Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (4): 840-851.DOI: 10.12211/2096-8280.2022-048
• Research Article • Previous Articles
LIU Wanqiu, JI Xiangyang, XU Huiling, LU Yicong, LI Jian
Received:
2022-09-06
Revised:
2022-12-01
Online:
2023-09-14
Published:
2023-08-31
Contact:
LI Jian
刘晚秋, 季向阳, 许慧玲, 卢屹聪, 李健
通讯作者:
李健
作者简介:
基金资助:
CLC Number:
LIU Wanqiu, JI Xiangyang, XU Huiling, LU Yicong, LI Jian. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases[J]. Synthetic Biology Journal, 2023, 4(4): 840-851.
刘晚秋, 季向阳, 许慧玲, 卢屹聪, 李健. 限制性内切酶的无细胞快速制备研究[J]. 合成生物学, 2023, 4(4): 840-851.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-048
引物名称 | 序列 | 用途 |
---|---|---|
linearPro_F | CCTACAGCGTGAGCATTG | 扩增启动子片段 |
linearPro_R | CATATGGTGATGATGATG | |
linearTer_F | GTCGACCGGCTGCTAACA | 扩增终止子片段 |
linearTer_R | CGGATTCAGTCGTCACTCA | |
SUMOPro_F | GGATCTCGACGCTCTCCCT | 扩增启动子+SUMO标签片段 |
SUMOPro_R | AGGTCCCTGAAACAGGACCTCTAAACCACCAATCTGTTCTCTG | |
SUMO_mut_F | TACGACGGTATTCGTATTCAAGCTGATCAGAC | 去除pSUMO质粒中的EcoRⅠ酶切位点 |
SUMO_mut_R | CAGCTTGAATACGAATACCGTCGTACAAGAATC | |
EcoRⅠ_SUMO_F | TTAGAGGTCCTGTTTCAGGGACCTAGCAACAAAAAACAGAGC | 扩增EcoRⅠ基因片段 |
EcoRⅠ_SUMO_R | CATCATCATCACCATATGAGCAACAAAAAACAGAGC | |
sfGFP_SUMO_F | ATTGGTGGTACCGAGCTCATGAGCAAAGGTGAAGAA | 构建质粒pSUMO-sfGFP |
sfGFP_SUMO_R | GAGTGCGGCCGCAAGCTTTTATTTTTCGAACTGCGG | |
BamHⅠ_F | CATCATCATCACCATATGAAAGTGGAAAAAGA | 扩增BamHⅠ基因片段 |
BamHⅠ_R | TGTTAGCAGCCGGTCGACTTATTTGTTTTCCACTTTATC | |
BsaⅠ_F | TTAGAGGTCCTGTTTCAGGGACCTATGGCAAAAAAGCGGAA | 扩增BsaⅠ基因片段 |
BsaⅠ_R | TGTTAGCAGCCGGTCGACTTAATCCAGATCCGCAAA |
Table 1 Oligonucleotide primers used in this study
引物名称 | 序列 | 用途 |
---|---|---|
linearPro_F | CCTACAGCGTGAGCATTG | 扩增启动子片段 |
linearPro_R | CATATGGTGATGATGATG | |
linearTer_F | GTCGACCGGCTGCTAACA | 扩增终止子片段 |
linearTer_R | CGGATTCAGTCGTCACTCA | |
SUMOPro_F | GGATCTCGACGCTCTCCCT | 扩增启动子+SUMO标签片段 |
SUMOPro_R | AGGTCCCTGAAACAGGACCTCTAAACCACCAATCTGTTCTCTG | |
SUMO_mut_F | TACGACGGTATTCGTATTCAAGCTGATCAGAC | 去除pSUMO质粒中的EcoRⅠ酶切位点 |
SUMO_mut_R | CAGCTTGAATACGAATACCGTCGTACAAGAATC | |
EcoRⅠ_SUMO_F | TTAGAGGTCCTGTTTCAGGGACCTAGCAACAAAAAACAGAGC | 扩增EcoRⅠ基因片段 |
EcoRⅠ_SUMO_R | CATCATCATCACCATATGAGCAACAAAAAACAGAGC | |
sfGFP_SUMO_F | ATTGGTGGTACCGAGCTCATGAGCAAAGGTGAAGAA | 构建质粒pSUMO-sfGFP |
sfGFP_SUMO_R | GAGTGCGGCCGCAAGCTTTTATTTTTCGAACTGCGG | |
BamHⅠ_F | CATCATCATCACCATATGAAAGTGGAAAAAGA | 扩增BamHⅠ基因片段 |
BamHⅠ_R | TGTTAGCAGCCGGTCGACTTATTTGTTTTCCACTTTATC | |
BsaⅠ_F | TTAGAGGTCCTGTTTCAGGGACCTATGGCAAAAAAGCGGAA | 扩增BsaⅠ基因片段 |
BsaⅠ_R | TGTTAGCAGCCGGTCGACTTAATCCAGATCCGCAAA |
Fig. 2 Cell-free production of restriction endonuclease EcoRⅠ(Western blot and SDS-PAGE analyses of cell-free expressed and purified restriction endonuclease EcoRⅠ) CE—cell extract of BL21 Star (DE3); CE+ —cell extract of BL21 Star (DE3) with chaperone (pG-KJE8); T—total protein; S—soluble protein; M—marker; FT—flow throughout sample; W—washed sample; Eluate—eluted sample
