Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (6): 1350-1366.DOI: 10.12211/2096-8280.2024-019
• Invited Review • Previous Articles Next Articles
Yining LIU1,2, Wei PU3,4, Jinxing YANG5, Yu WANG1,2
Received:
2024-02-04
Revised:
2024-04-25
Online:
2025-01-10
Published:
2024-12-31
Contact:
Yu WANG
刘益宁1,2, 蒲伟3,4, 杨金星5, 王钰1,2
通讯作者:
王钰
作者简介:
基金资助:
CLC Number:
Yining LIU, Wei PU, Jinxing YANG, Yu WANG. Recent advances in the biosynthesis of ω-amino acids and lactams[J]. Synthetic Biology Journal, 2024, 5(6): 1350-1366.
刘益宁, 蒲伟, 杨金星, 王钰. ω-氨基酸与内酰胺的生物合成研究进展[J]. 合成生物学, 2024, 5(6): 1350-1366.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-019
Fig. 2 Biosynthetic pathways for ω-amino acidsaspC—Encodes aspartate transaminase; lysC—Encodes aspartate kinase; dapA—Encodes dihydrodipicolinate synthase; dapB—Encodes 4-hydroxy-tetrahydrodipicolinate reductase; ddh—Encodes meso-diaminopimelate dehydrogenase; lysA—Encodes diaminopimelate decarboxylase; davA—Encodes 5-aminopentanamide hydrolase; davB—Encodes lysine monooxygenase; patD—Encodes γ-aminobutyraldehyde dehydrogenase; ldcC—Encodes lysine decarboxylase; cadA—Encodes lysine decarboxylase; patA—Encodes putrescine aminotransferase; puuA/ygjG—Encodes putrescine transaminase; lysOx/RaiP—Encodes lysine α-oxidase; kivD—Encodes 2-ketoisovalerate decarboxylase; padA—Encodes phenylacetaldehyde dehydrogenase; nifV—Encodes homocitrate synthase; kdcA—Encodes ketoacid decarboxylase; vfl—Encodes aminotransferase; argA—Encodes amino acid acetyltransferase; argB—Encodes N-acetylglutamate kinase; argC—Encodes N-acetylglutamate-phosphate reductase; argD—Encodes ornithine transcarbamoylase; argE—Encodes ornithine carbamoyltransferase; argJ—Encodes ornithine acetyltransferase; speC/speF—Encodes ornithine decarboxylase; gadB—Encodes glutamate decarboxylase β subunit; gadA—Encodes glutamate decarboxylase α subunit; leuA—Encodes α-isopropylmalate synthase; leuB—Encodes 3-isopropylmalate dehydrogenase; leuCD—Encodes 3-isopropylmalate dehydratase; aksD—Encodes isopropylmalate dehydratase large subunit; aksE—Encodes isopropylmalate dehydratase small subunit; aksF—Encodes isopropylmalate/homoisocitrate dehydrogenase
微生物底盘 | 基因型 | 培养模式 | 碳源 | 生产水平 | 参考文献 | ||
---|---|---|---|---|---|---|---|
产量/(g/L) | 生产强度/[g/(L·h)] | 转化率/(g/g) | |||||
E. coli BW25113 | ΔgadAB, P araBAD : gadBopt from L. lactis | 反应器补料分批发酵 | 谷氨酸钠 | 614.15 | 40.94 | 0.99 | [ |
L. paracasei NFRI 7415 | 野生型 | 反应器补料分批发酵 | 谷氨酸钠 | 31.1 | 0.185 | 0.37 | [ |
S. salivarius subsp.thermophilus Y2 | 野生型 | 反应器补料分批发酵 | 谷氨酸钠 | 7.98 | 0.095 | 0.53 | [ |
L. brevis NCL912 | 野生型 | 反应器补料分批发酵 | 葡萄糖 | 205.8 | 4.29 | 1.43 | [ |
E. coli BL21(DE3) | P ADH1 : gadA | 反应器补料分批发酵 | 葡萄糖,谷氨酸钠 | 300 | 8.57 | 0.69 | [ |
E. coli XL1-Blue | P gntT104 : gadB from L. brevis subsp.Lactis IL1403 | 反应器补料分批发酵 | 葡萄糖,谷氨酸钠 | 94.8 | 1.98 | 0.777 | [ |
E. coli XL1-Blue | P tac : gadB from N. crassa | 摇瓶发酵 | 谷氨酸钠 | 5.35 | 0.11 | 0.878 | [ |
E. coli XL1-Blue | P tac : gadB from P. horikoshii | 摇瓶发酵 | 谷氨酸钠 | 5.07 | 0.11 | 0.83 | [ |
E. coli BL21(DE3) | P T7 : GAD from S. cerevisiae | 反应器补料分批发酵 | 乳糖,甘油 | 252 | — | 0.99 | [ |
E. coli BL21(DE3) | P T7 : GAD from L. lactis FJNUGA01 | 反应器补料分批发酵 | 谷氨酸钠 | 204.1 | 34 | 0.99 | [ |
E. coli BL21(DE3) | P T7 : gadA, gadB, gadC from E. coli | 反应器补料分批发酵 | 谷氨酸钠 | 31.3 | 0.55 | — | [ |
E. coli XBT | ΔgabT, P T7 : gadBC from E. coli | 摇瓶发酵 | 谷氨酸钠 | 5.46 | 0.114 | 0.895 | [ |
E. coli BW25113 | ΔgadC, ΔgadAB, P araBAD : gadB (M4)-groES-groEL, gadB mutant from L. lactis IL1403 | 反应器补料分批发酵 | 谷氨酸钠 | 308.26 | 44.04 | 0.996 | [ |
E. coli XBM3 | ΔackA, gabT, P arcC : icd-GBD, gltB-SH3, gadA-PDZ from E. coli | 摇瓶发酵 | 葡萄糖 | 1.3 | 0.027 | 0.13 | [ |
E. coli (XL1-Blue) XBM4 | ΔfrdB, gabT, P araBAD : gadC-GBD, gltB-SH3, gadB-PDZ from E. coli | 摇瓶发酵 | 葡萄糖 | 1.23 | 0.026 | 0.123 | [ |
E. coli (XL1-Blue) XBM6 | ΔpflB, poxB, ldhA, P arcC: gadC-GDB,gabD-SH3, gabT-PDZ from E. coli | 摇瓶发酵 | 葡萄糖 | 0.79 | 0.016 | 0.079 | [ |
E. coli XBM7 | ΔackA, ldhA, P araC : sdhA-GBD, gabD-SH3, gabT-PDZ from E. coli | 摇瓶发酵 | 葡萄糖 | 0.75 | 0.016 | 0.075 | [ |
E. coli XBM6 | ΔpflB, ΔpoxB, ΔldhA, P arcC: gadD-GDB, gabD-SH3, puuE-PDZ from E. coli | 摇瓶发酵 | 葡萄糖 | 0.87 | — | — | [ |
E. coli JWZ08 | ΔwaaF, ΔwaaC, ΔsucA, ΔpuuE, ΔgabT, ΔgabP, ΔxylA, ΔxylB, P T7 : xylB, xylX, xylD, xylC, xylA from C. crescentus NA1000, P T7: gdhA and torA-gadB from E. coli | 摇瓶发酵 | 木糖 | 3.95 | 0.065 | 0.20 | [ |
E. coli BW25113 | ΔlacI, ΔgabT, ΔsucA, ΔaceA, P LlacO1 ::gltB, gadB(E89Q,Δ452-466), gadC (1-470),glnA from E. coli | 摇瓶发酵 | 葡萄糖 | 4.8 | 0.15 | 0.29 | [ |
