Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (5): 932-952.DOI: 10.12211/2096-8280.2021-104
• Invited Review • Previous Articles Next Articles
Fei TAO1(), Tao SUN2, Yu WANG3, Ting WEI4, Jun NI1, Ping XU1
Received:
2021-11-18
Revised:
2021-12-22
Online:
2022-11-16
Published:
2022-10-31
Contact:
Fei TAO
陶飞1(), 孙韬2, 王钰3, 魏婷4, 倪俊1, 许平1
通讯作者:
陶飞
作者简介:
基金资助:
CLC Number:
Fei TAO, Tao SUN, Yu WANG, Ting WEI, Jun NI, Ping XU. Challenges and opportunities in the research of Synechococcus chassis under the context of carbon peak and neutrality[J]. Synthetic Biology Journal, 2022, 3(5): 932-952.
陶飞, 孙韬, 王钰, 魏婷, 倪俊, 许平. “双碳”背景下聚球藻底盘研究的挑战与机遇[J]. 合成生物学, 2022, 3(5): 932-952.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-104
Strain | Type | Engineered CRISPR system | Application | Ref. |
---|---|---|---|---|
Synechococcus elongatus PCC 7942 | Cas9 | One plasmid pCas9-NSI expresses Streptococcus pyogenes Cas9, tracrRNA and crRNA under the native promoter | Simultaneous glgc knock-out and gltA/ppc knock-in with a 100% efficiency after 3 passages of antibiotic selection | [ |
One plasmid harbors the editing template | ||||
Cas12a | One plasmid pSL2680 expresses Francisella novicida Cas12a under a lac promoter and an endogenous CRISPR array under a J23119 promoter | rpaA, atpA, and ppnK point mutations, no efficiency data were provided | [ | |
Synechococcus elongatus UTEX 2973 | Cas9 | One plasmid pSL2546 expresses S. pyogenes Cas9 under a rpsL(XC) promoter and tracrRNA and sgRNA under a gapdhp(EL) promoter and harbors the editing template | nblA deletion with a 100% efficiency in the first patch | [ |
Cas12a | One plasmid pSL2680 expresses F. novicida Cas12a under a lac promoter and an endogenous CRISPR array under a J23119 promoter | psbA S264A point mutation with 75% efficiency, eyfp knock-in with a 60% efficiency, and nblA deletion with a 90% efficiency after 3~4 passages of antibiotic selection | [ |
Tab. 1 CRISPR-based genome editing technologies for Synechococcus
Strain | Type | Engineered CRISPR system | Application | Ref. |
---|---|---|---|---|
Synechococcus elongatus PCC 7942 | Cas9 | One plasmid pCas9-NSI expresses Streptococcus pyogenes Cas9, tracrRNA and crRNA under the native promoter | Simultaneous glgc knock-out and gltA/ppc knock-in with a 100% efficiency after 3 passages of antibiotic selection | [ |
One plasmid harbors the editing template | ||||
Cas12a | One plasmid pSL2680 expresses Francisella novicida Cas12a under a lac promoter and an endogenous CRISPR array under a J23119 promoter | rpaA, atpA, and ppnK point mutations, no efficiency data were provided | [ | |
Synechococcus elongatus UTEX 2973 | Cas9 | One plasmid pSL2546 expresses S. pyogenes Cas9 under a rpsL(XC) promoter and tracrRNA and sgRNA under a gapdhp(EL) promoter and harbors the editing template | nblA deletion with a 100% efficiency in the first patch | [ |
Cas12a | One plasmid pSL2680 expresses F. novicida Cas12a under a lac promoter and an endogenous CRISPR array under a J23119 promoter | psbA S264A point mutation with 75% efficiency, eyfp knock-in with a 60% efficiency, and nblA deletion with a 90% efficiency after 3~4 passages of antibiotic selection | [ |
Fig. 3 Schematic design of phage-assisted continuous evolution (PACE) MP—mutagenesis plasmid; AP—accessory plasmid; SP—selection phage or its genome inside the infected host cell; POI—protein of interest to be evolved
产物 | 产量 | 宿主 | 参考文献 |
---|---|---|---|
2, 3-丁二醇 | 2.38 g/L | S. elongatus PCC 7942 | [ |
异丁醇 | 550 mg/L | S. elongatus PCC 7942 | [ |
3-羟基丙酸 | 659 mg/L | S. elongatus PCC 7942 | [ |
