Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (2): 279-301.DOI: 10.12211/2096-8280.2022-008
• Invited Review • Previous Articles Next Articles
Hanqi ZHENG1, Qing WU1, Hongjun LI1,2, Zhen GU1,2,3,4
Received:
2022-01-27
Revised:
2022-02-21
Online:
2022-05-11
Published:
2022-04-30
Contact:
Hongjun LI, Zhen GU
郑涵奇1, 吴晴1, 李洪军1,2, 顾臻1,2,3,4
通讯作者:
李洪军,顾臻
作者简介:
基金资助:
CLC Number:
Hanqi ZHENG, Qing WU, Hongjun LI, Zhen GU. Integration of synthetic biology and nanobiotechnology for biomedical applications[J]. Synthetic Biology Journal, 2022, 3(2): 279-301.
郑涵奇, 吴晴, 李洪军, 顾臻. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-008
载体类型 | 载体材料 | 递送目标类别 | 特征 | 参考 文献 |
---|---|---|---|---|
有机纳米载体 | 两性离子氨基脂质纳米颗粒 | 长RNA(含Cas9 mRNA、sgRNA) | 可以将多个长RNA打包递送,有望提供DNA修复模板来介导HDR(同源介导的双链DNA修复)基因校正 | [ |
基于卵磷脂的纳米脂质体 | Cas9/sgRNA RNP | 高生物相容性、低细胞毒性和高溶液稳定性 | [ | |
基于可电离脂质的脂质纳米颗粒 | Cas9-sgRNA质粒 | 促进膜融合、膜破裂和内涵体逃逸 | [ | |
可生物还原的脂质纳米颗粒 | Cas9/sgRNA RNP, Cas9 mRNA/sgRNA | 响应还原性细胞内环境,更有效释放RNA和蛋白质 | [ | |
转铁蛋白修饰的脂质体 | DNA | 将功能蛋白的肿瘤靶向潜力和优异的基因递送性能相结合 | [ | |
超支化阳离子聚(β-氨基酯) | Cas9/sgRNA RNP | 能以不同表面电荷实现分子量在一定范围内的蛋白质的胞质递送 | [ | |
氟化酸不稳定支链富羟基聚阳离子 | Cas9-sgRNA质粒 | 良好的pH响应降解性、生物相容性 | [ | |
乳糖衍生的支链阳离子生物聚合物 | Cas9-sgRNA质粒 | 优异的降解性、生物相容性、基因转染性能和肝癌细胞靶向能力 | [ | |
聚(二硫化物) | DNA、mRNA和RNP三种形式的CRISPR-Cas9 | 极大限度地减少了不可降解聚合物载体常见的细胞毒性 | [ | |
阳离子α-螺旋多肽 | Cas9质粒/sgRNA | 具有作为高效基因载体和细胞膜穿透剂的双重功能 | [ | |
无机纳米载体 | 金纳米粒 | Cas9/sgRNA RNP,DNA, Cas9-sgRNA质粒 | 具有独特的光学和结构特性,可以作为基因递送的多功能平台 | [ |
镧系元素掺杂的上转换纳米粒子 | Cas9/sgRNA RNP | 作为纳米传感器,可以通过光来远程控制基因编辑工具的释放 | [ | |
纳米级沸石咪唑骨架 | 质粒DNA,Cas9/sgRNA RNP | 在内涵体pH下质子化,促进内涵体逃逸,增强了向细胞核的递送 | [ | |
功能化的介孔二氧化硅颗粒 | Cas9/sgRNA RNP | 具有高表面积和可调节的孔径,可以和修饰硼酸基团的蛋白质形成配位和静电相互作用,提高向细胞内递送的效率 | [ | |
生物仿生 纳米载体 | 细胞膜衍生纳米囊泡 | 质粒cDNA | MSC纳米囊泡具有生物相容性,并保留了MSC对各种肿瘤细胞的表面相关靶向能力 | [ |
细胞外囊泡 | CRISPR/Cas9质粒,Cas9/sgRNA RNP | 可以被修饰改造以实现靶向递送 | [ | |
DNA纳米线球 | Cas9/sgRNA RNP | DNA纳米线球和sgRNA引导序列之间部分互补时能实现更高效率的基因编辑 | [ | |
病毒样颗粒 | Cas9/sgRNA RNP | 实现瞬时快速递送,并降低脱靶率 | [ |
Tab. 1 Representative carriers used for delivering gene circuits/genome editing systems
载体类型 | 载体材料 | 递送目标类别 | 特征 | 参考 文献 |
---|---|---|---|---|
有机纳米载体 | 两性离子氨基脂质纳米颗粒 | 长RNA(含Cas9 mRNA、sgRNA) | 可以将多个长RNA打包递送,有望提供DNA修复模板来介导HDR(同源介导的双链DNA修复)基因校正 | [ |
基于卵磷脂的纳米脂质体 | Cas9/sgRNA RNP | 高生物相容性、低细胞毒性和高溶液稳定性 | [ | |
基于可电离脂质的脂质纳米颗粒 | Cas9-sgRNA质粒 | 促进膜融合、膜破裂和内涵体逃逸 | [ | |
可生物还原的脂质纳米颗粒 | Cas9/sgRNA RNP, Cas9 mRNA/sgRNA | 响应还原性细胞内环境,更有效释放RNA和蛋白质 | [ | |
转铁蛋白修饰的脂质体 | DNA | 将功能蛋白的肿瘤靶向潜力和优异的基因递送性能相结合 | [ | |
超支化阳离子聚(β-氨基酯) | Cas9/sgRNA RNP | 能以不同表面电荷实现分子量在一定范围内的蛋白质的胞质递送 | [ | |
氟化酸不稳定支链富羟基聚阳离子 | Cas9-sgRNA质粒 | 良好的pH响应降解性、生物相容性 | [ | |
乳糖衍生的支链阳离子生物聚合物 | Cas9-sgRNA质粒 | 优异的降解性、生物相容性、基因转染性能和肝癌细胞靶向能力 | [ | |
聚(二硫化物) | DNA、mRNA和RNP三种形式的CRISPR-Cas9 | 极大限度地减少了不可降解聚合物载体常见的细胞毒性 | [ | |
阳离子α-螺旋多肽 | Cas9质粒/sgRNA | 具有作为高效基因载体和细胞膜穿透剂的双重功能 | [ | |
无机纳米载体 | 金纳米粒 | Cas9/sgRNA RNP,DNA, Cas9-sgRNA质粒 | 具有独特的光学和结构特性,可以作为基因递送的多功能平台 | [ |
镧系元素掺杂的上转换纳米粒子 | Cas9/sgRNA RNP | 作为纳米传感器,可以通过光来远程控制基因编辑工具的释放 | [ | |
纳米级沸石咪唑骨架 | 质粒DNA,Cas9/sgRNA RNP | 在内涵体pH下质子化,促进内涵体逃逸,增强了向细胞核的递送 | [ | |
功能化的介孔二氧化硅颗粒 | Cas9/sgRNA RNP | 具有高表面积和可调节的孔径,可以和修饰硼酸基团的蛋白质形成配位和静电相互作用,提高向细胞内递送的效率 | [ | |
生物仿生 纳米载体 | 细胞膜衍生纳米囊泡 | 质粒cDNA | MSC纳米囊泡具有生物相容性,并保留了MSC对各种肿瘤细胞的表面相关靶向能力 | [ |
细胞外囊泡 | CRISPR/Cas9质粒,Cas9/sgRNA RNP | 可以被修饰改造以实现靶向递送 | [ | |
DNA纳米线球 | Cas9/sgRNA RNP | DNA纳米线球和sgRNA引导序列之间部分互补时能实现更高效率的基因编辑 | [ | |
病毒样颗粒 | Cas9/sgRNA RNP | 实现瞬时快速递送,并降低脱靶率 | [ |
细菌 | 细菌改造 | 修饰纳米材料 | 效能 | 参考文献 |
---|---|---|---|---|
Magnetococcus marinus MC-1 | 包含一串磁性氧化铁纳米晶体 | 含药物纳米脂质体 | 磁引导细菌将含药纳米脂质体运输到SCID Beige小鼠HCT116异种移植结直肠肿瘤的缺氧区 | [ |
S. typhimurium VNP20009 | 兼性厌氧,减毒营养缺陷型突变体 | PLGA纳米粒 | 将纳米颗粒在BALB/c小鼠的4T1乳腺癌原位模型中的保留和分布提高100倍 | [ |
S. typhimurium ELH1301, E. coli Nissle 1917 | 具有编码气体囊泡的工程基因簇 | 蛋白质外壳的纳米气体囊泡 | 超声波报告基因工程,用于超声成像 | [ |
E. coli MG1655 | 过表达呼吸链酶Ⅱ(NDH-Ⅱ) | 磁性Fe3O4纳米粒子 | 在BALB/c小鼠的CT 26结肠癌部位原位催化产生H2O2,诱导肿瘤细胞死亡 | [ |
E. coli MG1655 | 表达硝酸盐/亚硝酸盐还原酶 | 碳点掺杂氮化碳 | 光控细菌代谢物疗法,光照射下生成NO抑制BALB/c小鼠4T1肿瘤生长 | [ |
E. coli | 过表达过氧化氢酶 | 含Ce6涂层的聚多巴胺纳米粒 | NIR光照射下实现光热疗法和光动力疗法,在荷瘤BALB/c裸鼠中抑制肿瘤生长 | [ |
S. typhimurium YB1 | 缺氧靶向 | 载有吲哚菁绿(ICG)的纳米颗粒 | 在NIR激光照射下,产生光热杀伤能力,根除C57 BL/6小鼠的MB49实体瘤 | [ |
Magnetococcus marinus AMB-1 | 趋磁性和缺氧靶向 | 光触发的吲哚菁绿纳米粒子 | 磁驱动富集到肿瘤部位,光热疗法消除MCF-7荷瘤BALB/c裸鼠中的肿瘤 | [ |
Tab. 2 Representative hybrid systems of engineered bacteria and nanocomponents
细菌 | 细菌改造 | 修饰纳米材料 | 效能 | 参考文献 |
---|---|---|---|---|
Magnetococcus marinus MC-1 | 包含一串磁性氧化铁纳米晶体 | 含药物纳米脂质体 | 磁引导细菌将含药纳米脂质体运输到SCID Beige小鼠HCT116异种移植结直肠肿瘤的缺氧区 | [ |