E. coli EDK11 | gadB, gadC, gabT, gltA from E. coli | 摇瓶发酵 | 葡萄糖 | 1.2 | 0.05 | — | [ |
E. coli Nissle 1917pMT1-G/pMT2-R/EcNP | P trc : gadB from E. coli | 全细胞催化 | 谷氨酸钠 | 17.9 | — | — | [ |
C. glutamicum GAD | P HCE : gadB from E. coli | 摇瓶发酵 | 葡萄糖 | 12.37 | 0.172 | 0.247 | [ |
C. glutamicum ATCC 13032 | P tacM : gadB1, gadB2 from L. brevis Lb85 | 摇瓶发酵 | 葡萄糖 | 27.13 | 0.226 | 0.52 | [ |
C. glutamicum ATCC 13032 | P H36 : gadB(E89Q, Δ452-466) from E. coli | 反应器补料分批发酵 | 葡萄糖 | 38.6 | 0.536 | 0.32 | [ |
C. glutamicum H36GD1852 | P H36 : gadBmut, xylAB from E. coli | 反应器补料分批发酵 | EFB | 35.47 | 0.68 | — | [ |
C. glutamicum SH | P tacM : R4a-gabB2B1mut from L. brevis | 摇瓶发酵 | 葡萄糖 | 26.5 | 0.442 | 0.269 | [ |
C. glutamicum ATCC 13032 | ΔcglIM, ΔcglIR, ΔcglIIR, Δncgl0464 LVIS1847 from L. brevis ATCC367 | 摇瓶发酵 | 葡萄糖 | 25.6 | 2.4 | 0.729 | [ |
C. glutamicum ATCC 13032 | ΔpknG, P HCE : gadB from E. coli | 摇瓶发酵 | 葡萄糖 | 31.1 | 0.26 | 0.311 | [ |
C. glutamicum ATCC 13032 | ΔodhA, P tac : gadB1, gadB2 from E. coli | 反应器补料分批发酵 | 葡萄糖 | 29.5 | 0.41 | — | [ |
C. glutamicum SH | Δmdh, P tac : gadB1, gadB2, ppc from E. coli | 反应器补料分批发酵 | 葡萄糖 | 26.3 | 0.365 | — | [ |
C. glutamicum PUT21 | ΔargF, ΔargR, ΔsnaA, ΔgabTDP, P tac : patD, patA from E. coli, P tac : speC-5′21-argF | 摇瓶发酵 | 葡萄糖 | 8.0 | 0.31 | — | [ |
C. glutamicum APLGGP | ΔargB, ΔproB, ΔdapA, P tac: plk fromL. plantarum GB 01-21, gad fromL. plantarum GB 01-21 | 反应器补料分批发酵 | 葡萄糖 | 70.6 | 1.001 | — | [ |
C. glutamicum ORN1 | ΔargF, ΔargR, ΔsnaA, ΔgabTDP, ΔyggB, ΔcgmA, odhATTG, odhIT15A, P tac : patDA from E. coli, Ptac: gapA, pyc and argBA49V/M54V from C. glutamicum, speC from E. coli and leaky expression of argF | 反应器补料分批发酵 | 葡萄糖 | 63.2 | 1.34 | 0.24 | [ |
C. glutamicum ATCC 13032 | ΔargR, ΔgabT, ΔgabP, P tac : gadB2 fromL. brevis ATCC 367 | 摇瓶发酵 | 葡萄糖 | 28.7 | 0.3 | — | [ |
C. glutamicum ATCC 13032 | P tuf :can, P tuf :icd, ΔsucCD, ΔgabD, ΔgabP::potE harboring pXMJ19-P tuf : guaB-gadM | 反应器补料分批发酵 | 葡萄糖 | 23.07 | 0.38 | 0.52 | [ |
C. glutamicum KCTC 1852 H36LlGAD | P H36 : gadB from L. lactis CICC20209 | 反应器补料分批发酵 | 葡萄糖 | 42.5 | 1.18 | 0.425 | [ |
L.brevisNCL912 | 野生型 | 反应器补料分批发酵 | 谷氨酸钠 | 103.7 | — | — | [ |
C. glutamicum ATCC 13032 | CgGly 2, ∆gabTDP, P GPP1-odhA-DAS+8, P GPP1-argJ-DAS+8; pGN-GGPCe | 反应器补料分批发酵 | 甘油 | 45.6 | — | 0.4 | [ |
Table 1 Biosynthesis of γ-aminobutyric acid
微生物底盘 | 基因型 | 培养模式 | 碳源 | 生产水平 | 参考文献 | ||
---|---|---|---|---|---|---|---|
产量/(g/L) | 生产强度/[g/(L·h)] | 转化率/(g/g) | |||||
E. coli BW25113 | ΔgadAB, P araBAD : gadBopt from L. lactis | 反应器补料分批发酵 | 谷氨酸钠 | 614.15 | 40.94 | 0.99 | [ |
L. paracasei NFRI 7415 | 野生型 | 反应器补料分批发酵 | 谷氨酸钠 | 31.1 | 0.185 | 0.37 | [ |
S. salivarius subsp.thermophilus Y2 | 野生型 | 反应器补料分批发酵 | 谷氨酸钠 | 7.98 | 0.095 | 0.53 | [ |
L. brevis NCL912 | 野生型 | 反应器补料分批发酵 | 葡萄糖 | 205.8 | 4.29 | 1.43 | [ |
E. coli BL21(DE3) | P ADH1 : gadA | 反应器补料分批发酵 | 葡萄糖,谷氨酸钠 | 300 | 8.57 | 0.69 | [ |
E. coli XL1-Blue | P gntT104 : gadB from L. brevis subsp.Lactis IL1403 | 反应器补料分批发酵 | 葡萄糖,谷氨酸钠 | 94.8 | 1.98 | 0.777 | [ |
E. coli XL1-Blue | P tac : gadB from N. crassa | 摇瓶发酵 | 谷氨酸钠 | 5.35 | 0.11 | 0.878 | [ |
E. coli XL1-Blue | P tac : gadB from P. horikoshii | 摇瓶发酵 | 谷氨酸钠 | 5.07 | 0.11 | 0.83 | [ |
E. coli BL21(DE3) | P T7 : GAD from S. cerevisiae | 反应器补料分批发酵 | 乳糖,甘油 | 252 | — | 0.99 | [ |
E. coli BL21(DE3) | P T7 : GAD from L. lactis FJNUGA01 | 反应器补料分批发酵 | 谷氨酸钠 | 204.1 | 34 | 0.99 | [ |
E. coli BL21(DE3) | P T7 : gadA, gadB, gadC from E. coli | 反应器补料分批发酵 | 谷氨酸钠 | 31.3 | 0.55 | — | [ |
E. coli XBT | ΔgabT, P T7 : gadBC from E. coli | 摇瓶发酵 | 谷氨酸钠 | 5.46 | 0.114 | 0.895 | [ |
E. coli BW25113 | ΔgadC, ΔgadAB, P araBAD : gadB (M4)-groES-groEL, gadB mutant from L. lactis IL1403 | 反应器补料分批发酵 | 谷氨酸钠 | 308.26 | 44.04 | 0.996 | [ |
E. coli XBM3 | ΔackA, gabT, P arcC : icd-GBD, gltB-SH3, gadA-PDZ from E. coli | 摇瓶发酵 | 葡萄糖 | 1.3 | 0.027 | 0.13 | [ |
E. coli (XL1-Blue) XBM4 | ΔfrdB, gabT, P araBAD : gadC-GBD, gltB-SH3, gadB-PDZ from E. coli | 摇瓶发酵 | 葡萄糖 | 1.23 | 0.026 | 0.123 | [ |
E. coli (XL1-Blue) XBM6 | ΔpflB, poxB, ldhA, P arcC: gadC-GDB,gabD-SH3, gabT-PDZ from E. coli | 摇瓶发酵 | 葡萄糖 | 0.79 | 0.016 | 0.079 | [ |
E. coli XBM7 | ΔackA, ldhA, P araC : sdhA-GBD, gabD-SH3, gabT-PDZ from E. coli | 摇瓶发酵 | 葡萄糖 | 0.75 | 0.016 | 0.075 | [ |
E. coli XBM6 | ΔpflB, ΔpoxB, ΔldhA, P arcC: gadD-GDB, gabD-SH3, puuE-PDZ from E. coli | 摇瓶发酵 | 葡萄糖 | 0.87 | — | — | [ |
E. coli JWZ08 | ΔwaaF, ΔwaaC, ΔsucA, ΔpuuE, ΔgabT, ΔgabP, ΔxylA, ΔxylB, P T7 : xylB, xylX, xylD, xylC, xylA from C. crescentus NA1000, P T7: gdhA and torA-gadB from E. coli | 摇瓶发酵 | 木糖 | 3.95 | 0.065 | 0.20 | [ |