D-乳酸 | 798 mg/L | S. elongatus PCC 7942 | [ |
甘油 | 1.24 g/L | S. elongatus PCC 7942 | [ |
β-聚羟基丁酸 | 420 mg/L | S. elongatus UTEX2973 | [ |
咖啡酸 | 4.7 mg/L | S. elongatus PCC 7942 | [ |
对香豆酸 | 128.2 mg/L | S. elongatus PCC 7942 | [ |
阿魏酸 | 6.3 mg/L | S. elongatus PCC 7942 | [ |
柚皮素 | 4.6 mg/L | S. elongatus PCC 7942 | [ |
白藜芦醇 | 7.1 mg/L | S. elongatus PCC 7942 | [ |
双去甲氧基姜黄素 | 4.1 mg/L | S. elongatus PCC 7942 | [ |
异戊二烯 | 60 mg/(L·d) | S. elongatus PCC 7942 | [ |
柠檬烯 | 50 μg/(L·h) | Synechococcus sp. PCC 7002 | [ |
红没药烯 | 7.5 μg/(L·h) | Synechococcus sp. PCC 7002 | [ |
乙烯 | 512 μg/(L·OD·h) | S. elongatus PCC 7942 | [ |
甘露醇 | 0.63 g/(L·d) | Synechococcus sp. PCC 7002 | [ |
Tab. 2 Chemical production using Synechococcus strain as chassis
产物 | 产量 | 宿主 | 参考文献 |
---|---|---|---|
2, 3-丁二醇 | 2.38 g/L | S. elongatus PCC 7942 | [ |
异丁醇 | 550 mg/L | S. elongatus PCC 7942 | [ |
3-羟基丙酸 | 659 mg/L | S. elongatus PCC 7942 | [ |
D-乳酸 | 798 mg/L | S. elongatus PCC 7942 | [ |
甘油 | 1.24 g/L | S. elongatus PCC 7942 | [ |
β-聚羟基丁酸 | 420 mg/L | S. elongatus UTEX2973 | [ |
咖啡酸 | 4.7 mg/L | S. elongatus PCC 7942 | [ |
对香豆酸 | 128.2 mg/L | S. elongatus PCC 7942 | [ |
阿魏酸 | 6.3 mg/L | S. elongatus PCC 7942 | [ |
柚皮素 | 4.6 mg/L | S. elongatus PCC 7942 | [ |
白藜芦醇 | 7.1 mg/L | S. elongatus PCC 7942 | [ |
双去甲氧基姜黄素 | 4.1 mg/L | S. elongatus PCC 7942 | [ |
异戊二烯 | 60 mg/(L·d) | S. elongatus PCC 7942 | [ |
柠檬烯 | 50 μg/(L·h) | Synechococcus sp. PCC 7002 | [ |
红没药烯 | 7.5 μg/(L·h) | Synechococcus sp. PCC 7002 | [ |
乙烯 | 512 μg/(L·OD·h) | S. elongatus PCC 7942 | [ |
甘露醇 | 0.63 g/(L·d) | Synechococcus sp. PCC 7002 | [ |
1 | PALINKAS L A, WONG M. Global climate change and mental health[J]. Current Opinion in Psychology, 2020, 32: 12-16. |
2 | 丁仲礼. 中国碳中和框架路线图研究[J]. 中国工业和信息化, 2021(8): 54-61. |
DING Z L. Research on the roadmap and framework of China's carbon neutral[J]. China Industry & Information Technology, 2021(8): 54-61. | |
3 | 王永中. 碳达峰、碳中和目标与中国的新能源革命[J]. 人民论坛⋅学术前沿, 2021(14): 88-96. |
WANG Y Z. The targets of carbon peak and carbon neutralization and China's new energy revolution[J]. Frontiers, 2021(14): 88-96. | |
4 | 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. |
HU A G. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15. | |
5 | 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64. |
WANG C, ZHANG Y X. Implementation pathway and policy system of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2020, 12(6): 58-64. | |
6 | FUCHSMAN C A, PALEVSKY H I, WIDNER B, et al. Cyanobacteria and cyanophage contributions to carbon and nitrogen cycling in an oligotrophic oxygen-deficient zone[J]. The ISME Journal, 2019, 13(11): 2714-2726. |
7 | SÁNCHEZ-BARACALDO P, BIANCHINI G, WILSON J D, et al. Cyanobacteria and biogeochemical cycles through Earth history[J]. Trends in Microbiology, 2022, 30(2): 143-157. |
8 | AL-HAJ L, LUI Y T, ABED R M M, et al. Cyanobacteria as chassis for industrial biotechnology: progress and prospects[J]. Life, 2016, 6(4): 42. |
9 | XU X M, RISOUL V, BYRNE D, et al. HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium Nostoc PCC 7120[J]. eLife, 2020, 9: e59190. |
10 | KIENINGER A K, MALDENER I. Cell-cell communication through septal junctions in filamentous cyanobacteria[J]. Current Opinion in Microbiology, 2021, 61: 35-41. |
11 | ZHAO L S, HUOKKO T, WILSON S, et al. Structural variability, coordination and adaptation of a native photosynthetic machinery[J]. Nature Plants, 2020, 6(7): 869-882. |
12 | PEMBROKE J T, RYAN M P. Cyanobacterial biofuel production: current development, challenges and future needs[M]// Biofuel and biorefinery technologies. Cham: Springer International Publishing, 2020: 35-62. |