S. typhimurium VNP20009 | 兼性厌氧,减毒营养缺陷型突变体 | PLGA纳米粒 | 将纳米颗粒在BALB/c小鼠的4T1乳腺癌原位模型中的保留和分布提高100倍 | [ |
S. typhimurium ELH1301, E. coli Nissle 1917 | 具有编码气体囊泡的工程基因簇 | 蛋白质外壳的纳米气体囊泡 | 超声波报告基因工程,用于超声成像 | [ |
E. coli MG1655 | 过表达呼吸链酶Ⅱ(NDH-Ⅱ) | 磁性Fe3O4纳米粒子 | 在BALB/c小鼠的CT 26结肠癌部位原位催化产生H2O2,诱导肿瘤细胞死亡 | [ |
E. coli MG1655 | 表达硝酸盐/亚硝酸盐还原酶 | 碳点掺杂氮化碳 | 光控细菌代谢物疗法,光照射下生成NO抑制BALB/c小鼠4T1肿瘤生长 | [ |
E. coli | 过表达过氧化氢酶 | 含Ce6涂层的聚多巴胺纳米粒 | NIR光照射下实现光热疗法和光动力疗法,在荷瘤BALB/c裸鼠中抑制肿瘤生长 | [ |
S. typhimurium YB1 | 缺氧靶向 | 载有吲哚菁绿(ICG)的纳米颗粒 | 在NIR激光照射下,产生光热杀伤能力,根除C57 BL/6小鼠的MB49实体瘤 | [ |
Magnetococcus marinus AMB-1 | 趋磁性和缺氧靶向 | 光触发的吲哚菁绿纳米粒子 | 磁驱动富集到肿瘤部位,光热疗法消除MCF-7荷瘤BALB/c裸鼠中的肿瘤 | [ |
1 | BENNER S A, SISMOUR A M. Synthetic biology[J]. Nature Reviews Genetics, 2005, 6(7): 533-543. |
2 | OMIDVAR R, AYALA Y A, BRANDEL A, et al. Quantification of nanoscale forces in lectin-mediated bacterial attachment and uptake into giant liposomes[J]. Nanoscale, 2021, 13(7): 4016-4028. |
3 | ENDY D. Foundations for engineering biology[J]. Nature, 2005, 438(7067): 449-453. |
4 | XIE M, FUSSENEGGER M. Designing cell function: assembly of synthetic gene circuits for cell biology applications[J]. Nature Reviews Molecular Cell Biology, 2018, 19(8): 507-525. |
5 | JUSIAK B, CLETO S, PEREZ-PIÑERA P, et al. Engineering synthetic gene circuits in living cells with CRISPR technology[J]. Trends in Biotechnology, 2016, 34(7): 535-547. |
6 | CHURCH G M, ELOWITZ M B, SMOLKE C D, et al. Realizing the potential of synthetic biology[J]. Nature Reviews Molecular Cell Biology, 2014, 15(4): 289-294. |
7 | ORIVE G, GASCÓN A R, HERNÁNDEZ R M, et al. Techniques: new approaches to the delivery of biopharmaceuticals[J]. Trends in Pharmacological Sciences, 2004, 25(7): 382-387. |
8 | RAZZACKI S Z, THWAR P K, YANG M, et al. Integrated microsystems for controlled drug delivery[J]. Advanced Drug Delivery Reviews, 2004, 56(2): 185-198. |
9 | JAHANGIRIAN H, LEMRASKI E G, WEBSTER T J, et al. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine[J]. International Journal of Nanomedicine, 2017, 12: 2957-2978. |
10 | PATRA J K, DAS G, FRACETO L F, et al. Nano based drug delivery systems: recent developments and future prospects[J]. Journal of Nanobiotechnology, 2018, 16(1): 71. |
11 | CHOI Y, PARK T J, LEE D C, et al. Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): 5944-5949. |
12 | IRAVANI S, VARMA R S. Biofactories: engineered nanoparticles via genetically engineered organisms[J]. Green Chemistry, 2019, 21(17): 4583-4603. |
13 | JAHROMI L P, FUHRMANN G. Bacterial extracellular vesicles: understanding biology promotes applications as nanopharmaceuticals[J]. Advanced Drug Delivery Reviews, 2021, 173: 125-140. |
14 | 冯晴晴, 张天鲛, 赵潇, 等. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿[J]. 合成生物学, 2022,3(2): 260-278. |
FENG Qingqing, ZHANG Tianjiao, ZHAO Xiao, et al. Synthetic nanobiology——fusion of synthetic biology and nanobiology. Synthetic Biology Journal[J], 2022,3(2): 260-278. | |
15 | CHANNON K, BROMLEY E H, WOOLFSON D N. Synthetic biology through biomolecular design and engineering[J]. Current Opinion in Structural Biology, 2008, 18(4): 491-498. |
16 | KIM J K, YANG S Y, LEE Y, et al. Functional nanomaterials based on block copolymer self-assembly[J]. Progress in Polymer Science, 2010, 35(11): 1325-1349. |
17 | GAUR D, DUBEY N C, TRIPATHI B P. Biocatalytic self-assembled synthetic vesicles and coacervates: from single compartment to artificial cells[J]. Advances in Colloid and Interface Science, 2022, 299: 102566. |
18 | TABEBORDBAR M, ZHU K X, CHENG J K W, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells[J]. Science, 2016, 351(6271): 407-411. |
19 | LONG C Z, AMOASII L, MIREAULT A A, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy[J]. Science, 2016, 351(6271): 400-403. |
20 | NELSON C E, HAKIM C H, OUSTEROUT D G, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy[J]. Science, 2016, 351(6271): 403-407. |
21 | WANG D, ZHANG F, GAO G P. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors[J]. Cell, 2020, 181(1): 136-150. |
22 | WANG H X, LI M Q, LEE C M, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery[J]. Chemical Reviews, 2017, 117(15): 9874-9906. |
23 | LATTANZI A, MENEGHINI V, PAVANI G, et al. Optimization of CRISPR/Cas9 delivery to human hematopoietic stem and progenitor cells for therapeutic genomic rearrangements[J]. Molecular Therapy, 2019, 27(1): 137-150. |