E. coli BW25113 | ΔlacI, ΔgabT, ΔsucA, ΔaceA, P LlacO1 ::gltB, gadB(E89Q,Δ452-466), gadC (1-470),glnA from E. coli | 摇瓶发酵 | 葡萄糖 | 4.8 | 0.15 | 0.29 | [ |
E. coli EDK11 | gadB, gadC, gabT, gltA from E. coli | 摇瓶发酵 | 葡萄糖 | 1.2 | 0.05 | — | [ |
E. coli Nissle 1917pMT1-G/pMT2-R/EcNP | P trc : gadB from E. coli | 全细胞催化 | 谷氨酸钠 | 17.9 | — | — | [ |
C. glutamicum GAD | P HCE : gadB from E. coli | 摇瓶发酵 | 葡萄糖 | 12.37 | 0.172 | 0.247 | [ |
C. glutamicum ATCC 13032 | P tacM : gadB1, gadB2 from L. brevis Lb85 | 摇瓶发酵 | 葡萄糖 | 27.13 | 0.226 | 0.52 | [ |
C. glutamicum ATCC 13032 | P H36 : gadB(E89Q, Δ452-466) from E. coli | 反应器补料分批发酵 | 葡萄糖 | 38.6 | 0.536 | 0.32 | [ |
C. glutamicum H36GD1852 | P H36 : gadBmut, xylAB from E. coli | 反应器补料分批发酵 | EFB | 35.47 | 0.68 | — | [ |
C. glutamicum SH | P tacM : R4a-gabB2B1mut from L. brevis | 摇瓶发酵 | 葡萄糖 | 26.5 | 0.442 | 0.269 | [ |
C. glutamicum ATCC 13032 | ΔcglIM, ΔcglIR, ΔcglIIR, Δncgl0464 LVIS1847 from L. brevis ATCC367 | 摇瓶发酵 | 葡萄糖 | 25.6 | 2.4 | 0.729 | [ |
C. glutamicum ATCC 13032 | ΔpknG, P HCE : gadB from E. coli | 摇瓶发酵 | 葡萄糖 | 31.1 | 0.26 | 0.311 | [ |
C. glutamicum ATCC 13032 | ΔodhA, P tac : gadB1, gadB2 from E. coli | 反应器补料分批发酵 | 葡萄糖 | 29.5 | 0.41 | — | [ |
C. glutamicum SH | Δmdh, P tac : gadB1, gadB2, ppc from E. coli | 反应器补料分批发酵 | 葡萄糖 | 26.3 | 0.365 | — | [ |
C. glutamicum PUT21 | ΔargF, ΔargR, ΔsnaA, ΔgabTDP, P tac : patD, patA from E. coli, P tac : speC-5′21-argF | 摇瓶发酵 | 葡萄糖 | 8.0 | 0.31 | — | [ |
C. glutamicum APLGGP | ΔargB, ΔproB, ΔdapA, P tac: plk fromL. plantarum GB 01-21, gad fromL. plantarum GB 01-21 | 反应器补料分批发酵 | 葡萄糖 | 70.6 | 1.001 | — | [ |
C. glutamicum ORN1 | ΔargF, ΔargR, ΔsnaA, ΔgabTDP, ΔyggB, ΔcgmA, odhATTG, odhIT15A, P tac : patDA from E. coli, Ptac: gapA, pyc and argBA49V/M54V from C. glutamicum, speC from E. coli and leaky expression of argF | 反应器补料分批发酵 | 葡萄糖 | 63.2 | 1.34 | 0.24 | [ |
C. glutamicum ATCC 13032 | ΔargR, ΔgabT, ΔgabP, P tac : gadB2 fromL. brevis ATCC 367 | 摇瓶发酵 | 葡萄糖 | 28.7 | 0.3 | — | [ |
C. glutamicum ATCC 13032 | P tuf :can, P tuf :icd, ΔsucCD, ΔgabD, ΔgabP::potE harboring pXMJ19-P tuf : guaB-gadM | 反应器补料分批发酵 | 葡萄糖 | 23.07 | 0.38 | 0.52 | [ |
C. glutamicum KCTC 1852 H36LlGAD | P H36 : gadB from L. lactis CICC20209 | 反应器补料分批发酵 | 葡萄糖 | 42.5 | 1.18 | 0.425 | [ |
L.brevisNCL912 | 野生型 | 反应器补料分批发酵 | 谷氨酸钠 | 103.7 | — | — | [ |
C. glutamicum ATCC 13032 | CgGly 2, ∆gabTDP, P GPP1-odhA-DAS+8, P GPP1-argJ-DAS+8; pGN-GGPCe | 反应器补料分批发酵 | 甘油 | 45.6 | — | 0.4 | [ |
微生物底盘 | 基因型 | 培养模式 | 碳源 | 生产水平 | 参考文献 | ||
---|---|---|---|---|---|---|---|
产量/(g/L) | 生产强度/[g/(L·h)] | 转化率/(g/g) | |||||
E. coli WL3110 | P LlacO-1 : davAB from P. putida | 摇瓶发酵 | 3.6 | 0.075 | — | [ | |
E. coli WL3110 | pKE112-davAB from P. putida | 反应器补料分批发酵 | 90.59 | — | 0.942 | [ | |
E. coli CJ02RaiP | ΔcadA, raiP from E. coli | 全细胞催化 | 50.62 | 1.05 | 0.506 | [ | |
C. glutamicum KCTC 12390BP | ΔgabT, P H36 : davAHis6davB from E. coli | 反应器补料分批发酵 | 葡萄糖 | 33.1 | 0.22 | 0.1 | [ |
C. glutamicum LYS-12 | bioD::davBA from P. putida, ΔlysE, ΔgabT | 反应器补料分批发酵 | 葡萄糖 | 28 | 0.9 | 0.11 | [ |
C. glutamicum KCTC 1857 | P H30 : davBA from P. putida | 反应器补料分批发酵 | 葡萄糖 | 39.9 | 0.54 | 0.11 | [ |
C. glutamicum AVA-7 | ΔargD, ΔgabTDP, ΔlysE, P tuf: davBA from P. putida KT2440 and PP2911 fromP. putida KT2440 | 反应器补料分批发酵 | 葡萄糖 | 46.5 | 1.52 | 0.34 | [ |
E. coli WL3110 | P LlacO-1: davAB from P. putida | 反应器补料分批发酵 | 葡萄糖 | 90.59 | 0.94 | 0.75 | [ |
E. coli BW25113 (DE3) | ΔcadA, ΔldcC, P lac: davBA from P. putida KT2440, P T7 : lysCT352I, dapA fromC. glutamicum | 摇瓶发酵 | 葡萄糖 | 0.86 | 0.018 | 0.046 | [ |
E. coli BL21(DE3) | P T7 : davA from P. putida KT2440, P T7 : davB from P. putida KT2440 | 反应器补料分批发酵 | 240.7 | 8.6 | 0.868 | [ | |
E. coli pDABLP | P T7 : davAB from P. putida KT2440, P T7 : lysP, P T7: PP2911 from P. putida | 反应器补料分批发酵 | 葡萄糖 | 63.2 | 0.405 | 0.62 | [ |
E. coli BL21(DE3) | ΔcadA, P T7 : raiP from S. japonicus | 全细胞催化 | 29.12 | 0.40 | 0.44 | [ | |
E. coli CJ09 | ΔcadA, raiP from S. japonicus, kivG(F381A/V461A) from L. lactis, pad, katE,lysP from E. coli | 反应器补料分批发酵 | 52.24 | 1.19 | 0.38 | [ | |
C. glutamicum 5AVA3 | ΔsugR, ΔldhA, ΔsnaA, ΔcgmA, ΔgabTDP, P tac : ldcC, P tac : patAD from E. coli | 摇瓶发酵 | 葡萄糖和其他碳源 | 5.1 | 0.12 | 0.13 | [ |
C. glutamicum AVA2_puoRq | ΔsugR, ΔldhA, ΔsnaA, ΔcgmA, ΔgabTDP, pVWEx1-ldcC, pEC-XT99A-puoRq-patD | 微型生物发酵系统 | 葡萄糖 | 3.7 | — | 0.09 | [ |
Table 2 Biosynthesis of 5-aminovaleric acid
微生物底盘 | 基因型 | 培养模式 | 碳源 | 生产水平 | 参考文献 | ||
---|---|---|---|---|---|---|---|
产量/(g/L) | 生产强度/[g/(L·h)] | 转化率/(g/g) | |||||
E. coli WL3110 | P LlacO-1 : davAB from P. putida | 摇瓶发酵 | 3.6 | 0.075 | — | [ | |
E. coli WL3110 | pKE112-davAB from P. putida | 反应器补料分批发酵 | 90.59 | — | 0.942 | [ | |
