Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (6): 1126-1149.DOI: 10.12211/2096-8280.2022-007
• Invited Review • Previous Articles Next Articles
Jiayu DONG1, Min LI1, Zonghua XIAO1, Ming HU1, Yudai MATSUDA2, Weiguang WANG1
Received:
2022-01-22
Revised:
2022-02-16
Online:
2023-01-17
Published:
2022-12-31
Contact:
Yudai MATSUDA, Weiguang WANG
董佳钰1, 李敏1, 肖宗华1, 胡明1, 松田侑大2, 汪伟光1
通讯作者:
松田侑大,汪伟光
作者简介:
基金资助:
CLC Number:
Jiayu DONG, Min LI, Zonghua XIAO, Ming HU, Yudai MATSUDA, Weiguang WANG. Recent advances in heterologous production of natural products using Aspergillus oryzae[J]. Synthetic Biology Journal, 2022, 3(6): 1126-1149.
董佳钰, 李敏, 肖宗华, 胡明, 松田侑大, 汪伟光. 米曲霉异源表达天然产物研究进展[J]. 合成生物学, 2022, 3(6): 1126-1149.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-007
化合物名称和编号 | 基因来源 | 表达宿主 | 参考文献 |
---|---|---|---|
YWA1 (1) | Aspergillus fumigatus | A. oryzae M-2-3 | [ |
2 | Phoma sp. C2932 | A. oryzae M-2-3 | [ |
3,5-dihydroxybenzoic acid (3) | Aspergillus oryzae RIB40 | A. oryzae M-2-3 | [ |
4 | Nectria haematococca mpVI 77-13-4 | A. oryzae NSAR1 | [ |
anhydromevalonolactone (5) | Xylaria sp. BCC 1067 | A. oryzae U1638 | [ |
betaenone B (6) | Phoma betae Fr. | A. oryzae NSAR1 | [ |
2-acetyl-7-methyl-3,6,8-trihydroxynaphthalene (7) | Talaromyces stipitatus ATCC 10500 | A. oryzae M-2-3 | [ |
8 | unidentified fungus ATCC 74256 | A. oryzae NSAR1 | [ |
citrinin (9) | Monascus ruber M7 | A. oryzae NSAR1 | [ |
10和11 | Arthrinium sp. NF2194 | A. oryzae NSAR1 | [ |
dalmanol A (12) acetodalmanol A (13) | Daldinia eschscholzii | A. oryzae NSAR1 | [ |
(-)-orthosporin (14) (-)-6-hydroxymellein (15) | Menisporopsis theobromae BCC 4162 | A. oryzae NSAR1 | [ |
benzopyran (16) flaviolin (17) | Cladosporium fulvum | A. oryzae M-2-3 | [ |
alternariol (18) alternariol monomethyl ether (19) | Alternaria alternata ATCC 66981 | A. oryzae NSAR1 | [ |
soppiline C (20) | Penicillium soppi Okera-1 | A. oryzae NSAR1 | [ |
orsellinic acid (21) | Fusarium sp. NBRC100844 | A. oryzae NSAR1 | [ |
22-24 | Aspergillus terreus | A. oryzae ∆snfA∆SCAP | [ |
strobilurin A (25) | Strobilurus tenacellus | A. oryzae NSAR1 | [ |
zopfiellin (26) | Zopfiella curvata No. 37-3 | A. oryzae NSAR1 | [ |
shimalactone A (27)、shimalactone B (28) | Emericella variecolor GF10 | A. oryzae M-2-3 | [ |
spirosorbicillinol B (29) | Trichoderma reesei QM6a | A. oryzae NSAR1 | [ |
gregatin A (30) | Penicillium sp. sh18 | A. oryzae NSAR1 | [ |
sporothriolide (31) | Hypomontagnella monticulosa MUCL 54604 | A. oryzae NSAR1 | [ |
32 | Emericella variecolor NBRC 32302 | A. oryzae NSAR1 | [ |
secalonic acid D (33) | Aspergillus aculeatus CBS 172.66 | A. oryzae NSAR1 | [ |
TKL (34) | Saccharopolyspora erythraea | A. oryzae NSAR1 | [ |
Tab. 1 Representative polyketides heterologously produced in Aspergillus oryzae, origins of the biosynthetic genes, and hosts used for the heterologous expression
化合物名称和编号 | 基因来源 | 表达宿主 | 参考文献 |
---|---|---|---|
YWA1 (1) | Aspergillus fumigatus | A. oryzae M-2-3 | [ |
2 | Phoma sp. C2932 | A. oryzae M-2-3 | [ |
3,5-dihydroxybenzoic acid (3) | Aspergillus oryzae RIB40 | A. oryzae M-2-3 | [ |
4 | Nectria haematococca mpVI 77-13-4 | A. oryzae NSAR1 | [ |
anhydromevalonolactone (5) | Xylaria sp. BCC 1067 | A. oryzae U1638 | [ |
betaenone B (6) | Phoma betae Fr. | A. oryzae NSAR1 | [ |
2-acetyl-7-methyl-3,6,8-trihydroxynaphthalene (7) | Talaromyces stipitatus ATCC 10500 | A. oryzae M-2-3 | [ |
8 | unidentified fungus ATCC 74256 | A. oryzae NSAR1 | [ |
citrinin (9) | Monascus ruber M7 | A. oryzae NSAR1 | [ |
10和11 | Arthrinium sp. NF2194 | A. oryzae NSAR1 | [ |
dalmanol A (12) acetodalmanol A (13) | Daldinia eschscholzii | A. oryzae NSAR1 | [ |
(-)-orthosporin (14) (-)-6-hydroxymellein (15) | Menisporopsis theobromae BCC 4162 | A. oryzae NSAR1 | [ |
benzopyran (16) flaviolin (17) | Cladosporium fulvum | A. oryzae M-2-3 | [ |
alternariol (18) alternariol monomethyl ether (19) | Alternaria alternata ATCC 66981 | A. oryzae NSAR1 | [ |
soppiline C (20) | Penicillium soppi Okera-1 | A. oryzae NSAR1 | [ |
orsellinic acid (21) | Fusarium sp. NBRC100844 | A. oryzae NSAR1 | [ |
22-24 | Aspergillus terreus | A. oryzae ∆snfA∆SCAP | [ |
strobilurin A (25) | Strobilurus tenacellus | A. oryzae NSAR1 | [ |
zopfiellin (26) | Zopfiella curvata No. 37-3 | A. oryzae NSAR1 | [ |
shimalactone A (27)、shimalactone B (28) | Emericella variecolor GF10 | A. oryzae M-2-3 | [ |
spirosorbicillinol B (29) | Trichoderma reesei QM6a | A. oryzae NSAR1 | [ |
gregatin A (30) | Penicillium sp. sh18 | A. oryzae NSAR1 | [ |
sporothriolide (31) | Hypomontagnella monticulosa MUCL 54604 | A. oryzae NSAR1 | [ |
32 | Emericella variecolor NBRC 32302 | A. oryzae NSAR1 | [ |
secalonic acid D (33) | Aspergillus aculeatus CBS 172.66 | A. oryzae NSAR1 | [ |
TKL (34) | Saccharopolyspora erythraea | A. oryzae NSAR1 | [ |
化合物分类 | 化合物名称和编号 | 基因来源 | 表达宿主 | 参考文献 |
---|---|---|---|---|
非核糖体多肽 | cycloaspeptide A (35) cycloaspeptide E (36) | Penicillium soppii CBS 869.70 | A. oryzae NSAR1 | [ |
KK-1 (37) | Curvularia clavata | A. oryzae CNT | [ | |
核糖体多肽 | ustiloxin B (38) | Aspergillus flavus CA14 | A. oryzae NSAR1 | [ |
asperipin-2a (39) | Aspergillus flavus CA14 | A. oryzae NSAR1 | [ | |
聚酮和非核糖体多肽杂合化合物 | cAATrp (40) | Aspergillus flavus NRRL 3357 | A. oryzae M-2-3 | [ |
pretenellin A (41)、pretenellin B (42) tenellin (43) | Beauveria bassiana 110.25 | A. oryzae M-2-3 | [ | |
pretenellin A (41) desmethyl-pretenellin A (44) | Beauveria bassiana 992.05 | A. oryzae M-2-3 | [ | |
45 | Aspergillus clavatus NRRL1 | A. oryzae NSAR1 | [ | |
aspyridone A (46) | Aspergillus nidulans SB4.1 | A. oryzae M-2-3 | [ | |
47 | Magnaporthe oryzae | A. oryzae M-2-3 | [ | |
didymellamide B (48) | Alternaria solani A-17 | A. oryzae NSAR1 | [ | |
tolypyridone C (49)、tolypyridone D (50) | Tolypocladium sp. 49Y | A. oryzae NSAR1 | [ |
Tab. 2 Representative peptide natural products heterologously produced in Aspergillus oryzae, origins of the biosynthetic genes, and hosts used for the heterologous expression
化合物分类 | 化合物名称和编号 | 基因来源 | 表达宿主 | 参考文献 |
---|---|---|---|---|