13 | KOCH M, BRUCKMOSER J, SCHOLL J, et al. Maximizing PHB content in Synechocystis sp. PCC 6803: a new metabolic engineering strategy based on the regulator PirC[J]. Microbial Cell Factories, 2020, 19(1): 231. |
14 | CASE A E, ATSUMI S. Cyanobacterial chemical production[J]. Journal of Biotechnology, 2016, 231: 106-114. |
15 | WANG F, GAO Y Y, YANG G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production[J]. Bioengineered, 2020, 11(1): 1208-1220. |
16 | ZAHRA Z, CHOO D H, LEE H, et al. Cyanobacteria: review of current potentials and applications[J]. Environments, 2020, 7(2): 13. |
17 | LI C, TAO F, XU P. Carbon flux trapping: highly efficient production of polymer-grade D-lactic acid with a thermophilic D-lactate dehydrogenase[J]. ChemBioChem: a European Journal of Chemical Biology, 2016, 17(16): 1491-1494. |
18 | LI C, TAO F, NI J, et al. Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy[J]. Scientific Reports, 2015, 5: 9777. |
19 | ZHU Z, JIANG J H, FA Y. Overcoming the biological contamination in microalgae and cyanobacteria mass cultivations for photosynthetic biofuel production[J]. Molecules, 2020, 25(22): 5220. |
20 | MAZARD S, PENESYAN A, OSTROWSKI M, et al. Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future[J]. Marine Drugs, 2016, 14(5): 97. |
21 | ONGENA J, OOST G V. Energy for future centuries: prospects for fusion power as a future energy source[J]. Fusion Science and Technology, 2012, 61(2T): 3-16. |
22 | KWOK S. Abiotic synthesis of complex organics in the Universe[J]. Nature Astronomy, 2017, 1(10): 642-643. |
23 | WOODLEY J M. Towards the sustainable production of bulk-chemicals using biotechnology[J]. New Biotechnology, 2020, 59: 59-64. |
24 | VAVITSAS K, KUGLER A, SATTA A, et al. Doing synthetic biology with photosynthetic microorganisms[J]. Physiologia Plantarum, 2021, 173(2): 624-638. |
25 | CHAUVAT F, CASSIER-CHAUVAT C. Chapter Six - Genomics of cyanobacteria: new insights and lessons for shaping our future-A follow-up of volume 65: genomics of cyanobacteria[M] Advances in botanical research (Volume 100), 2021: 213-235. |
26 | LEWIS N S, NOCERA D G. Powering the planet: chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729-15735. |
27 | AHMED S D, AL-ISMAIL F S M, SHAFIULLAH M, et al. Grid integration challenges of wind energy: a review[J]. IEEE Access, 8: 10857-10878. |
28 | OBI M, BASS R. Trends and challenges of grid-connected photovoltaic systems - a review[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1082-1094. |
29 | CHEN R S, CHENG Y F, HAN S Y, et al. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar-sea rice 86[J]. BMC Genomics, 2017, 18(1): 655. |
30 | MELANDRI G, ABDELGAWAD H, FLOKOVÁ K, et al. Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses[J]. Planta, 2021, 254(1): 13. |
31 | HUANG Q S, JIANG F H, WANG L Z, et al. Design of photobioreactors for mass cultivation of photosynthetic organisms[J]. Engineering, 2017, 3(3): 318-329. |
32 | CASSIER-CHAUVAT C, DIVE V, CHAUVAT F. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1359-1364. |
33 | VASILE N S, CORDARA A, USAI G, et al. Computational analysis of dynamic light exposure of unicellular algal cells in a flat-panel photobioreactor to support light-induced CO2 bioprocess development[J]. Frontiers in Microbiology, 2021, 12: 639482. |
34 | SAWA M, FANTUZZI A, BOMBELLI P, et al. Electricity generation from digitally printed cyanobacteria[J]. Nature Communications, 2017, 8: 1327. |