E. coli CJ02RaiP | ΔcadA, raiP from E. coli | 全细胞催化 | 50.62 | 1.05 | 0.506 | [ | |
C. glutamicum KCTC 12390BP | ΔgabT, P H36 : davAHis6davB from E. coli | 反应器补料分批发酵 | 葡萄糖 | 33.1 | 0.22 | 0.1 | [ |
C. glutamicum LYS-12 | bioD::davBA from P. putida, ΔlysE, ΔgabT | 反应器补料分批发酵 | 葡萄糖 | 28 | 0.9 | 0.11 | [ |
C. glutamicum KCTC 1857 | P H30 : davBA from P. putida | 反应器补料分批发酵 | 葡萄糖 | 39.9 | 0.54 | 0.11 | [ |
C. glutamicum AVA-7 | ΔargD, ΔgabTDP, ΔlysE, P tuf: davBA from P. putida KT2440 and PP2911 fromP. putida KT2440 | 反应器补料分批发酵 | 葡萄糖 | 46.5 | 1.52 | 0.34 | [ |
E. coli WL3110 | P LlacO-1: davAB from P. putida | 反应器补料分批发酵 | 葡萄糖 | 90.59 | 0.94 | 0.75 | [ |
E. coli BW25113 (DE3) | ΔcadA, ΔldcC, P lac: davBA from P. putida KT2440, P T7 : lysCT352I, dapA fromC. glutamicum | 摇瓶发酵 | 葡萄糖 | 0.86 | 0.018 | 0.046 | [ |
E. coli BL21(DE3) | P T7 : davA from P. putida KT2440, P T7 : davB from P. putida KT2440 | 反应器补料分批发酵 | 240.7 | 8.6 | 0.868 | [ | |
E. coli pDABLP | P T7 : davAB from P. putida KT2440, P T7 : lysP, P T7: PP2911 from P. putida | 反应器补料分批发酵 | 葡萄糖 | 63.2 | 0.405 | 0.62 | [ |
E. coli BL21(DE3) | ΔcadA, P T7 : raiP from S. japonicus | 全细胞催化 | 29.12 | 0.40 | 0.44 | [ | |
E. coli CJ09 | ΔcadA, raiP from S. japonicus, kivG(F381A/V461A) from L. lactis, pad, katE,lysP from E. coli | 反应器补料分批发酵 | 52.24 | 1.19 | 0.38 | [ | |
C. glutamicum 5AVA3 | ΔsugR, ΔldhA, ΔsnaA, ΔcgmA, ΔgabTDP, P tac : ldcC, P tac : patAD from E. coli | 摇瓶发酵 | 葡萄糖和其他碳源 | 5.1 | 0.12 | 0.13 | [ |
C. glutamicum AVA2_puoRq | ΔsugR, ΔldhA, ΔsnaA, ΔcgmA, ΔgabTDP, pVWEx1-ldcC, pEC-XT99A-puoRq-patD | 微型生物发酵系统 | 葡萄糖 | 3.7 | — | 0.09 | [ |
微生物底盘 | 基因型 | 培养模式 | 碳源 | 生产水平 | 参考文献 | ||
---|---|---|---|---|---|---|---|
产量/(g/L) | 生产强度/[g/(L·h)] | 转化率/(g/g) | |||||
E. coli BL21(DE3) | pZA22-leuA*-leuB-leuC-leuD, pET21a-raiP-kivD-padA | 摇瓶发酵 | 0.024 | — | — | [ | |
E. coli BL21 | Ptac : nifV from A. vineland, aksFopt from M. aeolicus Nankai-3, P tac : aksDopt from M. aeolicus Nankai-3, aksEopt from M. aeolicus Nankai-3, P tac : vflopt from V. fluvialis, kdcAopt from L. lactis | 反应器补料分批发酵 | 葡萄糖 | 2.0 | 0.038 | — | [ |
E. coli BL21 | P T7 : nifVopt from A. vinelandi aksFopt from M. aeolicus Nankai-3, P T7 : aksDopt from M. aeolicus Nankai-3, aksEopt from M. aeolicus Nankai-3, P T7 : vflopt from V. fluvialis, kdcAopt from L. lactisa | 摇瓶发酵 | 葡萄糖 | 0.048 | — | — | [ |
Table 3 Biosynthesis of 6-aminocaproic acid
微生物底盘 | 基因型 | 培养模式 | 碳源 | 生产水平 | 参考文献 | ||
---|---|---|---|---|---|---|---|
产量/(g/L) | 生产强度/[g/(L·h)] | 转化率/(g/g) | |||||
E. coli BL21(DE3) | pZA22-leuA*-leuB-leuC-leuD, pET21a-raiP-kivD-padA | 摇瓶发酵 | 0.024 | — | — | [ | |
E. coli BL21 | Ptac : nifV from A. vineland, aksFopt from M. aeolicus Nankai-3, P tac : aksDopt from M. aeolicus Nankai-3, aksEopt from M. aeolicus Nankai-3, P tac : vflopt from V. fluvialis, kdcAopt from L. lactis | 反应器补料分批发酵 | 葡萄糖 | 2.0 | 0.038 | — | [ |
E. coli BL21 | P T7 : nifVopt from A. vinelandi aksFopt from M. aeolicus Nankai-3, P T7 : aksDopt from M. aeolicus Nankai-3, aksEopt from M. aeolicus Nankai-3, P T7 : vflopt from V. fluvialis, kdcAopt from L. lactisa | 摇瓶发酵 | 葡萄糖 | 0.048 | — | — | [ |
1 | GORDILLO SIERRA A R, ALPER H S. Progress in the metabolic engineering of bio-based lactams and their ω-amino acids precursors[J]. Biotechnology Advances, 2020, 43: 107587. |
2 | CHENG J, HU G, XU Y Q, et al. Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative carbon-chain-extension cycle[J]. Metabolic Engineering, 2019, 55: 23-32. |
3 | TURK S C, KLOOSTERMAN W P, NINABER D K, et al. Metabolic engineering toward sustainable production of nylon-6[J]. ACS Synthetic Biology, 2016, 5(1): 65-73. |
4 | LEE J A, KIM J Y, AHN J H, et al. Current advancements in the bio-based production of polyamides[J]. Trends in Chemistry, 2023, 5(12): 873-891. |
5 | BEERTHUIS R, ROTHENBERG G, SHIJU N R. Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables[J]. Green Chemistry, 2015, 17(3): 1341-1361. |
6 | ZHANG J W, BARAJAS J F, BURDU M, et al. Application of an acyl-CoA ligase from Streptomyces aizunensis for lactam biosynthesis[J]. ACS Synthetic Biology, 2017, 6(5): 884-890. |
7 | LEE J W, KIM T Y, JANG Y S, et al. Systems metabolic engineering for chemicals and materials[J]. Trends in Biotechnology, 2011, 29(8): 370-378. |
8 | 王仲霞, 陈春凤, 庄毅, 等. 生物基聚酰胺及其单体研究进展[J]. 精细化工中间体, 2023, 53(4): 11-17. |
WANG Z X, CHEN C F, ZHUANG Y, et al. Progress of bio-based polyamide and its monomer[J]. Fine Chemical Intermediates, 2023, 53(4): 11-17. | |
9 | 陈万丁, 刘艳林, 倪金平, 等. 新型生物基聚酰胺的研究进展[J]. 塑料工业, 2023, 51(9): 8-13, 101. |
