology Journal, 2015, 10(1): 69-82. |
26 | ZANG Y, ZHA J, WU X, et al. In vitro naringenin biosynthesis from p-coumaric acid using recombinant enzymes[J]. Journal of Agricultural and Food Chemistry, 2019, 67(49): 13430-13436. |
27 | MINAMI A, SHIMAYA M, SUZUKI G, et al. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis[J]. Journal of the American Chemical Society, 2012, 134(17): 7246-7249. |
28 | HANATANI Y, IMURA M, TANIGUCHI H, et al. In vitro production of cysteine from glucose[J]. Applied Microbiology and Biotechnology, 2019, 103(19): 8009-8019. |
29 | COREY E J. The logic of chemical synthesis-multisteps synthesis of complex carbogenic molecules [J]. Angewandte Chemie International Edition, 1991, 30(5): 455-465. |
30 | CARBONELL P, PLANSON A G, FAULON J L. Retrosynthetic design of heterologous pathways[M]// ALPER H S. Systems Metabolic Engineering. Springer, 2013: 149-173. |
31 | BIRMINGHAM W R, STARBIRD C A, PANOSIAN T D, et al. Bioretrosynthetic construction of a didanosine biosynthetic pathway [J]. Nature Chemical Biology, 2014, 10(5): 392-399. |
32 | MINAMI A, MIGITA A, INADA D, et al. Enzymatic epoxide-opening cascades catalyzed by a pair of epoxide hydrolases in the ionophore polyether biosynthesis[J]. Organic Letters, 2011, 13(7): 1638-1641. |
33 | MENG D D, LIANG A L, WEI X L, et al. Enzymatic characterization of a thermostable phosphatase from Thermomicrobium roseum and its application for biosynthesis of fructose from maltodextrin[J]. Applied Microbiology and Biotechnology, 2019, 103(15): 6129-6139. |
34 | HWANG E T, LEE S. Multienzymatic cascade reactions via enzyme complex by immobilization [J]. ACS Catalysis, 2019, 9(5): 4402-4425. |
35 | 贺俊斌, 孟松, 潘海学, 等. 多酶催化串联策略在复杂天然产物合成中的应用[J]. 合成生物学, 2020, 1(2): 226-246. |
HE J B, MENG S, PAN H X, et al. Applications of the multienzyme-catalyzed tandem strategy in the synthesis of complex natural products[J]. Synthetic Biology Journal, 2020, 1(2): 226-246. | |
36 | WANG W, YANG J G, SUN Y X, et al., Artificial ATP-free in vitro synthetic enzymatic biosystems facilitate aldolase-mediated C-C bond formation for biomanufacturing [J]. ACS Catalysis, 2020, 10(2): 1264-1271. |
37 | MORDHORST S, ANDEXER J N. Round, round we go - strategies for enzymatic cofactor regeneration[J]. Natural Product Reports, 2020, 37(10): 1316-1333. |
38 | WANG Y R, ZHANG Y H P, Cell-free protein synthesis energized by slowly-metabolized maltodextrin [J]. BMC Biotechnology, 2009, 9: 58-65. |
39 | ZHANG X, WU H, HUANG B, et al. One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system [J]. Biotechnology Journal, 2017, 241: 163-169. |
40 | MORDHORST S, SINGH J, MOHR M K F, et al. Several polyphosphate kinase 2 enzymes catalyse the production of adenosine 5'-polyphosphates [J]. Chembiochem, 2019, 20(8): 1019-1022. |
41 | SIEBERS B, HENSEL R. Glucose catabolism of the hyperthermophilic archaeum thermoproteus-tenax [J]. Fems Microbiology Letters, 1993, 111(1): 1-8. |
42 | OKANO K, ZHU Q, HONDA K. In vitro reconstitution of non-phosphorylative Entner-Doudoroff pathway for lactate production[J]. Journal of Bioscience and Bioengineering, 2020, 129(3): 269-275. |
43 | MARSH J A, TEICHMANN S A, Structure, dynamics, assembly, and evolution of protein complexes [J]. Annual Review of Biochemistry, 2015, 84, 551-575. |
44 | SCHOFFELEN S, HEST J C VAN, Chemical approaches for the construction of multi-enzyme reaction systems [J]. Current Opinion in Structural Biology, 2013, 23(4), 613-621. |
45 | WANG S Z, ZHANG Y H, REN H, et al. Strategies and perspectives of assembling multi-enzyme systems[J]. Critical Reviews in Biotechnology, 2017, 37(8): 1024-1037. |