非核糖体多肽 | cycloaspeptide A (35) cycloaspeptide E (36) | Penicillium soppii CBS 869.70 | A. oryzae NSAR1 | [ |
KK-1 (37) | Curvularia clavata | A. oryzae CNT | [ | |
核糖体多肽 | ustiloxin B (38) | Aspergillus flavus CA14 | A. oryzae NSAR1 | [ |
asperipin-2a (39) | Aspergillus flavus CA14 | A. oryzae NSAR1 | [ | |
聚酮和非核糖体多肽杂合化合物 | cAATrp (40) | Aspergillus flavus NRRL 3357 | A. oryzae M-2-3 | [ |
pretenellin A (41)、pretenellin B (42) tenellin (43) | Beauveria bassiana 110.25 | A. oryzae M-2-3 | [ | |
pretenellin A (41) desmethyl-pretenellin A (44) | Beauveria bassiana 992.05 | A. oryzae M-2-3 | [ | |
45 | Aspergillus clavatus NRRL1 | A. oryzae NSAR1 | [ | |
aspyridone A (46) | Aspergillus nidulans SB4.1 | A. oryzae M-2-3 | [ | |
47 | Magnaporthe oryzae | A. oryzae M-2-3 | [ | |
didymellamide B (48) | Alternaria solani A-17 | A. oryzae NSAR1 | [ | |
tolypyridone C (49)、tolypyridone D (50) | Tolypocladium sp. 49Y | A. oryzae NSAR1 | [ |
结构分类 | 化合物名称和编号 | 基因来源 | 表达宿主 | 参考文献 |
---|---|---|---|---|
倍半萜 | abscisic acid (51) | Botrytis cinerea SAS56 | A. oryzae NSAR1 | [ |
trichobrasilenol (52) | T. atroviride FKI-3849 | A. oryzae NSAR1 | [ | |
aculene D (53)、asperaculane C(54)、asperaculane D(55)、asperaculane E(56)、asperaculane F(57)、asperaculane G (58) | A. aculeatus ATCC16872 | A. oryzae NSAR1 | [ | |
brasilane A (59)、brasilane D (60) brasilane E (61) | Annulohypoxylon truncatum CBS 140778 | A. oryzae NSAR1 | [ | |
二萜 | aphidicolin (62) | Phoma betae PS-13 | A. oryzae NSAR1 | [ |
variediene (63) | Emericella variecolor NBRC 32302 | A. oryzae NSAR1 | [ | |
pleuromutilin (64) | Clitopilus passeckerianus ATCC 34646 | A. oryzae NSAR1 | [ | |
Clitopillus pseudo-pinsitus ATCC20527 | A. oryzae NSAR1 | [ | ||
Clitopilus passeckerianus ATCC 34646 | A. oryzae NSAR1 | [ | ||
(+)-copalol (65) | Penicillium verruculosum TPU1311和Penicillium fellutanum ATCC 48694 | A. oryzae NSAR1 | [ | |
66 | Penicillium chrysogenum MT-12 | A. oryzae NSAR1 | [ | |
brassicicene Ⅰ (67) | Pseudocercospora fijiensis 10CR-1-24 | A. oryzae NSAR1 | [ | |
erinacine Q (68) | Hericium erinaceus yamabushitake Y2 | A. oryzae NSPlD1 | [ | |
myrothec-15(17)-en-7-ol (69) | Myrothecium graminearum ZLW0801-19 | A. oryzae NSAR1 | [ | |
二倍半萜 | ophiobolin F (70) | Aspergillus clavatus NRRL1 | A. oryzae NSAR1 | [ |
Aspergillus calidoustus CBS121601 | A. oryzae NSAR1 | [ | ||
stellata-2,6,19-triene (71) | Emericella variecolor NBRC32302 | A. oryzae NSAR1 | [ | |
astellifadiene (72) | Emericella variecolor NBRC32302 | A. oryzae NSAR1 | [ | |
quiannulatene (73) quiannulatic acid (74) | Emericella variecolor NBRC32302 | A. oryzae NSAR1 | [ | |
Bm1 (75)、 Bm3 (76) | Bipolaris maydis ATCC48331 | A. oryzae NSAR1 | [ | |
Pb1 (77) | Phoma betae PS-13 | |||
(-)-terpestacin (78) | Bipolaris maydis C5 | A. oryzae NSAR1 | [ | |
betaestacin Ⅱ (79) | Phoma betae PS-13 | A. oryzae NSAR1 | [ | |
asperterpenoid A (80) | Talaromyces wortmannii ATCC 26942 | A. oryzae NSAR1 | [ | |
asperterpenol A(81)、 asperterpenol B (82) | Aspergillus calidoustus CBS121601 | A. oryzae NSAR1 | [ | |
aspergiltriene A (83) aspergildiene A(84)、aspergildiene B(85)、aspergildiene C(86)、aspergildiene D (87) | Aspergillus ustus 094102 | A. oryzae NSAR1 | [ | |
fusoxypene A(88)、fusoxypene B(89)、fusoxypene C (90) (-)-astellatene (91) | Fusarium oxysporum FO14005 | A. oryzae NSAR1 | [ | |
preaspterpenacid I (92) | Aspergillus terreus NIH 2624 | A. oryzae NSAR1 | ||
三萜和甾体 | helvolic acid (93) | Aspergillus fumigatus Af293 | A. oryzae NSAR1 | [ |
94 | Nodulisporium sp. (no. 65-17-2-1) | A. oryzae NSAR1 | [ | |
fusidic acid (95) | Acremonium fusidioides ATCC 14700 | A. oryzae NSAR1 | [ | |
96 | Thanatephorus cucumeris NBRC 6298 | A. oryzae NSAR1 | [ | |
cephalosporin P1 (97) | Acremonium chrysogenum ATCC 11550 | A. oryzae NSAR1 | [ |
Tab. 3 Representative terpenoids heterologously produced in Aspergillus oryzae, origins of the biosynthetic genes, and hosts used for the heterologous expression
结构分类 | 化合物名称和编号 | 基因来源 | 表达宿主 | 参考文献 |
---|---|---|---|---|
倍半萜 | abscisic acid (51) | Botrytis cinerea SAS56 | A. oryzae NSAR1 | [ |
trichobrasilenol (52) | T. atroviride FKI-3849 | A. oryzae NSAR1 | [ | |
aculene D (53)、asperaculane C(54)、asperaculane D(55)、asperaculane E(56)、asperaculane F(57)、asperaculane G (58) | A. aculeatus ATCC16872 | A. oryzae NSAR1 | [ | |
brasilane A (59)、brasilane D (60) brasilane E (61) | Annulohypoxylon truncatum CBS 140778 | A. oryzae NSAR1 | [ | |
二萜 | aphidicolin (62) | Phoma betae PS-13 | A. oryzae NSAR1 | [ |
variediene (63) | Emericella variecolor NBRC 32302 | A. oryzae NSAR1 | [ | |
pleuromutilin (64) | Clitopilus passeckerianus ATCC 34646 | A. oryzae NSAR1 | [ | |
Clitopillus pseudo-pinsitus ATCC20527 | A. oryzae NSAR1 | [ | ||
Clitopilus passeckerianus ATCC 34646 | A. oryzae NSAR1 | [ | ||
(+)-copalol (65) | Penicillium verruculosum TPU1311和Penicillium fellutanum ATCC 48694 | A. oryzae NSAR1 | [ | |
66 | Penicillium chrysogenum MT-12 | A. oryzae NSAR1 | [ | |
brassicicene Ⅰ (67) | Pseudocercospora fijiensis 10CR-1-24 | A. oryzae NSAR1 | [ | |
erinacine Q (68) | Hericium erinaceus yamabushitake Y2 | A. oryzae NSPlD1 | [ | |
myrothec-15(17)-en-7-ol (69) | Myrothecium graminearum ZLW0801-19 | A. oryzae NSAR1 | [ | |
二倍半萜 | ophiobolin F (70) | Aspergillus clavatus NRRL1 | A. oryzae NSAR1 | [ |
Aspergillus calidoustus CBS121601 | A. oryzae NSAR1 | [ | ||
stellata-2,6,19-triene (71) | Emericella variecolor NBRC32302 | A. oryzae NSAR1 | [ | |
astellifadiene (72) | Emericella variecolor NBRC32302 | A. oryzae NSAR1 | [ | |
quiannulatene (73) quiannulatic acid (74) | Emericella variecolor NBRC32302 | A. oryzae NSAR1 | [ | |
Bm1 (75)、 Bm3 (76) | Bipolaris maydis ATCC48331 | A. oryzae NSAR1 | [ | |
Pb1 (77) | Phoma betae PS-13 | |||
(-)-terpestacin (78) | Bipolaris maydis C5 | A. oryzae NSAR1 | [ | |
betaestacin Ⅱ (79) | Phoma betae PS-13 | A. oryzae NSAR1 | [ | |
asperterpenoid A (80) | Talaromyces wortmannii ATCC 26942 | A. oryzae NSAR1 | [ | |
asperterpenol A(81)、 asperterpenol B (82) | Aspergillus calidoustus CBS121601 | A. oryzae NSAR1 | [ | |
aspergiltriene A (83) aspergildiene A(84)、aspergildiene B(85)、aspergildiene C(86)、aspergildiene D (87) | Aspergillus ustus 094102 | A. oryzae NSAR1 | [ | |