CHEN W D, LIU Y L, NI J P, et al. Research progress of novel biobased polyamides[J]. China Plastics Industry, 2023, 51(9): 8-13, 101. | |
10 | LEE J W, KIM H U, CHOI S, et al. Microbial production of building block chemicals and polymers[J]. Current Opinion in Biotechnology, 2011, 22(6): 758-767. |
11 | 周文娟, 付刚, 齐显尼, 等. 发酵工业菌种的迭代创制[J]. 生物工程学报, 2022, 38(11): 4200-4218. |
ZHOU W J, FU G, QI X N, et al. Upgrading microbial strains for fermentation industry[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4200-4218. | |
12 | 马倩, 夏利, 谭淼, 等. 氨基酸生产的代谢工程研究进展与发展趋势[J]. 生物工程学报, 2021, 37(5): 1677-1696. |
MA Q, XIA L, TAN M, et al. Advances and prospects in metabolic engineering for the production of amino acids[J]. Chinese Journal of Biotechnology, 2021, 37(5): 1677-1696. | |
13 | KOGURE T, INUI M. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products[J]. Applied Microbiology and Biotechnology, 2018, 102(20): 8685-8705. |
14 | LIU J, XU J Z, RAO Z M, et al. Industrial production of L-lysine in Corynebacterium glutamicum: progress and prospects[J]. Microbiological Research, 2022, 262: 127101. |
15 | 李学朋, 陈久洲, 张东旭, 等. L-谷氨酸生产关键技术创新与产业化应用[J]. 生物工程学报, 2022, 38(11): 4343-4351. |
LI X P, CHEN J Z, ZHANG D X, et al. Innovation of key technologies in fermentative production of L-glutamate and industrial application[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4343-4351. | |
16 | ZHANG J W, KAO E, WANG G, et al. Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone[J]. Metabolic Engineering Communications, 2016, 3: 1-7. |
17 | PARK J Y, JEONG S J, KIM J H. Characterization of a glutamate decarboxylase (GAD) gene from Lactobacillus zymae [J]. Biotechnology Letters, 2014, 36(9): 1791-1799. |
18 | DHAKAL R, BAJPAI V K, BAEK K H. Production of GABA (γ-aminobutyric acid) by microorganisms: a review[J]. Brazilian Journal of Microbiology, 2012, 43(4): 1230-1241. |
19 | KE C R, YANG X W, RAO H X, et al. Whole-cell conversion of L-glutamic acid into gamma-aminobutyric acid by metabolically engineered Escherichia coli [J]. SpringerPlus, 2016, 5: 591. |
20 | KOMATSUZAKI N, SHIMA J, KAWAMOTO S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods[J]. Food Microbiology, 2005, 22(6): 497-504. |
21 | YANG S Y, LÜ F X, LU Z X, et al. Production of gamma-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation[J]. Amino Acids, 2008, 34(3): 473-478. |
22 | WANG Q, LIU X H, FU J H, et al. Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912[J]. Microbial Cell Factories, 2018, 17(1): 80. |
23 | PLOKHOV A Y, GUSYATINER M M, YAMPOLSKAYA T A, et al. Preparation of γ-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase[J]. Applied Biochemistry & Biotechnology, 2000, 88(1): 257-265. |
24 | PARK S J, KIM E Y, NOH W, et al. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli [J]. Bioprocess and Biosystems Engineering, 2013, 36(7): 885-892. |
25 | LE VO T D, KO J S, LEE S H, et al. Overexpression of Neurospora crassa OR74A glutamate decarboxylase in Escherichia coli for efficient GABA production[J]. Biotechnology & Bioprocess Engineering, 2013, 18(6): 1062-1066. |
26 | LE VO T D, PHAM V D, KO J S, et al. Improvement of gamma-amino butyric acid production by an overexpression of glutamate decarboxylase from Pyrococcus horikoshii in Escherichia coli [J]. Biotechnology & Bioprocess Engineering, 2014, 19(2): 327-331. |
27 | XIONG Q, XU Z, XU L, et al. Efficient production of GABA using recombinant E. coli expressing glutamate decarboxylase (GAD) derived from eukaryote Saccharomyces cerevisiae [J]. Applied Biochemistry & Biotechnology, 2017, 183(4): 1390-1400. |
28 | KE C R, WEI J, REN Y, et al. Efficient gamma-aminobutyric acid bioconversion by engineered Escherichia coli [J]. Biotechnology & Biotechnological Equipment, 2018, 32(3): 566-573. |
29 | YU P, CHEN K F, HUANG X X, et al. Production of γ-aminobutyric acid in Escherichia coli by engineering MSG pathway[J]. Preparative Biochemistry & Biotechnology, 2018, 48(10): 906-913. |
30 | LE VO T D, KIM T W, HONG S H. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli [J]. Bioprocess and Biosystems Engineering, 2012, 35(4): 645-650. |
31 | YANG X W, KE C R, ZHU J M, et al. Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3623-3633. |
32 | PHAM V D, LEE S H, PARK S J, et al. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli [J]. Journal of Biotechnology, 2015, 207: 52-57. |
33 | PHAM V D, SOMASUNDARAM S, LEE S H, et al. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(1): 79-86. |