24 | WILBIE D, WALTHER J, MASTROBATTISTA E. Delivery aspects of CRISPR/cas for in vivo genome editing[J]. Accounts of Chemical Research, 2019, 52(6): 1555-1564. |
25 | RAN F A, HSU P D, WRIGHT J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocols, 2013, 8(11): 2281-2308. |
26 | NIU Y Y, SHEN B, CUI Y Q, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J]. Cell, 2014, 156(4): 836-843. |
27 | ZURIS J A, THOMPSON D B, SHU Y L, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo [J]. Nature Biotechnology, 2015, 33(1): 73-80. |
28 | SUN W J, JI W Y, HALL J M, et al. Efficient delivery of CRISPR-Cas9 for genome editing via self-assembled DNA nanoclews[J]. Angewandte Chemie International Edition, 2015, 54(41): 12029-33. |
29 | SUN W J, WANG J Q, HU Q Y, et al. CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation[J]. Science Advances, 2020, 6(21): eaba2983. |
30 | SHIN M D, SHUKLA S, CHUNG Y H, et al. COVID-19 vaccine development and a potential nanomaterial path forward[J]. Nature Nanotechnology, 2020, 15(8): 646-655. |
31 | PATEL S, ASHWANIKUMAR N, ROBINSON E, et al. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA[J]. Nano Letters, 2017, 17(9): 5711-5718. |
32 | TANG Q, LIU J, JIANG Y, et al. Cell-selective messenger RNA delivery and CRISPR/Cas9 genome editing by modulating the interface of phenylboronic acid-derived lipid nanoparticles and cellular surface sialic acid[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46585-46590. |
33 | ZHANG S, SHEN J T, LI D L, et al. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing[J]. Theranostics, 2021, 11(2): 614-648. |
34 | GAO X, TAO Y, LAMAS V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents[J]. Nature, 2018, 553(7687): 217-221. |
35 | CHO E Y, RYU J Y, LEE H, et al. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes[J]. Journal of Nanobiotechnology, 2019, 17(1): 19. |
36 | MILLER J B, ZHANG S Y, KOS P, et al. Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA[J]. Angewandte Chemie International Edition, 2017, 56(4): 1059-1063. |
37 | LI C H, YANG T R, WENG Y H, et al. Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy[J]. Bioactive Materials, 2022, 9: 590-601. |
38 | FINN J D, SMITH A R, PATEL M C, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing[J]. Cell Reports, 2018, 22(9): 2227-2235. |
39 | FU A L, TANG R, HARDIE J, et al. Promises and pitfalls of intracellular delivery of proteins[J]. Bioconjugate Chemistry, 2014, 25(9): 1602-1608. |
40 | LIU J, CHANG J, JIANG Y, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(33): e1902575. |
41 | WANG M, ZURIS J A, MENG F T, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles[J]. PNAS, 2016, 113(11): 2868-2873. |
42 | WANG K, SHANG F S, CHEN D G, et al. Protein liposomes-mediated targeted acetylcholinesterase gene delivery for effective liver cancer therapy[J]. Journal of Nanobiotechnology, 2021, 19(1): 31. |
43 | CHENG Q, WEI T, FARBIAK L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing[J]. Nature Nanotechnology, 2020, 15(4): 313-320. |
44 | WANG W W, BALK M, DENG Z J, et al. Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery[J]. Journal of Controlled Release, 2016, 242: 71-79. |
45 | SHEN J, LU Z G, WANG J Z, et al. Traceable nano-biohybrid complexes by one-step synthesis as CRISPR-chem vectors for neurodegenerative diseases synergistic treatment[J]. Advanced Materials, 2021, 33(27): 2101993. |
46 | FANG H P, CHEN J, LIN L, et al. A strategy of killing three birds with one stone for cancer therapy through regulating the tumor microenvironment by H2O2-responsive gene delivery system[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 47785-47797. |
47 | SHARMA R, ZHANG I, SHIAO T C, et al. Low generation polyamine dendrimers bearing flexible tetraethylene glycol as nanocarriers for plasmids and siRNA[J]. Nanoscale, 2016, 8(9): 5106-5119. |
48 | RUI Y, WILSON D R, CHOI J, et al. Carboxylated branched poly (β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing[J]. Science Advances, 2019, 5(12): eaay3255. |
49 | XU X D, WU J, LIU Y L, et al. Ultra-pH-responsive and tumor-penetrating nanoplatform for targeted siRNA delivery with robust anti-cancer efficacy[J]. Angewandte Chemie International Edition, 2016, 128(25): 7207-7210. |
50 | LAO Y H, LI M Q, GAO M A, et al. HPV oncogene manipulation using nonvirally delivered CRISPR/Cas9 or natronobacterium gregoryi argonaute[J]. Advanced Science, 2018, 5(7): 1700540. |