35 | SCHUERGERS N, WERLANG C, AJO-FRANKLIN C M, et al. A synthetic biology approach to engineering living photovoltaics[J]. Energy & Environmental Science, 2017, 10(5): 1102-1115. |
36 | QIAO Y, JIANG K Z, DENG H, et al. A high-energy-density and long-life lithium-ion battery via reversible oxide-peroxide conversion[J]. Nature Catalysis, 2019, 2(11): 1035-1044. |
37 | LIU X F, MIAO R, LINDBERG P, et al. Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria[J]. Energy & Environmental Science, 2019, 12(9): 2765-2777. |
38 | ALDRIDGE S. Industry backs biocatalysis for greener manufacturing[J]. Nature Biotechnology, 2013, 31(2): 95-96. |
39 | GAO X, GAO F, LIU D, et al. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2 [J]. Energy & Environmental Science, 2016, 9(4): 1400-1411. |
40 | ZHU T, XIE X M, LI Z M, et al. Enhancing photosynthetic production of ethylene in genetically engineered Synechocystis sp. PCC 6803[J]. Green Chemistry, 2015, 17(1): 421-434. |
41 | WANG Y, TAO F, NI J, et al. Production of C3 platform chemicals from CO2 by genetically engineered cyanobacteria[J]. Green Chemistry, 2015, 17(5): 3100-3110. |
42 | NI J, TAO F, WANG Y, et al. A photoautotrophic platform for the sustainable production of valuable plant natural products from CO2 [J]. Green Chemistry, 2016, 18(12): 3537-3548. |
43 | NI J, LIU H Y, TAO F, et al. Remodeling of the photosynthetic chain promotes direct CO2 conversion into valuable aromatic compounds[J]. Angewandte Chemie International Edition, 2018, 57(49): 15990-15994. |
44 | LIU D, LIBERTON M, HENDRY J I, et al. Engineering biology approaches for food and nutrient production by cyanobacteria[J]. Current Opinion in Biotechnology, 2021, 67: 1-6. |
45 | ATAEIAN M, LIU Y H, CANON-RUBIO K A, et al. Direct capture and conversion of CO2 from air by growing a cyanobacterial consortium at pH up to 11.2[J]. Biotechnology and Bioengineering, 2019, 116(7): 1604-1611. |
46 | UPENDAR G, SINGH S, CHAKRABARTY J, et al. Sequestration of carbon dioxide and production of biomolecules using cyanobacteria[J]. Journal of Environmental Management, 2018, 218: 234-244. |
47 | KUMAR K, DASGUPTA C N, NAYAK B, et al. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria[J]. Bioresource Technology, 2011, 102(8): 4945-4953. |
48 | MUÑOZ-ROJAS M, ROMÁN J R, RONCERO-RAMOS B, et al. Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration[J]. Science of the Total Environment, 2018, 636: 1149-1154. |
49 | PANDIT S, NAYAK B K, DAS D. Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment[J]. Bioresource Technology, 2012, 107: 97-102. |
50 | BURNAP R L. Systems and photosystems: cellular limits of autotrophic productivity in cyanobacteria[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 1. |
51 | AHMAD M AL, NATOUR Z AL, ATTOUB S, et al. Monitoring of the budding yeast cell cycle using electrical parameters[J]. IEEE Access, 6: 19231-19237. |
52 | GIBSON B, WILSON D J, FEIL E, et al. The distribution of bacterial doubling times in the wild[J]. Proceedings Biological Sciences, 2018, 285(1880): 20180789. |
53 | O'DONNELL M, LANGSTON L, STILLMAN B. Principles and concepts of DNA replication in bacteria, archaea, and eukarya[J]. Cold Spring Harbor Perspectives in Biology, 2013, 5(7): a010108. |
54 | FOSSUM S, CROOKE E, SKARSTAD K. Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli [J]. The EMBO Journal, 2007, 26(21): 4514-4522. |
55 | WŁODARCZYK A, SELÃO T T, NORLING B, et al. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production[J]. Communications Biology, 2020, 3: 215. |
56 | YU J J, LIBERTON M, CLIFTEN P F, et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2 [J]. Scientific Reports, 2015, 5: 8132. |