34 | PHAM V D, SOMASUNDARAM S, LEE S H, et al. Redirection of metabolic flux into novel gamma-aminobutyric acid production pathway by introduction of synthetic scaffolds strategy in Escherichia coli [J]. Applied Biochemistry & Biotechnology, 2016, 178(7): 1315-1324. |
35 | PHAM V D, SOMASUNDARAM S, LEE S H, et al. Engineering the intracellular metabolism of Escherichia coli to produce gamma-aminobutyric acid by co-localization of GABA shunt enzymes[J]. Biotechnology Letters, 2016, 38(2): 321-327. |
36 | PHAM V D, SOMASUNDARAM S, PARK S J, et al. Co-localization of GABA shunt enzymes for the efficient production of gamma-aminobutyric acid via GABA shunt pathway in Escherichia coli [J]. Journal of Microbiology and Biotechnology, 2016, 26(4): 710-716. |
37 | ZHAO A Q, HU X Q, WANG X Y. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose[J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3587-3603. |
38 | SOMA Y, FUJIWARA Y, NAKAGAWA T, et al. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose[J]. Metabolic Engineering, 2017, 43(Pt A): 54-63. |
39 | IM D K, HONG J, GU B, et al. 13C metabolic flux analysis of Escherichia coli engineered for gamma-aminobutyrate production[J]. Biotechnology Journal, 2020, 15(6): e1900346. |
40 | LAN Y J, TAN S I, CHENG S Y, et al. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system[J]. Biochemical Engineering Journal, 2021, 168: 107952. |
41 | TAKAHASHI C, SHIRAKAWA J, TSUCHIDATE T, et al. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli [J]. Enzyme and Microbial Technology, 2012, 51(3): 171-176. |
42 | SHI F, JIANG J J, LI Y F, et al. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis [J]. Journal of Industrial Microbiology & Biotechnology, 2013, 40(11): 1285-1296. |
43 | CHOI J W, YIM S S, LEE S H, et al. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range[J]. Microbial Cell Factories, 2015, 14: 21. |
44 | BARITUGO K A, KIM H T, DAVID Y, et al. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution[J]. Microbial Cell Factories, 2018, 17(1): 129. |
45 | SHI F, LUAN M Y, LI Y F. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum [J]. AMB Express, 2018, 8(1): 61. |
46 | ZHAO Z, DING J Y, MA W H, et al. Identification and characterization of γ-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum [J]. Applied and Environmental Microbiology, 2012, 78(8): 2596-2601. |
47 | OKAI N, TAKAHASHI C, HATADA K, et al. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase[J]. AMB Express, 2014, 4: 20. |
48 | WANG C, ZHANG K, CHEN Z J, et al. Directed evolution and mutagenesis of lysine decarboxylase from Hafnia alvei AS1.1009 to improve its activity toward efficient cadaverine production[J]. Biotechnology & Bioprocess Engineering, 2015, 20(3): 439-446. |
49 | SHI F, ZHANG M, LI Y F. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum [J]. World Journal of Microbiology & Biotechnology, 2017, 33(6): 122. |
50 | JORGE J M P, LEGGEWIE C, WENDISCH V F. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose[J]. Amino Acids, 2016, 48(11): 2519-2531. |
51 | ZHANG R Z, YANG T W, RAO Z M, et al. Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum [J]. Green Chem, 2014, 16(9): 4190-4197. |
52 | JORGE J M, NGUYEN A Q, PÉREZ-GARCÍA F, et al. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: systems metabolic engineering for production from glucose, amino sugars, and xylose[J]. Biotechnology and Bioengineering, 2017, 114(4): 862-873. |
53 | CHO J S, CHOI K R, PRABOWO C P S, et al. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum [J]. Metabolic Engineering, 2017, 42: 157-167. |
54 | ZHANG Y, ZHAO J, WANG X L, et al. Model-guided metabolic rewiring for gamma-aminobutyric acid and butyrolactam biosynthesis in Corynebacterium glutamicum ATCC13032[J]. Biology, 2022, 11(6): 846. |
55 | SON J, BARITUGO K A, SOHN Y J, et al. Production of γ-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expression of glutamate decarboxylase active at neutral pH[J]. ACS Omega, 2022, 7(33): 29106-29115. |
56 | LI H X, QIU T, HUANG G D, et al. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation[J]. Microbial Cell Factories, 2010, 9: 85. |
57 | WEI L, ZHAO J H, WANG Y R, et al. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control[J]. Metabolic Engineering, 2022, 69: 134-146. |
58 | JUN C H, JOO J C, LEE J H, et al. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain[J]. Journal of Biotechnology, 2014, 174: 22-28. |
59 | PENNACCHIETTI E, LAMMENS T M, CAPITANI G, et al. Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH[J]. Journal of Biological Chemistry, 2009, 284(46): 31587-31596. |