51 | QI Y, SONG H Q, XIAO H H, et al. Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids[J]. Small, 2018, 14(42): 1803061. |
52 | QI Y, LIU Y L, YU B R, et al. A lactose-derived CRISPR/Cas9 delivery system for efficient genome editing in vivo to treat orthotopic hepatocellular carcinoma[J]. Advanced Science, 2020, 7(17): 2001424. |
53 | WANG H X, SONG Z Y, LAO Y H, et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19): 4903-4908. |
54 | GUO J J, WAN T, LI B W, et al. Rational design of poly(disulfide) s as a universal platform for delivery of CRISPR-Cas9 machineries toward therapeutic genome editing[J]. ACS Central Science, 2021, 7(6): 990-1000. |
55 | WANG F, GAO J Y, XIAO J G, et al. Dually gated polymersomes for gene delivery[J]. Nano Letters, 2018, 18(9): 5562-5568. |
56 | VEIMAN K L, KÜNNAPUU K, LEHTO T, et al. PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo [J]. Journal of Controlled Release, 2015, 209: 238-247. |
57 | LIU C, WANG N, LUO R, et al. A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer[J]. Theranostics, 2021, 11(20): 9833-9846. |
58 | WANG H X, YANG X Z, SUN C Y, et al. Matrix metalloproteinase 2-responsive micelle for siRNA delivery[J]. Biomaterials, 2014, 35(26): 7622-7634. |
59 | CHEN Z M, LIU F Y, CHEN Y K, et al. Targeted delivery of CRISPR/Cas9-mediated cancer gene therapy via liposome-templated hydrogel nanoparticles[J]. Advanced Functional Materials, 2017, 27(46): 1703036. |
60 | LI L, SONG L J, LIU X W, et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice[J]. ACS Nano, 2017, 11(1): 95-111. |
61 | WILLIFORD J M, WU J, REN Y, et al. Recent advances in nanoparticle-mediated siRNA delivery[J]. Annual Review of Biomedical Engineering, 2014, 16: 347-370. |
62 | ANSELMO A C, MITRAGOTRI S. Nanoparticles in the clinic[J]. Bioengineering & Translational Medicine, 2016, 1(1): 10-29. |
63 | LEE Y W, LUTHER D C, KRETZMANN J A, et al. Protein delivery into the cell cytosol using non-viral nanocarriers[J]. Theranostics, 2019, 9(11): 3280-3292. |
64 | WANG P, ZHANG L M, XIE Y, et al. Genome editing for cancer therapy: delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier[J]. Advanced Science, 2017, 4(11): 1700175. |
65 | MOUT R, RAY M, YESILBAG TONGA G, et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing[J]. ACS Nano, 2017, 11(3): 2452-2458. |
66 | LEE K, CONBOY M, PARK H M, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair[J]. Nature Biomedical Engineering, 2017, 1(11): 889-901. |
67 | LEE B, LEE K, PANDA S, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours[J]. Nature Biomedical Engineering, 2018, 2(7): 497-507. |
68 | YANG Y M, HAN Y, SUN Q Y, et al. Au-siRNA@ aptamer nanocages as a high-efficiency drug and gene delivery system for targeted lung cancer therapy[J]. Journal of Nanobiotechnology, 2021, 19(1): 54. |
69 | SHAHBAZI R, SGHIA-HUGHES G, REID J L, et al. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations[J]. Nature Materials, 2019, 18(10): 1124-1132. |
70 | WANG P, ZHANG L M, ZHENG W F, et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy[J]. Angewandte Chemie International Edition, 2018, 130(6): 1507-1512. |
71 | PAN Y C, YANG J J, LUAN X W, et al. Near-infrared upconversion-activated CRISPR-Cas9 system: a remote-controlled gene editing platform[J]. Science Advances, 2019, 5(4): eaav7199. |
72 | PODDAR A, CONESA J J, LIANG K, et al. Encapsulation, visualization and expression of genes with biomimetically mineralized zeolitic imidazolate framework-8 (ZIF-8)[J]. Small, 2019, 15(36): 1902268. |
73 | ALYAMI M Z, ALSAIARI S K, LI Y Y, et al. Cell-type-specific CRISPR/Cas9 delivery by biomimetic metal organic frameworks[J]. Journal of the American Chemical Society, 2020, 142(4): 1715-1720. |
74 | ALSAIARI S K, PATIL S, ALYAMI M, et al. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework[J]. Journal of the American Chemical Society, 2018, 140(1): 143-146. |
75 | WANG Y Y, SHAHI P K, XIE R S, et al. A pH-responsive silica-metal-organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries[J]. Journal of Controlled Release, 2020, 324: 194-203. |
76 | YANG X T, TANG Q, JIANG Y, et al. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing[J]. Journal of the American Chemical Society, 2019, 141(9): 3782-3786. |