Fig. 5 Cell-free production of restriction endonucleases BamHⅠ and BsaⅠ(Western Blot and SDS-PAGE analyses of cell-free expressed and purified restriction endonucleases BamHⅠ and BsaⅠ)
1 | LURIA S E, HUMAN M L. A nonhereditary, host-induced variation of bacterial viruses[J]. Journal of Bacteriology, 1952, 64(4): 557-569. |
2 | BERTANI G, WEIGLE J J. Host controlled variation in bacterial viruses[J]. Journal of Bacteriology, 1953, 65(2): 113-121. |
3 | ARBER W. Host-controlled modification of bacteriophage[J]. Annual Review of Microbiology, 1965, 19: 365-378. |
4 | DANNA K, NATHANS D. Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae [J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(12): 2913-2917. |
5 | KELLY T J JR, SMITH H O. A restriction enzyme from Hemophilus influenzae.Ⅱ[J]. Journal of Molecular Biology, 1970, 51(2): 393-409. |
6 | WILLIAMS R J. Restriction endonuclease[J]. Molecular Biotechnology, 2003, 23(3): 225-243. |
7 | PINGOUD A M. Restriction Endonucleases[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. |
8 | PINGOUD A, WILSON G G, WENDE W. TypeⅡrestriction endonucleases—a historical perspective and more[J]. Nucleic Acids Research, 2014, 42(12): 7489-7527. |
9 | ROBERTS R J. How restriction enzymes became the workhorses of molecular biology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(17): 5905-5908. |
10 | KNIZEWSKI L, KINCH L N, GRISHIN N V, et al. Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches[J]. BMC Structural Biology, 2007, 7: 40. |
11 | GUPTA R, CAPALASH N, SHARMA P. Restriction endonucleases: natural and directed evolution[J]. Applied Microbiology and Biotechnology, 2012, 94(3): 583-599. |
12 | DI FELICE F, MICHELI G, CAMILLONI G. Restriction enzymes and their use in molecular biology: an overview[J]. Journal of Biosciences, 2019, 44(2): 38. |
13 | CHENG S C, KIM R, KING K, et al. Isolation of gram quantities of EcoRⅠ restriction and modification enzymes from an overproducing strain[J]. Journal of Biological Chemistry, 1984, 259(18): 11571-11575. |
14 | HOCHULI E, BANNWARTH W, DÖBELI H, et al. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent[J]. Nature Biotechnology, 1988, 6(11): 1321-1325. |
15 | WATANABE N, TAKASAKI Y, SATO C, et al. Structures of restriction endonuclease HindⅢ in complex with its cognate DNA and divalent cations[J]. Acta Crystallographica Section D, 2009, 65(12): 1326-1333. |
16 | 朱化星, 邹媛华, 汤玉洁, 等. 一种制备限制性内切酶类产品的方法: CN113652412A[P]. 2021-11-16. |
ZHU H X, ZOU Y H, TANG Y J, et al. Method for preparing restriction enzyme product: CN113652412A[P]. 2021-11-16. | |
17 | 于博文, 李建辉, 单永超. 一种SalⅠ限制性内切酶的制备方法: CN112813087A[P]. 2021-05-18. |
YU B W, LI J H, SHAN Y C. Preparation method of SalⅠ restriction endonuclease: CN112813087A[P]. 2021-05-18. | |
18 | ORLOWSKI J, BUJNICKI J M. Structural and evolutionary classification of type Ⅱ restriction enzymes based on theoretical and experimental analyses[J]. Nucleic Acids Research, 2008, 36(11): 3552-3569. |