57 | UNGERER J, LIN P C, CHEN H Y, et al. Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacterium Synechococcus elongatus UTEX 2973[J]. mBio, 2018, 9(1): e02327-e02317. |
58 | JAHN M, VIALAS V, KARLSEN J, et al. Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins[J]. Cell Reports, 2018, 25(2): 478-486.e8. |
59 | GEISZ J F, FRANCE R M, SCHULTE K L, et al. Six-junction III-V solar cells with 47.1% conversion efficiency under 143 Suns concentration[J]. Nature Energy, 2020, 5(4): 326-335. |
60 | GAN F, ZHANG S Y, ROCKWELL N C, et al. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light[J]. Science, 2014, 345(6202): 1312-1317. |
61 | TEODOR A H, BRUCE B D. Putting photosystem I to work: truly green energy[J]. Trends in Biotechnology, 2020, 38(12): 1329-1342. |
62 | FANG X, KALATHIL S, REISNER E. Semi-biological approaches to solar-to-chemical conversion[J]. Chemical Society Reviews, 2020, 49(14): 4926-4952. |
63 | LIPS D, SCHUURMANS J M, BRANCO DOS SANTOS F, et al. Many ways towards 'solar fuel': quantitative analysis of the most promising strategies and the main challenges during scale-up[J]. Energy & Environmental Science, 2018, 11(1): 10-22. |
64 | KIRST H, FORMIGHIERI C, MELIS A. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2014, 1837(10): 1653-1664. |
65 | HIROSE Y, SONG C H, WATANABE M, et al. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria[J]. Molecular Plant, 2019, 12(8): 1167-1169. |
66 | LUIMSTRA V M, SCHUURMANS J M, VERSCHOOR A M, et al. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II[J]. Photosynthesis Research, 2018, 138(2): 177-189. |
67 | GONG F Y, ZHU H W, ZHANG Y P, et al. Biological carbon fixation: from natural to synthetic[J]. Journal of CO2 Utilization, 2018, 28: 221-227. |
68 | LIANG F Y, LINDBERG P, LINDBLAD P. Engineering photoautotrophic carbon fixation for enhanced growth and productivity[J]. Sustainable Energy & Fuels, 2018, 2(12): 2583-2600. |
69 | BARATI B, ZENG K, BAEYENS J, et al. Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration[J]. Biomass and Bioenergy, 2021, 145: 105927. |
70 | YU H, LI X Q, DUCHOUD F, et al. Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway[J]. Nature Communications, 2018, 9: 2008. |
71 | WEI L, SHEN C, HAJJAMI M EL, et al. Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level[J]. Metabolic Engineering, 2019, 54: 96-108. |
72 | CLARK R L, GORDON G C, BENNETT N R, et al. High-CO2 requirement as a mechanism for the containment of genetically modified cyanobacteria[J]. ACS Synthetic Biology, 2018, 7(2): 384-391. |
73 | TUSCHHOFF E J, HUTTER C R, GLOR R E. Improving sustainable use of genetic resources in biodiversity archives[J]. PeerJ, 2020, 8: e8369. |
74 | GRÉBERT T, DORÉ H, PARTENSKY F, et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): E2010-E2019. |
75 | XIA X M, LIU H B, CHOI D, et al. Variation of Synechococcus pigment genetic diversity along two turbidity gradients in the China seas[J]. Microbial Ecology, 2018, 75(1): 10-21. |
76 | CALLIERI C. Synechococcus plasticity under environmental changes[J]. FEMS Microbiology Letters, 2017, 364(23): fnx229. |
77 | PATTHARAPRACHAYAKUL N, LEE M, INCHAROENSAKDI A, et al. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria[J]. Enzyme and Microbial Technology, 2020, 140: 109619. |
78 | BEHLER J, VIJAY D, HESS W R, et al. CRISPR-based technologies for metabolic engineering in cyanobacteria[J]. Trends in Biotechnology, 2018, 36(10): 996-1010. |
79 | 李洋, 申晓林, 孙新晓, 等. CRISPR基因编辑技术在微生物合成生物学领域的研究进展[J]. 合成生物学, 2021, 2(1): 106-120. |