77 | YUE H H, ZHOU X M, CHENG M, et al. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing[J]. Nanoscale, 2018, 10(3): 1063-1071. |
78 | SALEKDEH P R, MA'MANI L, TAVAKKOLY-BAZZAZ J, et al. Bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica nanoparticles: a promising nanocarrier for delivery of Cas9-sgRNA ribonucleoproteine[J]. Journal of Nanobiotechnology, 2021, 19(1): 95. |
79 | LIU B, EJAZ W, GONG S, et al. Engineered interactions with mesoporous silica facilitate intracellular delivery of proteins and gene editing[J]. Nano Letters, 2020, 20(5): 4014-4021. |
80 | ZHOU W H, CUI H D, YING L M, et al. Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing[J]. Angewandte Chemie International Edition, 2018, 130(32): 10425-10429. |
81 | LI S J, SONG Z Y, LIU C Y, et al. Biomimetic mineralization-based CRISPR/Cas9 ribonucleoprotein nanoparticles for gene editing[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 47762-47770. |
82 | HAN X, XU X, WU Z H, et al. Synchronous conjugation of i-motif DNA and therapeutic siRNA on the vertexes of tetrahedral DNA nanocages for efficient gene silence[J]. Acta Pharmaceutica Sinica B, 2021, 11(10): 3286-3296. |
83 | MITCHELL M J, BILLINGSLEY M M, HALEY R M, et al. Engineering precision nanoparticles for drug delivery[J]. Nature Reviews Drug Discovery, 2021, 20(2): 101-124. |
84 | KANETI L, BRONSHTEIN T, MALKAH DAYAN N, et al. Nanoghosts as a novel natural nonviral gene delivery platform safely targeting multiple cancers[J]. Nano Letters, 2016, 16(3): 1574-1582. |
85 | LIN Y, WU J H, GU W H, et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs[J]. Advanced Science, 2018, 5(4): 1700611. |
86 | LU M, ZHAO X Y, XING H N, et al. Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery[J]. Acta Biomaterialia, 2019, 96: 517-536. |
87 | LÜ P, JAVIDI-PARSIJANI P, ATALA A, et al. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient 'hit-and-Run' genome editing[J]. Nucleic Acids Research, 2019, 47(17): e99. |
88 | MANGEOT P E, RISSON V, FUSIL F, et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins[J]. Nature Communications, 2019, 10: 45. |
89 | KAMERKAR S, LEBLEU V S, SUGIMOTO H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer[J]. Nature, 2017, 546(7659): 498-503. |
90 | XU Q, ZHANG Z, ZHAO L, et al. Tropism-facilitated delivery of CRISPR/Cas9 system with chimeric antigen receptor-extracellular vesicles against B-cell malignancies[J]. Journal of Controlled Release, 2020, 326: 455-467. |
91 | WANG Q Y, YU J J, KADUNGURE T, et al. ARMMs as a versatile platform for intracellular delivery of macromolecules[J]. Nature Communications, 2018, 9: 960. |
92 | GEE P, LUNG M S Y, OKUZAKI Y, et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping[J]. Nature Communications, 2020, 11: 1334. |
93 | ZHUANG J L, TAN J Z, WU C L, et al. Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy[J]. Nucleic Acids Research, 2020, 48(16): 8870-8882. |
94 | REN K, LIU Y, WU J, et al. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery[J]. Nature Communications, 2016, 7: 13580. |
95 | HERRMANN I K, WOOD M J A, FUHRMANN G. Extracellular vesicles as a next-generation drug delivery platform[J]. Nature Nanotechnology, 2021, 16(7): 748-759. |
96 | CULLY M. Exosome-based candidates move into the clinic[J]. Nature Reviews Drug Discovery, 2021, 20(1): 6-7. |
97 | AUSLÄNDER S, FUSSENEGGER M. Engineering gene circuits for mammalian cell-based applications[J]. Cold Spring Harbor Perspectives in Biology, 2016, 8(7): a023895. |
98 | ARATBONI H A, RAFIEI N, KHORASHAD L K, et al. LED control of gene expression in a nanobiosystem composed of metallic nanoparticles and a genetically modified E. coli strain[J]. Journal of Nanobiotechnology, 2021, 19(1): 190. |
99 | HASTY J, PRADINES J, DOLNIK M, et al. Noise-based switches and amplifiers for gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(5): 2075-2080. |
100 | TANG Q S, ZHANG D S, CONG X M, et al. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression[J]. Biomaterials, 2008, 29(17): 2673-2679. |
101 | ORTNER V, KASPAR C, HALTER C, et al. Magnetic field-controlled gene expression in encapsulated cells[J]. Journal of Controlled Release, 2012, 158(3): 424-432. |
102 | YAMAGUCHI M, ITO A, ONO A, et al. Heat-inducible gene expression system by applying alternating magnetic field to magnetic nanoparticles[J]. ACS Synthetic Biology, 2014, 3(5): 273-279. |