19 | LIU W Q, ZHANG L, CHEN M, et al. Cell-free protein synthesis: recent advances in bacterial extract sources and expanded applications[J]. Biochemical Engineering Journal, 2019, 141: 182-189. |
20 | LIU W Q, WU C Z, JEWETT M C, et al. Cell-free protein synthesis enables one-pot cascade biotransformation in an aqueous-organic biphasic system[J]. Biotechnology and Bioengineering, 2020, 117(12): 4001-4008. |
21 | XU H L, YANG C, TIAN X T, et al. Regulatory part engineering for high-yield protein synthesis in an all-Streptomyces-based cell-free expression system[J]. ACS Synthetic Biology, 2022, 11(2): 570-578. |
22 | JI X Y, LIU W Q, LI J. Recent advances in applying cell-free systems for high-value and complex natural product biosynthesis[J]. Current Opinion in Microbiology, 2022, 67: 102142. |
23 | LI J, LAWTON T J, KOSTECKI J S, et al. Cell-free protein synthesis enables high yielding synthesis of an active multicopper oxidase[J]. Biotechnology Journal, 2016, 11(2): 212-218. |
24 | MARTIN R W, DES SOYE B J, KWON Y C, et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids[J]. Nature Communications, 2018, 9: 1203. |
25 | ZHANG L Y, GUO W, LU Y. Advances in cell-free biosensors: principle, mechanism, and applications[J]. Biotechnology Journal, 2020, 15(9): 2000187. |
26 | SILVERMAN A D, KARIM A S, JEWETT M C. Cell-free gene expression: an expanded repertoire of applications[J]. Nature Reviews Genetics, 2020, 21(3): 151-170. |
27 | SI Y Y, KRETSCH A M, DAIGH L M, et al. Cell-free biosynthesis to evaluate lasso peptide formation and enzyme-substrate tolerance[J]. Journal of the American Chemical Society, 2021, 143(15): 5917-5927. |
28 | RASOR B J, VÖGELI B, LANDWEHR G M, et al. Toward sustainable, cell-free biomanufacturing[J]. Current Opinion in Biotechnology, 2021, 69: 136-144. |
29 | ZAWADA J F, BURGENSON D, YIN G, et al. Cell-free technologies for biopharmaceutical research and production[J]. Current Opinion in Biotechnology, 2022, 76: 102719. |
30 | BERNARDI A, BERNARDI G. Cloning of all EcoRⅠ fragments from phage λ in E. coli [J]. Nature, 1976, 264(5581): 89-90. |
31 | BROOKS J E, BENNER J S, HEITER D F, et al. Cloning the BamHⅠ restriction modification system[J]. Nucleic Acids Research, 1989, 17(3): 979-997. |
32 | ZHU Z Y, SAMUELSON J C, ZHOU J, et al. Engineering strand-specific DNA nicking enzymes from the type ⅡS restriction endonucleases BsaⅠ, BsmBⅠ, and BsmAⅠ[J]. Journal of Molecular Biology, 2004, 337(3): 573-583. |
33 | CASINI A, STORCH M, BALDWIN G S, et al. Bricks and blueprints: methods and standards for DNA assembly[J]. Nature Reviews Molecular Cell Biology, 2015, 16(9): 568-576. |
34 | KHORASANIZADEH S, PETERS I D, RODER H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues[J]. Nature Structural Biology, 1996, 3(2): 193-205. |