60 | SA H D, PARK J Y, JEONG S J, et al. Characterization of glutamate decarboxylase (GAD) from Lactobacillus sakei A156 isolated from Jeot-gal [J]. Journal of Microbiology and Biotechnology, 2015, 25(5): 696-703. |
61 | SHI F, XIE Y L, JIANG J J, et al. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH[J]. Enzyme and Microbial Technology, 2014, 61-62: 35-43. |
62 | SEO M J, NAM Y D, LEE S Y, et al. Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877G producing γ-aminobutyric acid[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(4): 853-856. |
63 | YU K, LIN L, HU S, et al. C-terminal truncation of glutamate decarboxylase from Lactobacillus brevis CGMCC 1306 extends its activity toward near-neutral pH[J]. Enzyme and Microbial Technology, 2012, 50(4-5): 263-269. |
64 | YANG S Y, LIN Q, LU Z X, et al. Characterization of a novel glutamate decarboxylase from Streptococcus salivarius ssp. thermophilus Y2[J]. Journal of Chemical Technology & Biotechnology, 2008, 83(6): 855-861. |
65 | LIU Q D, CHENG H J, MA X Q, et al. Expression, characterization and mutagenesis of a novel glutamate decarboxylase from Bacillus megaterium [J]. Biotechnology Letters, 2016, 38(7): 1107-1113. |
66 | KIM H W, KASHIMA Y, ISHIKAWA K, et al. Purification and characterization of the first archaeal glutamate decarboxylase from Pyrococcus horikoshii [J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(1): 224-227. |
67 | HAO R, SCHMIT J C. Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia[J]. Journal of Biological Chemistry, 1991, 266(8): 5135-5139. |
68 | CUI Y H, MIAO K, NIYAPHORN S, et al. Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review[J]. International Journal of Molecular Sciences, 2020, 21(3): 995. |
69 | LI H X, QIU T, GAO D D, et al. Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912[J]. Amino Acids, 2010, 38(5): 1439-1445. |
70 | HARTLINE C J, SCHMITZ A C, HAN Y C, et al. Dynamic control in metabolic engineering: theories, tools, and applications[J]. Metabolic Engineering, 2021, 63: 126-140. |
71 | CHAE T U, KO Y S, HWANG K S, et al. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams[J]. Metabolic Engineering, 2017, 41: 82-91. |
72 | REVELLES O, WITTICH R M, RAMOS J L. Identification of the initial steps in D-lysine catabolism in Pseudomonas putida [J]. Journal of Bacteriology, 2007, 189(7): 2787-2792. |
73 | PARK S J, KIM E Y, NOH W, et al. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals[J]. Metabolic Engineering, 2013, 16: 42-47. |
74 | PARK S J, OH Y H, NOH W, et al. High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis[J]. Biotechnology Journal, 2014, 9(10): 1322-1328. |
75 | CHENG J, LUO Q, DUAN H C, et al. Efficient whole-cell catalysis for 5-aminovalerate production from L-lysine by using engineered Escherichia coli with ethanol pretreatment[J]. Scientific Reports, 2020, 10(1): 990. |
76 | SHIN J H, PARK S H, OH Y H, et al. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid[J]. Microbial Cell Factories, 2016, 15(1): 174. |
77 | ROHLES C M, GIEßELMANN G, KOHLSTEDT M, et al. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate[J]. Microbial Cell Factories, 2016, 15(1): 154. |
78 | JOO J C, OH Y H, YU J H, et al. Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process[J]. Bioresource Technology, 2017, 245: 1692-1700. |
79 | ROHLES C, PAULI S, GIEßELMANN G, et al. Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate[J]. Metabolic Engineering, 2022, 73: 168-181. |
80 | 박시재, DAVID Y, BAYLON M G, et al. 바이오플라스틱 생산 미생물 플랫폼 제작을 위한 대사공학 전략 개발[J/OL]. 한국공업화학회, 2014, 25(2): 134-141[2023-03-01]. . |
PARK S J, DAVID Y, BAYLON M G, et al. Development of metabolic engineering strategies for microbial platform to produce bioplastics[J/OL]. Applied Chemistry for Engineering, 2014, 25(2): 134-141[2023-03-01]. . | |
81 | ADKINS J, JORDAN J, NIELSEN D R. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate[J]. Biotechnology and Bioengineering, 2013, 110(6): 1726-1734. |
82 | WANG X, CAI P P, CHEN K Q, et al. Efficient production of 5-aminovalerate from L-lysine by engineered Escherichia coli whole-cell biocatalysts[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 134: 115-121. |
83 | LI Z, XU J, JIANG T T, et al. Overexpression of transport proteins improves the production of 5-aminovalerate from L-lysine in Escherichia coli [J]. Scientific Reports, 2016, 6: 30884. |
84 | CHENG J, ZHANG Y N, HUANG M H, et al. Enhanced 5-aminovalerate production in Escherichia coli from L-lysine with ethanol and hydrogen peroxide addition[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3492-3501. |