fusoxypene A(88)、fusoxypene B(89)、fusoxypene C (90) (-)-astellatene (91) | Fusarium oxysporum FO14005 | A. oryzae NSAR1 | [ | |
preaspterpenacid I (92) | Aspergillus terreus NIH 2624 | A. oryzae NSAR1 | ||
三萜和甾体 | helvolic acid (93) | Aspergillus fumigatus Af293 | A. oryzae NSAR1 | [ |
94 | Nodulisporium sp. (no. 65-17-2-1) | A. oryzae NSAR1 | [ | |
fusidic acid (95) | Acremonium fusidioides ATCC 14700 | A. oryzae NSAR1 | [ | |
96 | Thanatephorus cucumeris NBRC 6298 | A. oryzae NSAR1 | [ | |
cephalosporin P1 (97) | Acremonium chrysogenum ATCC 11550 | A. oryzae NSAR1 | [ |
Fig. 7 Structures of polyketide-terpenoid hybrids (synthesized using a class Ⅰ terpene cyclase) heterologously produced in the Aspergillus oryzae system
化合物分类 | 化合物名称和编号 | 基因来源 | 表达宿主 | 参考文献 |
---|---|---|---|---|
Ⅰ型萜烯环化酶 (聚酮杂萜) | xenovulene A (98) | Acremonium strictum IMI 501407 | A. oryzae NSAR1 | [ |
xenovulene B (99) | Acremonium strictum IMI 501407 | A. oryzae NSAR1 | [ | |
Ⅱ型萜烯环化酶 (聚酮杂萜) | deacetyl-pyripyropene E (100) | Aspergillus fumigatus FO-1289 | A. oryzae M-2-3 | [ |
11-deacetyl-pyripyropene O (101) deacetyl-pyripyropene A (102) | Penicillium coprobium PF1169 | A. oryzae HL-1105 | [ | |
pyripyropene A (103) | Penicillium coprobium PF1169 | A. oryzae HL-1105 | [ | |
andrastin A (104) | Penicillium chrysogenum NBRC 32030 | A. oryzae NSAR1 | [ | |
preaustinoid A3 (105) | Aspergillus nidulans FGSC A4 | A. oryzae NSAR1 | [ | |
anditomin (106) | Emericella variecolor NBRC 32302 | A. oryzae NSAR1 | [ | |
terretonin (107) | Aspergillus terreus NIH 2624 | A. oryzae NSAR1 | [ | |
citreohybridonol (108) | Emericella variecolor NBRC 32302 | A. oryzae NSAR1 | [ | |
berkeleydione (109) | Penicillium brasilianum NBRC 6234 | A. oryzae NSAR1 | [ | |
novofumigatonin (110) | Aspergillus novofumigatus IBT 16806 | A. oryzae NSAR1 | [ | |
chrodrimanin B (111) | Penicillium verruculosum TPU1311 | A. oryzae NSAR1 | [ | |
chevalone E (112) sartorypyrone D (113) | Aspergillus versicolor 0312 Aspergillus felis 0260 | A. oryzae NSAR1 | [ | |
114 | Fusarium graminearum PH-1 | A. oryzae NSAR1 | [ | |
andiconin B (115) andiconin D (116) | Aspergillus sp. TJ23 | A. oryzae NSAR1 | [ | |
funiculolide A、funiculolide B、 funiculolide C、funiculolide D (117~120) | Aspergillus funiculosus CBS 116.56 | A. oryzae NSAR1 | [ | |
setosusin (121) | Aspergillus duricaulis CBS 481.65 | A. oryzae NSAR1 | [ | |
Ⅱ型萜烯环化酶 (吲哚类杂萜) | paxilline (122) | Penicillium paxilli | A. oryzae NSAR1 | [ |
aflatrem (123) β-aflatrem (124) | Aspergillus flavus NBRC 4295 | A. oryzae NSAR1 | [ | |
penitrem A (125) | Penicillium simplicissimum AK-40 | A. oryzae NSAR1 | [ | |
shearinine D (126) | Penicillium janthinellum PN2408 | A. oryzae NSAR1 | [ | |
sespendole (127) | Pseudobotrytis terrestris FKA-25 | A. oryzae NSAR1 | [ | |
lolitrem B (128) | Epichloë festucae var. loll | A. oryzae NSPlD1 | [ | |
其他类型杂萜 | LL-Z1272β (129) | Stachybotrys bisbyi PYH05-7 | A. oryzae NSAR1 | [ |
daurichromenic acid (130) | Rhododendron dauricum | A. oryzae NSAR1 | [ | |
5-chlorodaurichromenic acid (131) | Fusarium sp. NBRC100844 | A. oryzae NSAR1 | ||
ilicicolin A、 ilicicolin B (132和133) | Acremonium egyptiacum F-1392 | A. oryzae NSAR1 | [ | |
biscognienyne B (134) | Biscogniauxia sp. (71-10-1-1) | A. oryzae NSAR1 | [ |
Tab. 4 Representative meroterpenoids heterologously produced in Aspergillus oryzae, origins of the biosynthetic genes, and hosts used for the heterologous expression
化合物分类 | 化合物名称和编号 | 基因来源 | 表达宿主 | 参考文献 |
---|---|---|---|---|
Ⅰ型萜烯环化酶 (聚酮杂萜) | xenovulene A (98) | Acremonium strictum IMI 501407 | A. oryzae NSAR1 | [ |
xenovulene B (99) | Acremonium strictum IMI 501407 | A. oryzae NSAR1 | [ | |
Ⅱ型萜烯环化酶 (聚酮杂萜) | deacetyl-pyripyropene E (100) | Aspergillus fumigatus FO-1289 | A. oryzae M-2-3 | [ |
11-deacetyl-pyripyropene O (101) deacetyl-pyripyropene A (102) | Penicillium coprobium PF1169 | A. oryzae HL-1105 | [ | |
pyripyropene A (103) | Penicillium coprobium PF1169 | A. oryzae HL-1105 | [ | |
andrastin A (104) | Penicillium chrysogenum NBRC 32030 | A. oryzae NSAR1 | [ | |
preaustinoid A3 (105) | Aspergillus nidulans FGSC A4 | A. oryzae NSAR1 | [ | |
anditomin (106) | Emericella variecolor NBRC 32302 | A. oryzae NSAR1 | [ | |
terretonin (107) | Aspergillus terreus NIH 2624 | A. oryzae NSAR1 | [ | |
citreohybridonol (108) | Emericella variecolor NBRC 32302 | A. oryzae NSAR1 | [ | |
berkeleydione (109) | Penicillium brasilianum NBRC 6234 | A. oryzae NSAR1 | [ | |
novofumigatonin (110) | Aspergillus novofumigatus IBT 16806 | A. oryzae NSAR1 | [ | |
chrodrimanin B (111) | Penicillium verruculosum TPU1311 | A. oryzae NSAR1 | [ | |
chevalone E (112) sartorypyrone D (113) | Aspergillus versicolor 0312 Aspergillus felis 0260 | A. oryzae NSAR1 | [ | |
114 | Fusarium graminearum PH-1 | A. oryzae NSAR1 | [ | |
andiconin B (115) andiconin D (116) | Aspergillus sp. TJ23 | A. oryzae NSAR1 | [ | |
funiculolide A、funiculolide B、 funiculolide C、funiculolide D (117~120) | Aspergillus funiculosus CBS 116.56 | A. oryzae NSAR1 | [ | |
setosusin (121) | Aspergillus duricaulis CBS 481.65 | A. oryzae NSAR1 | [ | |
Ⅱ型萜烯环化酶 (吲哚类杂萜) | paxilline (122) | Penicillium paxilli | A. oryzae NSAR1 | [ |
aflatrem (123) β-aflatrem (124) | Aspergillus flavus NBRC 4295 | A. oryzae NSAR1 | [ | |
penitrem A (125) | Penicillium simplicissimum AK-40 | A. oryzae NSAR1 | [ | |
shearinine D (126) | Penicillium janthinellum PN2408 | A. oryzae NSAR1 | [ | |
sespendole (127) | Pseudobotrytis terrestris FKA-25 | A. oryzae NSAR1 | [ | |
lolitrem B (128) | Epichloë festucae var. loll | A. oryzae NSPlD1 | [ | |
其他类型杂萜 | LL-Z1272β (129) | Stachybotrys bisbyi PYH05-7 | A. oryzae NSAR1 | [ |
daurichromenic acid (130) | Rhododendron dauricum | A. oryzae NSAR1 | [ | |
5-chlorodaurichromenic acid (131) | Fusarium sp. NBRC100844 | A. oryzae NSAR1 | ||
ilicicolin A、 ilicicolin B (132和133) | Acremonium egyptiacum F-1392 | A. oryzae NSAR1 | [ | |
biscognienyne B (134) | Biscogniauxia sp. (71-10-1-1) | A. oryzae NSAR1 | [ |