35 | CREIGHTON T E. How important is the molten globule for correct protein folding?[J]. Trends in Biochemical Sciences, 1997, 22(1): 6-10. |
36 | ENGLANDER S W. Protein folding intermediates and pathways studied by hydrogen exchange[J]. Annual Review of Biophysics and Biomolecular Structure, 2000, 29: 213-238. |
37 | MARBLESTONE J G, EDAVETTAL S C, LIM Y, et al. Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO[J]. Protein Science, 2006, 15(1): 182-189. |
38 | 高嵩, 张坤晓, 许恒皓, 等. 一种高效重组表达限制性内切酶的方法: CN107058260A[P]. 2017-08-18. |
GAO S, ZHANG K X, XU H H, et al. Method for efficient recombinant expression of restriction endonuclease: CN107058260A[P]. 2017-08-18. | |
39 | 于博文, 李建辉, 单永超. 重组NcoⅠ限制性内切酶的制备方法: CN112662647A[P]. 2021-04-16. |
YU B W, LI J H, SHAN Y C. Preparation method of recombinant NcoⅠ restriction endonuclease: CN112662647A[P]. 2021-04-16. |
[1] | GAO Ge, BIAN Qi, WANG Baojun. Synthetic genetic circuit engineering: principles, advances and prospects [J]. Synthetic Biology Journal, 2025, 6(1): 45-64. |
[2] | LI Jiyuan, WU Guosheng. Two hypothesises for the origins of organisms from the synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(1): 190-202. |
[3] | JIAO Hongtao, QI Meng, SHAO Bin, JIANG Jinsong. Legal issues for the storage of DNA data [J]. Synthetic Biology Journal, 2025, 6(1): 177-189. |
[4] | TANG Xinghua, LU Qianneng, HU Yilin. Philosophical reflections on synthetic biology in the Anthropocene [J]. Synthetic Biology Journal, 2025, 6(1): 203-212. |
[5] | XU Huaisheng, SHI Xiaolong, LIU Xiaoguang, XU Miaomiao. Key technologies for DNA storage: encoding, error correction, random access, and security [J]. Synthetic Biology Journal, 2025, 6(1): 157-176. |
[6] | SHI Ting, SONG Zhan, SONG Shiyi, ZHANG Yi-Heng P. Job. In vitro BioTransformation (ivBT): a new frontier of industrial biomanufacturing [J]. Synthetic Biology Journal, 2024, 5(6): 1437-1460. |
[7] | CHAI Meng, WANG Fengqing, WEI Dongzhi. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. |
[8] | SHAO Mingwei, SUN Simian, YANG Shimao, CHEN Guoqiang. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, 5(6): 1419-1436. |
[9] | CHEN Yu, ZHANG Kang, QIU Yijing, CHENG Caiyun, YIN Jingjing, SONG Tianshun, XIE Jingjing. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168. |
[10] | ZHENG Haotian, LI Chaofeng, LIU Liangxu, WANG Jiawei, LI Hengrun, NI Jun. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[11] | CHEN Ziling, XIANG Yangfei. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[12] | CAI Bingyu, TAN Xiangtian, LI Wei. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[13] | XIE Huang, ZHENG Yilei, SU Yiting, RUAN Jingyi, LI Yongquan. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[14] | ZHA Wenlong, BU Lan, ZI Jiachen. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[15] | HUI Zhen, TANG Xiaoyu. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||