103 | LÜ Y, CUI D, SUN H, et al. Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression[J]. Angewandte Chemie International Edition, 2017, 56(31): 9155-9159. |
104 | WANG Y X, LI S L, ZHANG P B, et al. Photothermal-responsive conjugated polymer nanoparticles for remote control of gene expression in living cells[J]. Advanced Materials, 2018, 30(8): 1705418. |
105 | BAKHTIARI A, HSIAO D, JIN G X, et al. An efficient method based on the photothermal effect for the release of molecules from metal nanoparticle surfaces[J]. Angewandte Chemie International Edition, 2009, 48(23): 4166-4169. |
106 | TAN S W, WU T T, ZHANG D, et al. Cell or cell membrane-based drug delivery systems[J]. Theranostics, 2015, 5(8): 863-881. |
107 | REN E, LIU C, LV P, et al. Genetically engineered cellular membrane vesicles as tailorable shells for therapeutics[J]. Advanced Science, 2021, 8(21): 2100460. |
108 | NIEL G VAN, D'ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nature Reviews Molecular Cell Biology, 2018, 19(4): 213-228. |
109 | SHI X J, CHENG Q Q, HOU T L, et al. Genetically engineered cell-derived nanoparticles for targeted breast cancer immunotherapy[J]. Molecular Therapy, 2020, 28(2): 536-547. |
110 | SU D D, TSAI H I, XU Z X, et al. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing[J]. Journal of Extracellular Vesicles, 2020, 9(1): 1709262. |
111 | SHELLER-MILLER S, RADNAA E, YOO J K, et al. Exosomal delivery of NF-κB inhibitor delays LPS-induced preterm birth and modulates fetal immune cell profile in mouse models[J]. Science Advances, 2021, 7(4): eabd3865. |
112 | KOJIMA R, BOJAR D, RIZZI G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment[J]. Nature Communications, 2018, 9: 1305. |
113 | MORISHITA M, TAKAHASHI Y, MATSUMOTO A, et al. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA[J]. Biomaterials, 2016, 111: 55-65. |
114 | ZHANG P F, LIU G, CHEN X Y. Nanobiotechnology: Cell membrane-based delivery systems[J]. Nano Today, 2017, 13: 7-9. |
115 | ZHANG P F, CHEN Y X, ZENG Y, et al. Virus-mimetic nanovesicles as a versatile antigen-delivery system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(45): E6129-E6138. |
116 | LIU X, YUAN L Z, ZHANG L, et al. Bioinspired artificial nanodecoys for Hepatitis B virus[J]. Angewandte Chemie International Edition, 2018, 57(38): 12499-12503. |
117 | ZHANG X J, XU Q B, ZI Z K, et al. Programmable extracellular vesicles for macromolecule delivery and genome modifications[J]. Developmental Cell, 2020, 55(6): 784-801.e9. |
118 | LÜ P, LIU X, CHEN X M, et al. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy[J]. Nano Letters, 2019, 19(5): 2993-3001. |
119 | RICHTER M, VADER P, FUHRMANN G. Approaches to surface engineering of extracellular vesicles[J]. Advanced Drug Delivery Reviews, 2021, 173: 416-426. |
120 | CHEN L X, VALENTINE J L, HUANG C J, et al. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): E3609-E3618. |
121 | GUJRATI V, KIM S, KIM S H, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy[J]. ACS Nano, 2014, 8(2): 1525-1537. |
122 | LI Y, ZHAO R, CHENG K, et al. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition[J]. ACS Nano, 2020: 2020Nov24. |
123 | WEI X L, ZHANG G, RAN D N, et al. T-cell-mimicking nanoparticles can neutralize HIV infectivity[J]. Advanced Materials, 2018, 30(45): 1802233. |
124 | WANG C, WANG S B, CHEN Y, et al. Membrane nanoparticles derived from ACE2-rich cells block SARS-CoV-2 infection[J]. ACS Nano, 2021, 15(4): 6340-6351. |
125 | MENG Q F, ZHAO Y Y, DONG C B, et al. Genetically programmable fusion cellular vesicles for cancer immunotherapy[J]. Angewandte Chemie International Edition, 2021, 60(50): 26320-26326. |
126 | XU Z X, TSAI H I, XIAO Y M, et al. Engineering programmed death ligand-1/cytotoxic T-lymphocyte-associated antigen-4 dual-targeting nanovesicles for immunosuppressive therapy in transplantation[J]. ACS Nano, 2020, 14(7): 7959-7969. |
127 | LI L Y, MIAO Q W, MENG F Q, et al. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy[J]. Theranostics, 2021, 11(12): 6033-6043. |
128 | ZHANG X D, WANG C, WANG J Q, et al. PD-1 blockade cellular vesicles for cancer immunotherapy[J]. Advanced Materials, 2018, 30(22): 1707112. |
129 | PANG X, LIU X, CHENG Y, et al. Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections[J]. Advanced Materials, 2019, 31(35): 1902530. |
130 | CHEN Z W, WANG Z J, GU Z. Bioinspired and biomimetic nanomedicines[J]. Accounts of Chemical Research, 2019, 52(5): 1255-1264. |