Fig. 8 Structures of polyketide-terpenoid hybrids (synthesized using a class Ⅱ terpene cyclase) heterologously produced in the Aspergillus oryzae system
1 | FROMMER W B, NINNEMANN O. Heterologous expression of genes in bacterial, fungal, animal, and plant cells[J]. Annual Review of Plant Biology, 1995, 46(1): 419-444. |
2 | GOMES A R, BYREGOWDA S M, VEEREGOWDA B M, et al. An overview of heterologous expression host systems for the production of recombinant proteins[J]. Advances in Animal and Veterinary Sciences, 2016, 4(7): 346-356. |
3 | VALERO F. Heterologous expression systems for lipases: A review[J]. Methods in Molecular Biology, 2012, 861: 161-178. |
4 | KEASLING J D. Synthetic biology for synthetic chemistry[J]. ACS Chemical Biology, 2008, 3(1): 64-76. |
5 | BREITLING R, TAKANO E. Synthetic biology advances for pharmaceutical production[J]. Current Opinion in Biotechnology, 2015, 35: 46-51. |
6 | SMANSKI M J, ZHOU H, CLAESEN J, et al. Synthetic biology to access and expand nature's chemical diversity[J]. Nature Reviews Microbiology, 2016, 14(3): 135-149. |
7 | LAZARUS C M, WILLIAMS K, BAILEY A M. Reconstructing fungal natural product biosynthetic pathways[J]. Natural Product Reports, 2014, 31(10): 1339-1347. |
8 | ZHANG J J, TANG X Y, MOORE B S. Genetic platforms for heterologous expression of microbial natural products[J]. Natural Product Reports, 2019, 36(9): 1313-1332. |
9 | 马紫卉, 李伟, 尹文兵. 真菌天然产物异源生产研究进展[J]. 微生物学报, 2016, 56(3): 429-440. |
MA Z H, LI W, YIN W B. Progress in heterologous expression of fungal natural products[J]. Acta Microbiologica Sinica, 2016, 56(3): 429-440. | |
10 | ICHISHIMA E. Development of enzyme technology for Aspergillus oryzae, A. sojae, and A. luchuensis, the national microorganisms of Japan[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(9): 1681-1692. |
11 | FRISVAD J C, MØLLER L L H, LARSEN T O, et al. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei [J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9481-9515. |
12 | TANAKA M, GOMI K. Induction and repression of hydrolase genes in Aspergillus oryzae [J]. Frontiers in Microbiology, 2021, 12: 677603. |
13 | JIN F J, HU S, WANG B T, et al. Advances in genetic engineering technology and its application in the industrial fungus Aspergillus oryzae [J]. Frontiers in Microbiology, 2021, 12(353): 644404. |
14 | ZHAO G Z, YAO Y P, QI W, et al. Draft genome sequence of Aspergillus oryzae strain 3.042[J]. Eukaryotic Cell, 2012, 11(9): 1178. |
15 | MACHIDA M, ASAI K, SANO M, et al. Genome sequencing and analysis of Aspergillus oryzae [J]. Nature, 2005, 438(7071): 1157-1161. |
16 | AWAKAWA T, ABE I. Reconstitution of polyketide-derived meroterpenoid biosynthetic pathway in Aspergillus oryzae [J]. Journal of Fungi, 2021, 7(6): 486. |
17 | OIKAWA H. Reconstitution of biosynthetic machinery of fungal natural products in heterologous hosts[J]. Bioscience, Biotechnology, and Biochemistry, 2020, 84(3): 433-444. |
18 | PARK H S, JUN S C, HAN K H, et al. Diversity, application, and synthetic biology of industrially important Aspergillus fungi[J]. Advances in Applied Microbiology, 2017, 100: 161-202. |
19 | OIKAWA H. Heterologous production of fungal natural products: Reconstitution of biosynthetic gene clusters in model host Aspergillus oryzae [J]. Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 2020, 96(9): 420-430. |
20 | JIN F J, MARUYAMA J I, JUVVADI P R, et al. Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae [J]. FEMS Microbiology Letters, 2004, 239(1): 79-85. |
21 | FUJII T, YAMAOKA H, GOMI K, et al. Cloning and nucleotide sequence of the ribonuclease T1 gene (rntA) from Aspergillus oryzae and its expression in Saccharomyces cerevisiae and Aspergillus oryzae [J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(10): 1869-1874. |
22 | JIN F J, MARUYAMA J I, JUVVADI P R, et al. Adenine auxotrophic mutants of Aspergillus oryzae: development of a novel transformation system with triple auxotrophic hosts[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(3): 656-662. |
23 | YAMADA O, LEE B R, GOMI K, et al. Cloning and functional analysis of the Aspergillus oryzae conidiation regulator gene brlA by its disruption and misscheduled expression[J]. Journal of Bioscience and Bioengineering, 1999, 87(4): 424-429. |
24 | YAMADA O, NAN S N, AKAO T, et al. dffA gene from Aspergillus oryzae encodes L-ornithine N5 -oxygenase and is indispensable for deferriferrichrysin biosynthesis[J]. Journal of Bioscience & Bioengineering, 2003, 95(1): 82-88. |
25 | KUBODERA T, YAMASHITA N, NISHIMURA A. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation[J]. Bioscience, Biotechnology, and Biochemistry, 2000, 64(7): 1416-1421. |
26 | MATSUDA Y, WAKIMOTO T, MORI T, et al. Complete biosynthetic pathway of anditomin: nature's sophisticated synthetic route to a complex fungal meroterpenoid[J]. Journal of the American Chemical Society, 2014, 136(43): 15326-15336. |
27 | GALLAGHER R R, PATEL J R, INTERIANO A L, et al. Multilayered genetic safeguards limit growth of microorganisms to defined environments[J]. Nucleic Acids Research, 2015, 43(3): 1945-1954. |
28 | TAGAMI K, MINAMI A, FUJII R, et al. Rapid reconstitution of biosynthetic machinery for fungal metabolites in Aspergillus oryzae: total biosynthesis of aflatrem[J]. ChemBioChem, 2014, 15(14): 2076-2080. |
29 | YAMANE M, MINAMI A, LIU C W, et al. Biosynthetic machinery of diterpene pleuromutilin isolated from basidiomycete fungi[J]. ChemBioChem, 2017, 18(23): 2317-2322. |
30 | LIU C W, MINAMI A, OZAKI T, et al. Efficient reconstitution of basidiomycota diterpene erinacine gene cluster in ascomycota host Aspergillus oryzae based on genomic DNA sequences[J]. Journal of the American Chemical Society, 2019, 141(39): 15519-15523. |
31 | LEBE K E, COX R J. O-Methylation steps during strobilurin and bolineol biosynthesis[J]. RSC Advances, 2019, 9(54): 31527-31531. |
32 | SAKAI K, KINOSHITA H, NIHIRA T. Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites[J]. Applied Microbiology and Biotechnology, 2012, 93(5): 2011-2022. |