85 | CHENG J, TU W Y, LUO Z, et al. A high-efficiency artificial synthetic pathway for 5-aminovalerate production from biobased L-lysine in Escherichia coli [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 633028. |
86 | JORGE J M P, PÉREZ-GARCÍA F, WENDISCH V F. A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources[J]. Bioresource Technology, 2017, 245: 1701-1709. |
87 | HAUPKA C, DELÉPINE B, IRLA M, et al. Flux enforcement for fermentative production of 5-aminovalerate and glutarate by Corynebacterium glutamicum [J]. Catalysts, 2020, 10(9): 1065. |
88 | HAN T, LEE S Y. Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer[J]. Metabolic Engineering, 2023, 79: 78-85. |
89 | THOMPSON M G, VALENCIA L E, BLAKE-HEDGES J M, et al. Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer[J]. Metabolic Engineering Communications, 2019, 9: e00098. |
90 | 叶健文, 陈江楠, 张旭, 等. 动态调控: 一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
YE J W, CHEN J N, ZHANG X, et al. Dynamic control: an efficient strategy for metabolically engineering microbial cell factories[J]. Biotechnology Bulletin, 2020, 36(6): 1-12. | |
91 | ZHANG J W, BARAJAS J F, BURDU M, et al. Development of a transcription factor-based lactam biosensor[J]. ACS Synthetic Biology, 2017, 6(3): 439-445. |
92 | ZHAO X X, WU Y L, FENG T Y, et al. Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum [J]. Metabolic Engineering, 2023, 77: 89-99. |
93 | YEOM S J, KIM M, KWON K K, et al. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts[J]. Nature Communications, 2018, 9(1): 5053. |
94 | LEE S Y, KIM H U. Systems strategies for developing industrial microbial strains[J]. Nature Biotechnology, 2015, 33(10): 1061-1072. |
95 | ZENG W Z, GUO L K, XU S, et al. High-throughput screening technology in industrial biotechnology[J]. Trends in Biotechnology, 2020, 38(8): 888-906. |
96 | ZHOU H, VONK B, ROUBOS J A, et al. Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor[J]. Nucleic Acids Research, 2015, 43(21): 10560-10570. |
97 | STAVILA E, LOOS K. Synthesis of lactams using enzyme-catalyzed aminolysis[J]. Tetrahedron Letters, 2013, 54(5): 370-372. |
98 | ZHANG Z H, WANG Y, ZHENG P, et al. Promoting lignin valorization by coping with toxic C1 byproducts[J]. Trends in Biotechnology, 2021, 39(4): 331-335. |
99 | XIN B, ZHONG C, WANG Y. Integrating the marine carbon resource mannitol into biomanufacturing[J]. Trends in Biotechnology, 2023, 41(6): 745-749. |
100 | WANG Y, FAN L W, TUYISHIME P, et al. Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing[J]. Trends in Biotechnology, 2020, 38(6): 650-666. |
[1] | Meng CHAI, Fengqing WANG, Dongzhi WEI. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. |
[2] | Fanghuan ZHU, Xuecong CEN, Zhen CHEN. Research progress of diols production by microbes [J]. Synthetic Biology Journal, 2024, 5(6): 1367-1385. |
[3] | Haotian ZHENG, Chaofeng LI, Liangxu LIU, Jiawei WANG, Hengrun LI, Jun NI. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[4] | Xiaolei CHENG, Tiangang LIU, Hui TAO. Recent research progress in non-canonical biosynthesis of terpenoids [J]. Synthetic Biology Journal, 2024, 5(5): 1050-1071. |
[5] | Zijian LIU, Baiyang MU, Zhiqiang DUAN, Xuan WANG, Xiaojie LU. Advances in the development of DNA-compatible chemistries [J]. Synthetic Biology Journal, 2024, 5(5): 1102-1124. |
[6] | Shouqi ZHANG, Tao WANG, Yao KONG, Jiasheng ZOU, Yuanning LIU, Zhengren XU. Chemoenzymatic synthesis of natural products: evolution of synthetic methodology and strategy [J]. Synthetic Biology Journal, 2024, 5(5): 913-940. |
[7] | Xiangqian XIE, Wen GUO, Huan WANG, Jin LI. Biosynthesis and chemical synthesis of ribosomally synthesized and post-translationally modified peptides containing aminovinyl cysteine [J]. Synthetic Biology Journal, 2024, 5(5): 981-996. |
[8] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[9] | Jun ZHANG, Shixue JIN, Qian YUN, Xudong QU. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[10] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[11] | Jin FENG, Haixue PAN, Gongli TANG. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[12] | Mengyu XI, Yiling HU, Yucheng GU, Huiming GE. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
[13] | Xinjie SHI, Yiling DU. Research advances in the biosynthesis of nonribosomal peptides within the bisintercalator family as anticancer drugs [J]. Synthetic Biology Journal, 2024, 5(3): 593-611. |
[14] | Yongxiang SONG, Xiufeng ZHANG, Yanqin LI, Hua XIAO, Yan YAN. Resistance-gene directed discovery of bioactive natural products [J]. Synthetic Biology Journal, 2024, 5(3): 474-491. |
[15] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||