46 | HAGA T, HIRAKAWA H, NAGAMUNE T. Fine tuning of spatial arrangement of enzymes in a PCNA-mediated multienzyme complex using a rigid poly-L-proline linker[J]. PLoS One, 2013, 8(9): e75114. |
47 | ITURRATE L, SáNCHEZ-MORENO I, DOYAGÜEZ E G, et al. Substrate channelling in an engineered bifunctional aldolase/kinase enzyme confers catalytic advantage for C-C bond formation[J]. Chemical Communications, 2009(13): 1721-1723. |
48 | HUANG Z, YE F, ZHANG C, et al. Rational design of a tripartite fusion protein of heparinase I enables one-step affinity purification and real-time activity detection[J]. Journal of Biotechnology, 2013, 163(1): 30-37. |
49 | FAN L W, WANG Y, TUYISHIME P, et al. Engineering artificial fusion proteins for enhanced methanol bioconversion[J]. Chembiochem, 2018, 19(23): 2465-2471. |
50 | LERCHNER A, DAAKE M, JARASCH A, et al. Fusion of an alcohol dehydrogenase with an aminotransferase using a PAS linker to improve coupled enzymatic alcohol-to-amine conversion[J]. Protein Engineering, Design and Selection, 2016, 29(12): 557-562. |
51 | 魏欣蕾, 游淳. 体外多酶分子机器的现状和最新进展[J]. 生物工程学报, 2019, 35(10): 1870-1888. |
WEI X L, YOU C. In vitro multi-enzyme molecular machines-a review[J]. Chinese Journal of Biotechnology, 2019, 35(10): 1870-1888. | |
52 | VAZANA Y, BARAK Y, UNGER T, et al. A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates[J]. Biotechnology for Biofuels, 2013, 6(1): 182. |
53 | ANANDHARAJ M, LIN Y J, RANI R P, et al. Constructing a yeast to express the largest cellulosome complex on the cell surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(5): 2385-2394. |
54 | YOU C, ZHANG Y H P. Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling[J]. ACS Synthetic Biology, 2013, 2(2): 102-110. |
55 | JEONG D W, HYEON J E, SHIN S K, et al. Trienzymatic complex system for isomerization of agar-derived D-galactose into D-tagatose as a low-calorie sweetener[J]. Journal of Agricultural and Food Chemistry, 2020, 68(10): 3195-3202. |
56 | SHIMADA J, MARUYAMA T, KITAOKA M, et al. Programmable protein-protein conjugation via DNA-based self-assembly[J]. Chemical Communications, 2012, 48(50): 6226-6228. |
57 | SONG J Y, HE W T, SHEN H, et al. Self-assembly of a magnetic DNA hydrogel as a new biomaterial for enzyme encapsulation with enhanced activity and stability[J]. Chemical Communications, 2019, 55(17): 2449-2452. |
58 | SIMMEL F C. DNA-based assembly lines and nanofactories[J]. Current Opinion in Biotechnology, 2012, 23(4): 516-521. |
59 | XU K L, CHEN X X, ZHENG R C, et al. Immobilization of multi-enzymes on support materials for efficient biocatalysis[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 660. |
60 | XIN L, ZHOU C, YANG Z Q, et al. Regulation of an enzyme cascade reaction by a DNA machine[J]. Small, 2013, 9(18): 3088-3091. |
61 | FU J L, YANG Y H R, JOHNSON-BUCK A, et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm[J]. Nature Nanotechnology, 2014, 9(7): 531-536. |
62 | MÜLLER J, NIEMEYER C M. DNA-directed assembly of artificial multienzyme complexes [J]. Biochemical and Biophysical Research Communications, 2008, 377(1): 62-67. |
63 | MA Q Y, GAO X Z. Categories and biomanufacturing methods of glucosamine[J]. Applied Microbiology and Biotechnology, 2019, 103(19): 7883-7889. |
64 | JIANG Z, LÜ X Q, LIU Y F, et al. Biocatalytic production of glucosamine from N-acetylglucosamine by diacetylchitobiose deacetylase[J]. Journal of Microbiology and Biotechnology, 2018, 28(11): 1850-1858. |