33 | WEI X X, CHEN X X, CHEN L, et al. Heterologous biosynthesis of tetrahydroxanthone dimers: determination of key factors for selective or divergent synthesis[J]. Journal of Natural Products, 2021, 84(5): 1544-1549. |
34 | BAILEY A M, ALBERTI F, KILARU S, et al. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production[J]. Scientific Reports, 2016, 6: 25202. |
35 | WEI X X, MATSUYAMA T, SATO H, et al. Molecular and computational bases for spirofuranone formation in setosusin biosynthesis[J]. Journal of the American Chemical Society, 2021, 143(42): 17708-17715. |
36 | HERTWECK C. The biosynthetic logic of polyketide diversity[J]. Angewandte Chemie International Edition, 2009, 48(26): 4688-4716. |
37 | MA S M, LI J W H, CHOI J W, et al. Complete reconstitution of a highly reducing iterative polyketide synthase[J]. Science, 2009, 326(5952): 589-592. |
38 | GOMES E S, SCHUCH V, DE MACEDO LEMOS E G. Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics[J]. Brazilian Journal of Microbiology, 2013, 44(4): 1007-1034. |
39 | WATANABE A, FUJII I, TSAI H, et al. Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae [J]. FEMS Microbiology Letters, 2000, 192(1): 39-44. |
40 | COX R J, GLOD F, HURLEY D, et al. Rapid cloning and expression of a fungal polyketide synthase gene involved in squalestatin biosynthesis[J]. Chemical Communications, 2004, (20): 2260-2261. |
41 | SESHIME Y, JUVVADI P R, KITAMOTO K, et al. Aspergillus oryzae type Ⅲ polyketide synthase CsyA is involved in the biosynthesis of 3,5-dihydroxybenzoic acid[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(16): 4785-4788. |
42 | AWAKAWA T, KAJI T, WAKIMOTO T, et al. A heptaketide naphthaldehyde produced by a polyketide synthase from Nectria haematococca [J]. Bioorganic & Medicinal Chemistry Letters, 2012, 22(13): 4338-4340. |
43 | WATTANACHAISAEREEKUL S, TACHALEAT A, PUNYA J, et al. Assessing medium constituents for optimal heterologous production of anhydromevalonolactone in recombinant Aspergillus oryzae [J]. AMB Express, 2014, 4: 52. |
44 | PUNYA J, TACHALEAT A, WATTANACHAISAEREEKUL S, et al. Functional expression of a foreign gene in Aspergillus oryzae producing new pyrone compounds[J]. Fungal Genetics and Biology, 2013, 50: 55-62. |
45 | UGAI T, MINAMI A, FUJII R, et al. Heterologous expression of highly reducing polyketide synthase involved in betaenone biosynthesis[J]. Chemical Communications, 2015, 51(10): 1878-1881. |
46 | HASHIMOTO M, WAKANA D, UEDA M, et al. Product identification of non-reducing polyketide synthases with C-terminus methyltransferase domain from Talaromyces stipitatus using Aspergillus oryzae heterologous expression[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(7): 1381-1384. |
47 | FUJII R, MATSU Y, MINAMI A, et al. Biosynthetic study on antihypercholesterolemic agent phomoidride: general biogenesis of fungal dimeric anhydrides[J]. Organic Letters, 2015, 17(22): 5658-5661. |
48 | HE Y, COX R J. The molecular steps of citrinin biosynthesis in fungi[J]. Chemical Science, 2016, 7(3): 2119-2127. |
49 | ZHANG X, WANG T T, XU Q L, et al. Genome mining and comparative biosynthesis of meroterpenoids from two phylogenetically distinct fungi[J]. Angewandte Chemie International Edition, 2018, 57(27): 8184-8188. |
50 | ZHOU Z Z, ZHU H J, LIN L P, et al. Dalmanol biosyntheses require coupling of two separate polyketide gene clusters[J]. Chemical Science, 2019, 10(1): 73-82. |
51 | BUNNAK W, WONNAPINIJ P, SRIBOONLERT A, et al. Heterologous biosynthesis of a fungal macrocyclic polylactone requires only two iterative polyketide synthases[J]. Organic & Biomolecular Chemistry, 2019, 17(2): 374-379. |
52 | GRIFFITHS S A, COX R J, OVERDIJK E J R, et al. Assignment of a dubious gene cluster to melanin biosynthesis in the tomato fungal pathogen Cladosporium fulvum [J]. PLoS One, 2018, 13(12): e0209600. |
53 | WENDEROTH M, GARGANESE F, SCHMIDT-HEYDT M, et al. Alternariol as virulence and colonization factor of Alternaria alternata during plant infection[J]. Molecular Microbiology, 2019, 112(1): 131-146. |
54 | KANEKO A, MORISHITA Y, TSUKADA K, et al. Post-genomic approach based discovery of alkylresorcinols from a cricket-associated fungus, Penicillium soppi [J]. Organic & Biomolecular Chemistry, 2019, 17(21): 5239-5243. |
55 | BERTRAND R L, SORENSEN J L. Lost in translation: challenges with heterologous expression of lichen polyketide synthases[J]. Chemistry Select, 2019, 4(21): 6473-6483. |
56 | KAN E, KATSUYAMA Y, MARUYAMA J I, et al. Efficient heterologous production of atrochrysone carboxylic acid-related polyketides in an Aspergillus oryzae host with enhanced malonyl-coenzyme A supply[J]. The Journal of General and Applied Microbiology, 2020, 66(3): 195-199. |
57 | SHIINA T, OZAKI T, MATSU Y, et al. Oxidative ring contraction by a multifunctional dioxygenase generates the core cycloocatadiene in the biosynthesis of fungal dimeric anhydride zopfiellin[J]. Organic Letters, 2020, 22(5): 1997-2001. |
58 | FUJII I, HASHIMOTO M, KONISHI K, et al. Functional analysis of a biosynthetic gene cluster demonstrates role of spontaneous double bicyclo‐ring formation including 8π-6π electrocyclization in shimalactone biosynthesis[J]. Angewandte Chemie International Edition, 2020, 59(22): 8464-8470. |
59 | KAHLERT L, BASSIONY E F, COX R J, et al. Diels-Alder reactions during the biosynthesis of sorbicillinoids[J]. Angewandte Chemie International Edition, 2020, 59(14): 5816-5822. |
60 | WANG W G, WANG H, DU L Q, et al. Molecular basis for the biosynthesis of an unusual chain-fused polyketide, gregatin A[J]. Journal of the American Chemical Society, 2020, 142(18): 8464-8472. |
61 | TIAN D S, KUHNERT E, OUAZZANI J, et al. The sporothriolides. a new biosynthetic family of fungal secondary metabolites[J]. Chemical Science, 2020, 11(46): 12477-12484. |
62 | TAO H, MORI T, WEI X X, et al. One polyketide synthase, two distinct products: trans-acting enzyme-controlled product divergence in calbistrin biosynthesis[J]. Angewandte Chemie International Edition, 2021, 60(16): 8851-8858. |
63 | FENG J, HAUSER M, COX R J, et al. Engineering Aspergillus oryzae for the heterologous expression of a bacterial modular polyketide synthase[J]. Journal of Fungi, 2021, 7(12): 1085. |