131 | ZHANG X D, WANG J Q, CHEN Z W, et al. Engineering PD-1-presenting platelets for cancer immunotherapy[J]. Nano Letters, 2018, 18(9): 5716-5725. |
132 | MAUSE S F, HUNDELSHAUSEN P VON, ZERNECKE A, et al. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25(7): 1512-1518. |
133 | WANG C, SUN W J, YE Y Q, et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy[J]. Nature Biomedical Engineering, 2017, 1: 11. |
134 | HU Q Y, SUN W J, WANG J Q, et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy[J]. Nature Biomedical Engineering, 2018, 2(11): 831-840. |
135 | ZHANG X D, KANG Y, WANG J Q, et al. Engineered PD-L1-expressing platelets reverse new-onset type 1 diabetes[J]. Advanced Materials, 2020, 32(26): 1907692. |
136 | EDMUNDSON M C, CAPENESS M, HORSFALL L. Exploring the potential of metallic nanoparticles within synthetic biology[J]. New Biotechnology, 2014, 31(6): 572-578. |
137 | PRINDLE A, SAMAYOA P, RAZINKOV I, et al. A sensing array of radically coupled genetic 'biopixels'[J]. Nature, 2012, 481(7379): 39-44. |
138 | JEWETT M C, PATOLSKY F. Nanobiotechnology: synthetic biology meets materials science[J]. Current Opinion in Biotechnology, 2013, 24(4): 551-554. |
139 | WANG J, LI Y Y, NIE G J. Multifunctional biomolecule nanostructures for cancer therapy[J]. Nature Reviews Materials, 2021, 6(9): 766-783. |
140 | WANG Z G, DING B Q. Engineering DNA self-assemblies as templates for functional nanostructures[J]. Accounts of Chemical Research, 2014, 47(6): 1654-1662. |
141 | DEY S, FAN C H, GOTHELF K V, et al. DNA origami[J]. Nature Reviews Methods Primers, 2021, 1: 13. |
142 | KE Y G, ONG L L, SHIH W M, et al. Three-dimensional structures self-assembled from DNA bricks[J]. Science, 2012, 338(6111): 1177-1183. |
143 | SEEMAN N C, SLEIMAN H F. DNA nanotechnology[J]. Nature Reviews Materials, 2018, 3: 17068. |
144 | 施茜, 吴园园, 杨洋. DNA 纳米技术与合成生物学[J]. 合成生物学, 2022, 3(2): 302-319. |
SHI Qian, WU Yuanyuan, YANG yang. DNA nanotechnology and synthetic biology[J]. Synthetic Biology Journal, 2022, 3(2): 302-319. | |
145 | LI S P, JIANG Q, LIU S L, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo [J]. Nature Biotechnology, 2018, 36(3): 258-264. |
146 | LIU S L, JIANG Q, ZHAO X, et al. A DNA nanodevice-based vaccine for cancer immunotherapy[J]. Nature Materials, 2021, 20(3): 421-430. |
147 | KE G L, LIU M H, JIANG S X, et al. Directional regulation of enzyme pathways through the control of substrate channeling on a DNA origami scaffold[J]. Angewandte Chemie, 2016, 128(26): 7609-7612. |
148 | YAO G B, ZHANG F, WANG F, et al. Meta-DNA structures[J]. Nature Chemistry, 2020, 12(11): 1067-1075. |
149 | HSIA Y, BALE J B, GONEN S, et al. Design of a hyperstable 60-subunit protein icosahedron[J]. Nature, 2016, 535(7610): 136-139. |
150 | GU C K, ZHANG T, LÜ C Y, et al. His-mediated reversible self-assembly of ferritin nanocages through two different switches for encapsulation of cargo molecules[J]. ACS Nano, 2020, 14(12): 17080-17090. |
151 | HARTZELL E J, LIESER R M, SULLIVAN M O, et al. Modular hepatitis B virus-like particle platform for biosensing and drug delivery[J]. ACS Nano, 2020, 14(10): 12642-12651. |
152 | KIM E Y, TULLMAN-ERCEK D. Engineering nanoscale protein compartments for synthetic organelles[J]. Current Opinion in Biotechnology, 2013, 24(4): 627-632. |
153 | EDLINGER C, EINFALT T, SPULBER M, et al. Biomimetic strategy to reversibly trigger functionality of catalytic nanocompartments by the insertion of pH-responsive biovalves[J]. Nano Letters, 2017, 17(9): 5790-5798. |
154 | YU J C, QIAN C G, ZHANG Y Q, et al. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery[J]. Nano Letters, 2017, 17(2): 733-739. |
155 | CHEN Z W, WANG J Q, SUN W J, et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion[J]. Nature Chemical Biology, 2018, 14(1): 86-93. |
156 | PETERS R J R W, MARGUET M, MARAIS S, et al. Cascade reactions in multicompartmentalized polymersomes[J]. Angewandte Chemie, 2014, 126(1): 150-154. |
157 | XU C, HU S, CHEN X Y. Artificial cells: from basic science to applications[J]. Materials Today, 2016, 19(9): 516-532. |
158 | KÜCHLER A, YOSHIMOTO M, LUGINBÜHL S, et al. Enzymatic reactions in confined environments[J]. Nature Nanotechnology, 2016, 11(5): 409-420. |