LI Y, SHEN X L, SUN X X, et al. Advances of CRISPR gene editing in microbial synthetic biology[J]. Synthetic Biology Journal, 2021, 2(1): 106-120. | |
80 | LI H, SHEN C R, HUANG C H, et al. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production[J]. Metabolic Engineering, 2016, 38: 293-302. |
81 | UNGERER J, WENDT K E, HENDRY J I, et al. Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(50): E11761-E11770. |
82 | WENDT K E, UNGERER J, COBB R E, et al. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973[J]. Microbial Cell Factories, 2016, 15(1): 115. |
83 | UNGERER J, PAKRASI H B. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria[J]. Scientific Reports, 2016, 6: 39681. |
84 | SUN T, LI S B, SONG X Y, et al. Toolboxes for cyanobacteria: recent advances and future direction[J]. Biotechnology Advances, 2018, 36(4): 1293-1307. |
85 | LIU J, WANG Y, LU Y J, et al. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum [J]. Microbial Cell Factories, 2017, 16(1): 205. |
86 | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. |
87 | NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305): aaf8729. |
88 | ZHAO D D, LI J, LI S W, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology, 2021, 39(1): 35-40. |
89 | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. |
90 | KURT I C, ZHOU R H, IYER S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature Biotechnology, 2021, 39(1): 41-46. |
91 | WANG Y, LIU Y, ZHENG P, et al. Microbial base editing: a powerful emerging technology for microbial genome engineering[J]. Trends in Biotechnology, 2021, 39(2): 165-180. |
92 | WANG Y, LIU Y, LI J W, et al. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum [J]. Biotechnology and Bioengineering, 2019, 116(11): 3016-3029. |
93 | WANG Y, LIU Y, LIU J, et al. MACBETH: multiplex automated Corynebacterium glutamicum base editing method[J]. Metabolic Engineering, 2018, 47: 200-210. |
94 | WANG Y, CHENG H J, LIU Y, et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing[J]. Nature Communications, 2021, 12: 678. |
95 | HUANG C H, SHEN C R, LI H, et al. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942[J]. Microbial Cell Factories, 2016, 15(1): 196. |
96 | KNOOT C J, BISWAS S, PAKRASI H B. Tunable repression of key photosynthetic processes using Cas12a CRISPR interference in the fast-growing cyanobacterium Synechococcus sp. UTEX 2973[J]. ACS Synthetic Biology, 2020, 9(1): 132-143. |
97 | CHOI S Y, WOO H M. CRISPRi-dCas12a: a dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria[J]. ACS Synthetic Biology, 2020, 9(9): 2351-2361. |
98 | LIU Y, WAN X Y, WANG B J. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria[J]. Nature Communications, 2019, 10: 3693. |
99 | YAO L, SHABESTARY K, BJÖRK S M, et al. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes[J]. Nature Communications, 2020, 11: 1666. |
100 | SWANSON W J. Adaptive evolution of genes and gene families[J]. Current Opinion in Genetics & Development, 2003, 13(6): 617-622. |
101 | BILLIS K, BILLINI M, TRIPP H J, et al. Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of stress acclimation[J]. PLoS One, 2014, 9(10): e109738. |
102 | DANN M, ORTIZ E M, THOMAS M, et al. Enhancing photosynthesis at high light levels by adaptive laboratory evolution[J]. Nature Plants, 2021, 7(5): 681-695. |
103 | YOSHIKAWA K, OGAWA K, TOYA Y, et al. Mutations in hik26 and slr1916 lead to high-light stress tolerance in Synechocystis sp. PCC6803[J]. Communications Biology, 2021, 4: 343. |
104 | SRIVASTAVA V, AMANNA R, ROWDEN S J L, et al. Adaptive laboratory evolution of the fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance[J]. Journal of Bioscience and Bioengineering, 2021, 131(5): 491-500. |