64 | MOOTZ H D, MARAHIEL M A. Biosynthetic systems for nonribosomal peptide antibiotic assembly[J]. Current Opinion in Chemical Biology, 1997, 1(4): 543-551. |
65 | SCHWARZER D, FINKING R, MARAHIEL M A. Nonribosomal peptides: from genes to products[J]. Natural Product Reports, 2003, 20(3): 275-287. |
66 | DE MATTOS-SHIPLEY K M J, GRECO C, HEARD D M, et al. The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis[J]. Chemical Science, 2018, 9(17): 4109-4117. |
67 | YOSHIMI A, YAMAGUCHI S, FUJIOKA T, et al. Heterologous production of a novel cyclic peptide compound, KK-1, in Aspergillus oryzae [J]. Frontiers in Microbiology, 2018, 9: 690. |
68 | KESSLER S C, CHOOI Y H. Out for a RiPP: Challenges and advances in genome mining of ribosomal peptides from fungi[J]. Natural Product Reports, 2022, 39(2): 222-230. |
69 | YE Y, MINAMI A, IGARASHI Y, et al. Unveiling the biosynthetic pathway of the ribosomally synthesized and post-translationally modified peptide ustiloxin B in filamentous fungi[J]. Angewandte Chemie International Edition, 2016, 55(28): 8072-8075. |
70 | YE Y, OZAKI T, UMEMURA M, et al. Heterologous production of asperipin-2a: proposal for sequential oxidative macrocyclization by a fungi-specific DUF3328 oxidase[J]. Organic & Biomolecular Chemistry, 2019, 17(1): 39-43. |
71 | BOETTGER D, HERTWECK C. Molecular diversity sculpted by fungal PKS-NRPS hybrids[J]. ChemBioChem, 2013, 14(1): 28-42. |
72 | FISCH K M. Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS[J]. RSC Advances, 2013, 3(40): 18228-18247. |
73 | SESHIME Y, JUVVADI P R, TOKUOKA M, et al. Functional expression of the Aspergillus flavus PKS-NRPS hybrid CpaA involved in the biosynthesis of cyclopiazonic acid[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(12): 3288-3292. |
74 | HENEGHAN M N, YAKASAI A A, HALO L M, et al. First heterologous reconstruction of a complete functional fungal biosynthetic multigene cluster[J]. ChemBioChem, 2010, 11(11): 1508-1512. |
75 | FISCH K M, BAKEER W, YAKASAI A A, et al. Rational domain swaps decipher programming in fungal highly reducing polyketide synthases and resurrect an extinct metabolite[J]. Journal of the American Chemical Society, 2011, 133(41): 16635-16641. |
76 | FUJII R, MINAMI A, GOMI K, et al. Biosynthetic assembly of cytochalasin backbone[J]. Tetrahedron Letters, 2013, 54(23): 2999-3002. |
77 | WASIL Z, PAHIRULZAMAN K A K, BUTTS C, et al. One pathway, many compounds: Heterologous expression of a fungal biosynthetic pathway reveals its intrinsic potential for diversity[J]. Chemical Science, 2013, 4(10): 3845-3856. |
78 | SONG Z S, BAKEER W, MARSHALL J W, et al. Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae [J]. Chemical Science, 2015, 6(8): 4837-4845. |
79 | UGAI T, MINAMI A, GOMI K, et al. Genome mining approach for harnessing the cryptic gene cluster in Alternaria solani: production of PKS-NRPS hybrid metabolite, didymellamide B[J]. Tetrahedron Letters, 2016, 57(25): 2793-2796. |
80 | ZHANG W Y, ZHONG Y, YU Y, et al. 4-Hydroxy pyridones from heterologous expression and cultivation of the native host[J]. Journal of Natural Products, 2020, 83(11): 3338-3346. |
81 | GAO Y, HONZATKO R B, PETERS R J. Terpenoid synthase structures: a so far incomplete view of complex catalysis[J]. Natural Product Reports, 2012, 29(10): 1153-1175. |
82 | QUIN M B, FLYNN C M, SCHMIDT-DANNERT C. Traversing the fungal terpenome[J]. Natural Product Reports, 2014, 31(10): 1449-1473. |
83 | RUDOLF J D, CHANG C Y. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases[J]. Natural Product Reports, 2020, 37(3): 425-463. |
84 | AVALOS M, GARBEVA P, VADER L, et al. Biosynthesis, evolution and ecology of microbial terpenoids[J]. Natural Product Reports, 2022, 39(2): 249-272. |
85 | CHRISTIANSON D W. Structural and chemical biology of terpenoid cyclases[J]. Chemical Reviews, 2017, 117(17): 11570-11648. |
86 | JACKSON B E, HART-WELLS E A, MATSUDA S P T. Metabolic engineering to produce sesquiterpenes in yeast[J]. Organic Letters, 2003, 5(10): 1629-1632. |
87 | SONG A A L, ABDULLAH J O, ABDULLAH M P, et al. Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production[J]. PLoS One, 2012, 7(12): e52444. |
88 | SONG A A, ABDULLAH J ONG, ABDULLAH M P, et al. Engineering the lactococcal mevalonate pathway for increased sesquiterpene production[J]. FEMS Microbiology Letters, 2014, 355(2): 177-184. |
89 | ASADOLLAHI M A, MAURY J, MØLLER K, et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis[J]. Biotechnology and Bioengineering, 2008, 99(3): 666-677. |
90 | KUSUMA H S, MAHFUD M. Box-Behnken design for investigation of microwave-assisted extraction of patchouli oil[C]//AIP Conference Proceedings. Semarang: AIP Publishing LLC, 2015, 1699: 050014. |
91 | ALBERTSEN L, CHEN Y, BACH L S, et al. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes[J]. Applied and Environmental Microbiology, 2011, 77(3): 1033-1040. |
92 | TAKINO J, KOZAKI T, SATO Y, et al. Unveiling biosynthesis of the phytohormone abscisic acid in fungi: unprecedented mechanism of core scaffold formation catalyzed by an unusual sesquiterpene synthase[J]. Journal of the American Chemical Society, 2018, 140(39): 12392-12395. |
93 | MURAI K, LAUTERBACH L, TERAMOTO K, et al. An unusual skeletal rearrangement in the biosynthesis of the sesquiterpene trichobrasilenol from Trichoderma [J]. Angewandte Chemie International Edition, 2019, 58(42): 15046-15050. |
94 | LEE C F, CHEN L X, CHIANG C Y, et al. The biosynthesis of norsesquiterpene aculenes requires three cytochrome P450 enzymes to catalyze a stepwise demethylation process[J]. Angewandte Chemie International Edition, 2019, 58(51): 18414-18418. |
95 | FENG J, SURUP F, HAUSER M, et al. Biosynthesis of oxygenated brasilane terpene glycosides involves a promiscuous N-acetylglucosamine transferase[J]. Chemical Communications, 2020, 56(82): 12419-12422. |
96 | RICO-MARTÍNEZ M, MEDINA F G, MARRERO J G, et al. Biotransformation of diterpenes[J]. RSC Advances, 2014, 4(21): 10627-10647. |