159 | JO S M, WURM F R, LANDFESTER K. Biomimetic cascade network between interactive multicompartments organized by enzyme-loaded silica nanoreactors[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34230-34237. |
160 | CHEN F M, ZANG Z S, CHEN Z, et al. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy[J]. Biomaterials, 2019, 214: 119226. |
161 | ZHENG D W, CHEN Y, LI Z H, et al. Optically-controlled bacterial metabolite for cancer therapy[J]. Nature Communications, 2018, 9: 1680. |
162 | FELFOUL O, MOHAMMADI M, TAHERKHANI S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions[J]. Nature Nanotechnology, 2016, 11(11): 941-947. |
163 | FORBES N S. Engineering the perfect (bacterial) cancer therapy[J]. Nature Reviews Cancer, 2010, 10(11): 785-794. |
164 | AKIN D, STURGIS J, RAGHEB K, et al. Bacteria-mediated delivery of nanoparticles and cargo into cells[J]. Nature Nanotechnology, 2007, 2(7): 441-449. |
165 | BOURDEAU R W, LEE-GOSSELIN A, LAKSHMANAN A, et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts[J]. Nature, 2018, 553(7686): 86-90. |
166 | DENG X Y, YANG W B, SHAO Z W, et al. Genetically modified bacteria for targeted phototherapy of tumor[J]. Biomaterials, 2021, 272: 120809. |
167 | DEWHIRST M W, SECOMB T W. Transport of drugs from blood vessels to tumour tissue[J]. Nature Reviews Cancer, 2017, 17(12): 738-750. |
168 | SUH S, JO A, TRAORE M A, et al. Nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) enhances intratumoral transport of nanomedicine[J]. Advanced Science, 2019, 6(3): 1801309. |
169 | FAN J X, PENG M Y, WANG H, et al. Engineered bacterial bioreactor for tumor therapy via Fenton-like reaction with localized H2O2 generation[J]. Advanced Materials, 2019, 31(16): 1808278. |
170 | XING J H, YIN T, LI S M, et al. Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy[J]. Advanced Functional Materials, 2021, 31(11): 2008262. |
171 | NEWICK K, O'BRIEN S, MOON E, et al. CAR T cell therapy for solid tumors[J]. Annual Review of Medicine, 2017, 68: 139-152. |
172 | MAUDE S L, LAETSCH T W, BUECHNER J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. The New England Journal of Medicine, 2018, 378(5): 439-448. |
173 | TANG L, ZHENG Y R, MELO M B, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery[J]. Nature Biotechnology, 2018, 36(8): 707-716. |
174 | NIE W D, WEI W, ZUO L P, et al. Magnetic nanoclusters armed with responsive PD-1 antibody synergistically improved adoptive T-cell therapy for solid tumors[J]. ACS Nano, 2019, 13(2): 1469-1478. |
175 | HAO M X, HOU S Y, LI W S, et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy[J]. Science Translational Medicine, 2020, 12(571): eaaz6667. |
176 | KIM G B, ARAGON-SANABRIA V, RANDOLPH L, et al. High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma[J]. Bioactive Materials, 2020, 5(3): 624-635. |
177 | SIRIWON N, KIM Y J, SIEGLER E, et al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction[J]. Cancer Immunology Research, 2018, 6(7): 812-824. |
178 | CHEN Q, HU Q Y, DUKHOVLINOVA E, et al. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells[J]. Advanced Materials, 2019, 31(23): 1900192. |
179 | HU Q, LI H, ARCHIBONG E, et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets[J]. Nature Biomedical Engineering, 2021, 5(9): 1038-1047. |
180 | HARMSEN S, MEDINE E I, MOROZ M, et al. A dual-modal PET/near infrared fluorescent nanotag for long-term immune cell tracking[J]. Biomaterials, 2021, 269: 120630. |
181 | UJÉDA L. Nanotechnology and synthetic biology: the ambiguity of the nano-bio convergence[J]. Philosophia Scientae, 2019, 23(23-1): 57-72. |
182 | PURNICK P E, WEISS R. The second wave of synthetic biology: from modules to systems[J]. Nature Reviews Molecular Cell Biology, 2009, 10(6): 410-422. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[3] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[4] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[5] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[7] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[8] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[9] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[10] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[11] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[12] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[13] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[14] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[15] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||