105 | WANG Y X, SHI M L, NIU X F, et al. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803[J]. Microbial Cell Factories, 2014, 13: 151. |
106 | XU C X, SUN T, LI S B, et al. Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803[J]. Biotechnology for Biofuels, 2018, 11: 205. |
107 | TILLICH U M, WOLTER N, FRANKE P, et al. Screening and genetic characterization of thermo-tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution[J]. BMC Biotechnology, 2014, 14: 66. |
108 | HU L, HE J Y, DONG M J, et al. Divergent metabolic and transcriptomic responses of Synechocystis sp. PCC 6803 to salt stress after adaptive laboratory evolution[J]. Algal Research, 2020, 47: 101856. |
109 | UCHIYAMA J, KANESAKI Y, IWATA N, et al. Genomic analysis of parallel-evolved cyanobacterium Synechocystis sp. PCC 6803 under acid stress[J]. Photosynthesis Research, 2015, 125(1/2): 243-254. |
110 | DURÃO P, AIGNER H, NAGY P, et al. Opposing effects of folding and assembly chaperones on evolvability of Rubisco[J]. Nature Chemical Biology, 2015, 11(2): 148-155. |
111 | PARIKH M R, GREENE D N, WOODS K K, et al. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli [J]. Protein Engineering, Design and Selection, 2006, 19(3): 113-119. |
112 | BAI S Y, WALLIS J G, DENOLF P, et al. Directed evolution increases desaturation of a cyanobacterial fatty acid desaturase in eukaryotic expression systems[J]. Biotechnology and Bioengineering, 2016, 113(7): 1522-1530. |
113 | CARLSON J C, BADRAN A H, GUGGIANA-NILO D A, et al. Negative selection and stringency modulation in phage-assisted continuous evolution[J]. Nature Chemical Biology, 2014, 10(3): 216-222. |
114 | ESVELT K M, CARLSON J C, LIU D R. A system for the continuous directed evolution of biomolecules[J]. Nature, 2011, 472(7344): 499-503. |
115 | MILLER S M, WANG T N, LIU D R. Phage-assisted continuous and non-continuous evolution[J]. Nature Protocols, 2020, 15(12): 4101-4127. |
116 | WU H, WEI T, YU B B, et al. A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase[J]. RNA Biology, 2021, 18(sup1): 451-466. |
117 | JOHNSTON C W, BADRAN A H, COLLINS J J. Continuous bioactivity-dependent evolution of an antibiotic biosynthetic pathway[J]. Nature Communications, 2020, 11: 4202. |
118 | MORRISON M S, PODRACKY C J, LIU D R. The developing toolkit of continuous directed evolution[J]. Nature Chemical Biology, 2020, 16(6): 610-619. |
119 | LAN E I, LIAO J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018-6023. |
120 | ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nature Biotechnology, 2009, 27(12): 1177-1180. |
121 | HIROKAWA Y, GOTO R, UMETANI Y, et al. Construction of a novel D-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942[J]. Journal of Bioscience and Bioengineering, 2017, 124(1): 54-61. |
122 | KOBAYASHI I, WATANABE S, KANESAKI Y, et al. Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942[J]. Molecular Microbiology, 2017, 104(2): 260-277. |
123 | YASUDA A, INAMI D, RpaB HANAOKA M., an essential response regulator for high-light stress, is extensively involved in transcriptional regulation under light-intensity upshift conditions in Synechococcus elongatus PCC 7942[J]. The Journal of General and Applied Microbiology, 2020, 66(2): 73-79. |
124 | GUYET U, NGUYEN N A, DORÉ H, et al. Synergic effects of temperature and irradiance on the physiology of the marine Synechococcus strain WH7803[J]. Frontiers in Microbiology, 2020, 11: 1707. |
125 | MUELLER T J, UNGERER J L, PAKRASI H B, et al. Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973[J]. Scientific Reports, 2017, 7: 41569. |