97 | FUJII R, MINAMI A, TSUKAGOSHI T, et al. Total biosynthesis of diterpene aphidicolin, a specific inhibitor of DNA polymerase α: heterologous expression of four biosynthetic genes in Aspergillus oryzae [J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(9): 1813-1817. |
98 | QIN B, MATSUDA Y, MORI T, et al. An unusual chimeric diterpene synthase from Emericella variecolor and its functional conversion into a sesterterpene synthase by domain swapping[J]. Angewandte Chemie International Edition, 2016, 55(5): 1658-1661. |
99 | ALBERTI F, KHAIRUDIN K, VENEGAS E R, et al. Heterologous expression reveals the biosynthesis of the antibiotic pleuromutilin and generates bioactive semi-synthetic derivatives[J]. Nature Communications, 2017, 8: 1831. |
100 | MITSUHASHI T, OKADA M, ABE I. Identification of chimeric αβγ diterpene synthases possessing both Type II terpene cyclase and prenyltransferase activities[J]. ChemBioChem, 2017, 18(21): 2104-2109. |
101 | MITSUHASHI T, KIKUCHI T, HOSHINO S, et al. Crystalline sponge method enabled the investigation of a prenyltransferase-terpene synthase chimeric enzyme, whose product exhibits broadened NMR signals[J]. Organic Letters, 2018, 20(18): 5606-5609. |
102 | TAZAWA A, YE Y, OZAKI T, et al. Total biosynthesis of brassicicenes: identification of a key enzyme for skeletal diversification[J]. Organic Letters, 2018, 20(19): 6178-6182. |
103 | LIN F L, LAUTERBACH L, ZOU J, et al. Mechanistic characterization of the fusicoccane-type diterpene synthase for myrothec-15(17)-en-7-ol[J]. ACS Catalysis, 2020, 10(7): 4306-4312. |
104 | LI K K, GUSTAFSON K R. Sesterterpenoids: chemistry, biology, and biosynthesis[J]. Natural Product Reports, 2021, 38(7): 1251-1281. |
105 | GUO K, LIU Y, LI S H. The untapped potential of plant sesterterpenoids: chemistry, biological activities and biosynthesis[J]. Natural Product Reports, 2021, 38(12): 2293-2314. |
106 | CHIBA R, MINAMI A, GOMI K, et al. Identification of ophiobolin F synthase by a genome mining approach: A sesterterpene synthase from Aspergillus clavatus [J]. Organic Letters, 2013, 15(3): 594-597. |
107 | QUAN Z Y, DICKSCHAT J S. On the mechanism of ophiobolin F synthase and the absolute configuration of its product by isotopic labelling experiments[J]. Organic & Biomolecular Chemistry, 2020, 18(31): 6072-6076. |
108 | MATSUDA Y, MITSUHASHI T, QUAN Z Y, et al. Molecular basis for stellatic acid biosynthesis: a genome mining approach for discovery of sesterterpene synthases[J]. Organic Letters, 2015, 17(18): 4644-4647. |
109 | MATSUDA Y, MITSUHASHI T, LEE S K, et al. Astellifadiene: structure determination by NMR spectroscopy and crystalline sponge method, and elucidation of its biosynthesis[J]. Angewandte Chemie International Edition, 2016, 55(19): 5785-5788. |
110 | OKADA M, MATSUDA Y, MITSUHASHI T, et al. Genome-based discovery of an unprecedented cyclization mode in fungal sesterterpenoid biosynthesis[J]. Journal of the American Chemical Society, 2016, 138(31): 10011-10018. |
111 | NARITA K, SATO H, MINAMI A, et al. Focused genome mining of structurally related sesterterpenes: enzymatic formation of enantiomeric and diastereomeric products[J]. Organic Letters, 2017, 19(24): 6696-6699. |
112 | NARITA K, MINAMI A, OZAKI T, et al. Total biosynthesis of antiangiogenic agent (–)-terpestacin by artificial reconstitution of the biosynthetic machinery in Aspergillus oryzae [J]. The Journal of Organic Chemistry, 2018, 83(13): 7042-7048. |
113 | GAO L, NARITA K, OZAKI T, et al. Identification of novel sesterterpenes by genome mining of phytopathogenic fungi Phoma and Colletotrichum sp.[J]. Tetrahedron Letters, 2018, 59(12): 1136-1139. |
114 | HUANG J H, LV J M, WANG Q Z, et al. Biosynthesis of an anti-tuberculosis sesterterpenoid asperterpenoid A[J]. Organic & Biomolecular Chemistry, 2019, 17(2): 248-251. |
115 | QUAN Z Y, DICKSCHAT J S. Biosynthetic gene cluster for asperterpenols A and B and the cyclization mechanism of asperterpenol A synthase[J]. Organic Letters, 2020, 22(19): 7552-7555. |
116 | GUO J J, CAI Y S, CHENG F C, et al. Genome mining reveals a multiproduct sesterterpenoid biosynthetic gene cluster in Aspergillus ustus [J]. Organic Letters, 2021, 23(5): 1525-1529. |
117 | JIANG L, ZHANG X, SATO Y, et al. Genome-based discovery of enantiomeric pentacyclic sesterterpenes catalyzed by fungal bifunctional terpene synthases[J]. Organic Letters, 2021, 23(12): 4645-4650. |
118 | HARRISON D M. The biosynthesis of triterpenoids and steroids[J]. Natural Product Reports, 1985, 2(6): 525-560. |
119 | LV J M, HU D, GAO H, et al. Biosynthesis of helvolic acid and identification of an unusual C-4-demethylation process distinct from sterol biosynthesis[J]. Nature Communications, 2017, 8: 1644. |
120 | WANG G Q, CHEN G D, QIN S Y, et al. Biosynthetic pathway for furanosteroid demethoxyviridin and identification of an unusual pregnane side-chain cleavage[J]. Nature Communications, 2018, 9: 1838. |
121 | CAO Z Q, LI S Y, LV J M, et al. Biosynthesis of clinically used antibiotic fusidic acid and identification of two short-chain dehydrogenase/reductases with converse stereoselectivity[J]. Acta Pharmaceutica Sinica B, 2019, 9(2): 433-442. |
122 | WANG J L, ZHANG Y N, LIU H H, et al. A biocatalytic hydroxylation-enabled unified approach to C19-hydroxylated steroids[J]. Nature Communications, 2019, 10: 3378. |
123 | CAO Z Q, LV J M, LIU Q, et al. Biosynthetic study of cephalosporin P1 reveals a multifunctional P450 enzyme and a site-selective acetyltransferase[J]. ACS Chemical Biology, 2020, 15(1): 44-51. |
124 | GERIS R, SIMPSON T J. Meroterpenoids produced by fungi[J]. Natural Product Reports, 2009, 26(8): 1063-1094. |
125 | SCHOR R, SCHOTTE C, WIBBERG D, et al. Three previously unrecognised classes of biosynthetic enzymes revealed during the production of xenovulene A[J]. Nature Communications, 2018, 9: 1963. |
126 | SCHOTTE C, LI L, WIBBERG D, et al. Synthetic biology driven biosynthesis of unnatural tropolone sesquiterpenoids[J]. Angewandte Chemie International Edition, 2020, 59(52): 23870-23878. |