65 | LV Y M, LABORDA P, HUANG K, et al. Highly efficient and selective biocatalytic production of glucosamine from chitin [J]. Green Chemistry, 2017, 19(2): 527-535. |
66 | SU C, ALLUM A J, AIZAWA Y, et al. Novel glyceryl glucoside is a low toxic alternative for cryopreservation agent[J]. Biochemical and Biophysical Research Communications, 2016, 476(4): 359-364. |
67 | TAKENAKA F, UCHIYAMA H. Effects of α-D-glucosylglycerol on the in vitro digestion of disaccharides by rat intestinal enzymes[J]. Bioscience, Biotechnology, and Biochemistry, 2001, 65(7): 1458-1463. |
68 | KRUTSAKORN B, IMAGAWA T, HONDA K, et al. Construction of an in vitro bypassed pyruvate decarboxylation pathway using thermostable enzyme modules and its application to N-acetylglutamate production[J]. Microbial Cell Factories, 2013, 12: 91. |
69 | YOU C, MYUNG S, ZHANG Y H P. Facilitated substrate channeling in a self-assembled trifunctional enzyme complex[J]. Angewandte Chemie International Edition, 2012, 51(35): 8787-8790. |
70 | WANG W, LIU M X, YOU C, et al. ATP-free biosynthesis of a high-energy phosphate metabolite fructose 1,6-diphosphate by in vitro metabolic engineering[J]. Metabolic Engineering, 2017, 42: 168-174. |
71 | HONDA K, MAYA S, OMASA T, et al. Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes[J]. Journal of Biotechnology, 2010, 148(4): 204-207. |
72 | GRIMAUD F, PIZZUT-SERIN S, TARQUIS L, et al. In vitro synthesis and crystallization of β-1,4-mannan[J]. Biomacromolecules, 2019, 20(2): 846-853. |
73 | TIAN C Y, YANG J G, LI Y J, et al. Artificially designed routes for the conversion of starch to value-added mannosyl compounds through coupling in vitro and in vivo metabolic engineering strategies[J]. Metabolic Engineering, 2020, 61: 215-224. |
74 | KIM J E, ZHANG Y H P. Biosynthesis of D-xylulose 5-phosphate from D-xylose and polyphosphate through a minimized two-enzyme cascade[J]. Biotechnology and Bioengineering, 2016, 113(2): 275-282. |
75 | HUANG H J, LIU L M, LI Y, et al. Redirecting carbon flux in Torulopsis glabrata from pyruvate to α-ketoglutaric acid by changing metabolic co-factors[J]. Biotechnology Letters, 2006, 28(2): 95-98. |
76 | STOTTMEISTER U, AURICH A, WILDE H, et al. White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses[J]. Journal of Industrial Microbiology and Biotechnology, 2005, 32(11/12): 651-664. |
77 | GUO H W, MADZAK C, DU G C, et al. Effects of pyruvate dehydrogenase subunits overexpression on the α-ketoglutarate production in Yarrowia lipolytica WSH-Z06[J]. Applied Microbiology and Biotechnology, 2014, 98(16): 7003-7012. |
78 | CHEN X, CUI Y F, CHENG X K, et al. Highly atom economic synthesis of D-2-aminobutyric acid through an in vitro tri-enzymatic catalytic system [J]. ChemistryOpen, 2017, 6(4): 534-540. |
79 | SU H H, GUO Z W, WU X L, et al., Efficient bioconversion of sucrose to high-value-added glucaric acid by in vitro metabolic engineering [J]. ChemSusChem, 2019, 12(10): 2278-2285. |
80 | ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89. |
81 | GALVAGNO M A, IANNONE L J, BIANCHI J, et al. Optimization of biomass production of a mutant of Yarrowia lipolytica with an increased lipase activity using raw glycerol[J]. Revista Argentina de Microbiologia, 2011, 43(3): 218-225. |
82 | AHRENS K, MENZEL K, ZENG A, et al. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture (Ⅲ): Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation[J]. Biotechnology and Bioengineering, 1998, 59(5): 544-552. |
83 | HAN P P, ZHOU X G, YOU C. Efficient multi-enzymes immobilized on porous microspheres for producing inositol from starch[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 380. |