126 | TAN X M, HOU S W, SONG K, et al. The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973[J]. Biotechnology for Biofuels, 2018, 11: 218. |
127 | JAISWAL D, SENGUPTA A, SENGUPTA S, et al. A novel cyanobacterium Synechococcus elongatus PCC 11802 has distinct genomic and metabolomic characteristics compared to its neighbor PCC 11801[J]. Scientific Reports, 2020, 10: 191. |
128 | CUI J Y, SUN T, LI S B, et al. Improved salt tolerance and metabolomics analysis of Synechococcus elongatus UTEX 2973 by overexpressing Mrp antiporters[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 500. |
129 | CUI J Y, SUN T, CHEN L, et al. Salt-tolerant Synechococcus elongatus UTEX 2973 obtained via engineering of heterologous synthesis of compatible solute glucosylglycerol[J]. Frontiers in Microbiology, 2021, 12: 650217. |
130 | LOU W J, TAN X M, SONG K, et al. A specific single nucleotide polymorphism in the ATP synthase gene significantly improves environmental stress tolerance of Synechococcus elongatus PCC 7942[J]. Applied and Environmental Microbiology, 2018, 84(18): e01222-e01218. |
131 | OLIVER J W K, MACHADO I M P, YONEDA H, et al. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol[J]. Proceeding of the National Academy of Sciences of the United States of America, 2013, 110(4): 1249-1254. |
132 | LI X Q, SHEN C R, LIAO J C. Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942[J]. Photosynthesis Research, 2014, 120(3): 301-310. |
133 | LAN E I, CHUANG D S, SHEN C R, et al. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942[J]. Metabolic Engineering, 2015, 31: 163-170. |
134 | ROH H, LEE J S, CHOI H I, et al. Improved CO2-derived polyhydroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gas[J]. Bioresource Technology, 2021, 327: 124789. |
135 | SHARKEY T D, WIBERLEY A E, DONOHUE A R. Isoprene emission from plants: why and how[J]. Annals of Botany, 2007, 101(1): 5-18. |
136 | DAVIES F K, WORK V H, BELIAEV A S, et al. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 21. |
137 | TAKAHAMA K, MATSUOKA M, NAGAHAMA K, et al. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus[J]. Journal of Bioscience and Bioengineering, 2003, 95(3): 302-305. |
138 | JACOBSEN J H, FRIGAARD N U. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium[J]. Metabolic Engineering, 2014, 21: 60-70. |
139 | SMITH M J, FRANCIS M B. A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals[J]. ACS Synthetic Biology, 2016, 5(9): 955-961. |
140 | WEISS T L, YOUNG E J, DUCAT D C. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production[J]. Metabolic Engineering, 2017, 44: 236-245. |
141 | VELMURUGAN R, INCHAROENSAKDI A. Metal oxide mediated extracellular NADPH regeneration improves ethanol production by engineered Synechocystis sp. PCC 6803[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 148. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[3] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[4] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[5] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[7] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[8] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[9] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[10] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[11] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[12] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[13] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[14] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[15] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||