127 | ITOH T, TOKUNAGA K, MATSUDA Y, et al. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases[J]. Nature Chemistry, 2010, 2(10): 858-864. |
128 | HU J, OKAWA H, YAMAMOTO K, et al. Characterization of two cytochrome P450 monooxygenase genes of the pyripyropene biosynthetic gene cluster from Penicillium coprobium[J]. The Journal of Antibiotics, 2011, 64(3): 221-227. |
129 | HU J, FURUTANI A, YAMAMOTO K, et al. Characterization of two acetyltransferase genes in the pyripyropene biosynthetic gene cluster from Penicillium coprobium [J]. Biotechnology & Biotechnological Equipment, 2014, 28(5): 818-826. |
130 | MATSUDA Y, AWAKAWA T, ABE I. Reconstituted biosynthesis of fungal meroterpenoid andrastin A[J]. Tetrahedron, 2013, 69(38): 8199-8204. |
131 | MATSUDA Y, AWAKAWA T, WAKIMOTO T, et al. Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis[J]. Journal of the American Chemical Society, 2013, 135(30): 10962-10965. |
132 | MATSUDA Y, IWABUCHI T, WAKIMOTO T, et al. Uncovering the unusual D-ring construction in terretonin biosynthesis by collaboration of a multifunctional cytochrome P450 and a unique isomerase[J]. Journal of the American Chemical Society, 2015, 137(9): 3393-3401. |
133 | MATSUDA Y, QUAN Z Y, MITSUHASHI T, et al. Cytochrome P450 for citreohybridonol synthesis: oxidative derivatization of the andrastin scaffold[J]. Organic Letters, 2016, 18(2): 296-299. |
134 | MATSUDA Y, IWABUCHI T, FUJIMOTO T, et al. Discovery of key dioxygenases that diverged the paraherquonin and acetoxydehydroaustin pathways in Penicillium brasilianum [J]. Journal of the American Chemical Society, 2016, 138(38): 12671-12677. |
135 | MATSUDA Y, BAI T X, PHIPPEN C B W, et al. Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation[J]. Nature Communications, 2018, 9: 2587. |
136 | BAI T X, QUAN Z Y, ZHAI R, et al. Elucidation and heterologous reconstitution of chrodrimanin B biosynthesis[J]. Organic Letters, 2018, 20(23): 7504-7508. |
137 | WANG W G, DU L Q, SHENG S L, et al. Genome mining for fungal polyketide-diterpenoid hybrids: discovery of key terpene cyclases and multifunctional P450s for structural diversification[J]. Organic Chemistry Frontiers, 2019, 6(5): 571-578. |
138 | XIAO Z H, DONG J Y, LI A, et al. Biocatalytic and chemical derivatization of the fungal meroditerpenoid chevalone E[J]. Organic Chemistry Frontiers, 2022, 9(7): 1837-1843. |
139 | TSUKADA K, SHINKI S, KANEKO A, et al. Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones[J]. Nature Communications, 2020, 11: 1830. |
140 | BAI T X, MATSUDA Y, TAO H, et al. Structural diversification of andiconin-derived natural products by α-ketoglutarate-dependent dioxygenases[J]. Organic Letters, 2020, 22(11): 4311-4315. |
141 | YAN D X, MATSUDA Y. Genome mining-driven discovery of 5-methylorsellinate-derived meroterpenoids from Aspergillus funiculosus [J]. Organic Letters, 2021, 23(8): 3211-3215. |
142 | TAGAMI K, LIU C W, MINAMI A, et al. Reconstitution of biosynthetic machinery for indole-diterpene paxilline in Aspergillus oryzae [J]. Journal of the American Chemical Society, 2013, 135(4): 1260-1263. |
143 | LIU C W, TAGAMI K, MINAMI A, et al. Reconstitution of biosynthetic machinery for the synthesis of the highly elaborated indole diterpene penitrem[J]. Angewandte Chemie International Edition, 2015, 54(19): 5748-5752. |
144 | LIU C W, MINAMI A, DAIRI T, et al. Biosynthesis of shearinine: Diversification of a tandem prenyl moiety of fungal indole diterpenes[J]. Organic Letters, 2016, 18(19): 5026-5029. |
145 | KUDO K, LIU C W, MATSUMOTO T, et al. Heterologous biosynthesis of fungal indole sesquiterpene sespendole[J]. ChemBioChem, 2018, 19(14): 1492-1497. |
146 | JIANG Y L, OZAKI T, HARADA M, et al. Biosynthesis of indole diterpene lolitrems: Radical-induced cyclization of an epoxyalcohol affording a characteristic lolitremane skeleton[J]. Angewandte Chemie International Edition, 2020, 59(41): 17996-18002. |
147 | LI C, MATSUDA Y, GAO H, et al. Biosynthesis of LL-Z1272β: Discovery of a new member of NRPS-like enzymes for aryl-aldehyde formation[J]. ChemBioChem, 2016, 17(10): 904-907. |
148 | OKADA M, SAITO K, WONG C P, et al. Combinatorial biosynthesis of (+)-daurichromenic acid and its halogenated analogue[J]. Organic Letters, 2017, 19(12): 3183-3186. |
149 | ARAKI Y, AWAKAWA T, MATSUZAKI M, et al. Complete biosynthetic pathways of ascofuranone and ascochlorin in Acremonium egyptiacum [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8269-8274. |
150 | LV J M, GAO Y H, ZHAO H, et al. Biosynthesis of biscognienyne B involving a cytochrome P450-dependent alkynylation[J]. Angewandte Chemie International Edition, 2020, 59(32): 13531-13536. |
151 | TAKUSAGAWA S, SATOH Y, OHTSU I, et al. Ergothioneine production with Aspergillus oryzae [J]. Bioscience, Biotechnology, and Biochemistry, 2019, 83(1): 181-184. |
152 | NEWMAN D J, CRAGG G M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. Journal of Natural Products, 2020, 83(3): 770-803. |
153 | ATANASOV A G, ZOTCHEV S B, DIRSCH V M, et al. Natural products in drug discovery: advances and opportunities[J]. Nature Reviews Drug Discovery, 2021, 20(3): 200-216. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
[3] | Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 239-253. |
[4] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[5] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[6] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[7] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[8] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[9] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[10] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[11] | Qiang ZHOU, Dawei ZHOU, Jingxiang SUN, Jingnan WANG, Wankui JIANG, Wenming ZHANG, Yujia JIANG, Fengxue XIN, Min JIANG. Research progress in synthesis of astaxanthin by microbial fermentation [J]. Synthetic Biology Journal, 2024, 5(1): 126-143. |
[12] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[13] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[14] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[15] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||