84 | FUJISAWA T, FUJINAGA S, ATOMI H, An in vitro enzyme system for the production of myo-inositol from starch [J]. Applied and Environmental Microbiology, 2017, 83(16): e00550-17. |
85 | ZHANG R B, LIU W, CAO Y J, et al. An in vitro synthetic biosystem based on acetate for production of phloroglucinol[J]. BMC Biotechnology, 2017, 17(1): 66. |
86 | LI Z L, NING X, ZHAO Y R, et al. Efficient one-pot synthesis of cytidine 5'-monophosphate using an extremophilic enzyme cascade system[J]. Journal of Agricultural and Food Chemistry, 2020, 68(34): 9188-9194. |
87 | VALENCIA L E, ZHANG Z C, CEPEDA A J, et al. Seven-enzyme in vitro cascade to (3R)-3-hydroxybutyryl-CoA [J]. Organic & Biomolecular Chemistry, 2019, 17(6): 1375-1378. |
88 | KORMAN T P, OPGENORTH P H, BOWIE J U. A synthetic biochemistry platform for cell free production of monoterpenes from glucose[J]. Nature Communications, 2017, 8: 15526. |
89 | BARRETT S E, TELLER R S, FORSTER S P, et al. Extended-duration MK-8591-eluting implant as a candidate for HIV treatment and prevention [J]. Antimicrobial Agents and Chemotherapy, 2018, 62(10):18-30. |
90 | MCLAUGHLIN M, KONG J, BELYK K M, et al. Enantioselective synthesis of 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) via enzymatic desymmetrization[J]. Organic Letters, 2017, 19(4): 926-929. |
91 | NAKANE A, NAKAMURA T, EGUCHI Y. A novel metabolic fate of arginine in Streptomyces eurocidicus. Partial resolution of the pathway and identification of an intermediate [J]. The Journal of Biological Chemistry, 1977, 252(15): 5267-5273. |
[1] | Zhihang CHEN, Menglin JI, Yifei QI. Research progress of artificial intelligence in desiging protein structures [J]. Synthetic Biology Journal, 2023, 4(3): 464-487. |
[2] | Liya LIANG, Rongming LIU. Protein engineering of DNA targeting type Ⅱ CRISPR/Cas systems [J]. Synthetic Biology Journal, 2023, 4(1): 86-101. |
[3] | Yanping QI, Jin ZHU, Kai ZHANG, Tong LIU, Yajie WANG. Recent development of directed evolution in protein engineering [J]. Synthetic Biology Journal, 2022, 3(6): 1081-1108. |
[4] | Jingjing LI, Chao MA, Fan WANG, Hongjie ZHANG, Kai LIU. Biosynthesis of high-performance protein materials and their applications [J]. Synthetic Biology Journal, 2022, 3(4): 638-657. |
[5] | Jiaqi HOU, Nan JIANG, Lianju MA, Yuan LU. Cell-free protein synthesis: from basic research to engineering applications [J]. Synthetic Biology Journal, 2022, 3(3): 465-486. |
[6] | Lu YANG, Xudong QU. Application of imine reductase in the synthesis of chiral amines [J]. Synthetic Biology Journal, 2022, 3(3): 516-529. |
[7] | Jiahao BIAN, Guangyu YANG. Artificial intelligence-assisted protein engineering [J]. Synthetic Biology Journal, 2022, 3(3): 429-444. |
[8] | Tao TU, Huiying LUO, Bin YAO. Progress in the application of protein engineering in the developing of feed enzymes [J]. Synthetic Biology Journal, 2022, 3(3): 487-499. |
[9] | Huibin WANG, Changli CHE, Song YOU. Recent advances of enzymatic synthesis of organohalogens catalyzed by Fe/αKG-dependent halogenases [J]. Synthetic Biology Journal, 2022, 3(3): 545-566. |
[10] | Hutao GAO, Jia WANG, Xinxiao SUN, Xiaolin SHEN, Qipeng YUAN. De novo biosynthesis of 3-phenylpropanol in E. coli [J]. Synthetic Biology Journal, 2021, 2(6): 1046-1060. |
[11] | Meixia LIU, Qiangzi LI, Dongdong MENG, Xinlei WEI, Chun YOU. Protein engineering of nicotinamide coenzyme-dependent oxidoreductases for coenzyme preference and its application in synthetic biology [J]. Synthetic Biology Journal, 2020, 1(5): 570-582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||