Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (1): 38-52.DOI: 10.12211/2096-8280.2023-016
• Invited Review • Previous Articles Next Articles
Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG
Received:
2023-02-22
Revised:
2023-07-01
Online:
2024-03-20
Published:
2024-02-29
Contact:
Qingsheng QI, Qian WANG
赵静宇, 张健, 祁庆生, 王倩
通讯作者:
祁庆生,王倩
作者简介:
基金资助:
CLC Number:
Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems[J]. Synthetic Biology Journal, 2024, 5(1): 38-52.
赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-016
Fig. 1 Structure of bacterial two-component regulatory systems[The two-component systems consist of two parts: histidine kinase (SK) for sensing and the response regulator (RR). A typical SK is a homodimer consisting of the N-terminal cytosolic domain, the periplasmic sensor domain, two transmembrane (TM) helixes, the signal transport domain, the catalytic domain, the dimeric/histidine phosphorylation transfer domain (DHp), and the C-terminal domain. RR consists of two parts: phosphorylated receiving domain and DNA-binding domain]
输入 | 天然宿主 | SK | RR | 输出 启动子 | 表现特点 | 参考文献 |
---|---|---|---|---|---|---|
光 | ||||||
紫外光 | 聚球藻PCC6803 | UirS | UirR | P csiR1 | 激活5倍 | [ |
蓝光 | 枯草芽孢杆菌, 日本血吸虫 | YF1 | FixJ | P fixK2 | 嵌合体与pDusk系统偶联时激活460倍 | [ |
绿光 | 聚球藻PCC6803 | CcaSmini#10 | CcaR | P cpcG2-172 | 激活600倍 | [ |
红光 | 聚球藻PCC6803 大肠杆菌 | Cph8* | OmpR | P ompF112 | 抑制80倍 | [ |
近红外光 | 大豆根瘤菌 | BphP1 | PpsR2 | PBr_ crtE | 激活2倍 | [ |
pH | ||||||
酸性pH(<6.2) | 奥奈登斯链球菌 枯草芽孢杆菌 | SO-4387 | SO_4388REC-PsdRDBD 137 | P psdA110 | 用于检测小鼠的肠道炎症 | [ |
金属离子 | ||||||
As3+(胞外) | 根癌土壤杆菌 | AioS | AioR | P aioB | 需要 AioX 内膜辅助蛋白 | [ |
Ca2+(胞外) | 铜绿假单胞菌PAO1 | CarS | CarR | P carO | CARS与PhoQ有关 | [ |
Cu+(胞外) | 大肠杆菌 | CusS | CusR | P cusC | 也被Ag+激活 | [ |
Cu2+(胞内和胞外) | 聚球藻PCC6803 | CopS | CopR | P couM | CopS位于类囊体膜 | [ |
Cu2+(胞外) | 黄曲霉 | CorS | CorR | P couA | — | [ |
Fe2+,Fe3+(胞外) | 黏质沙雷氏菌 | RssA | RssB | P pvcA | 活性受天然产物2-异氰基-6,7-二羟基香豆素调节 | [ |
K+(胞内及胞外) | 大肠杆菌 | KdpD | KdpE | P kdpF | K+抑制 | [ |
U | 月柄杆菌 | UzcS | UzcR | P urcA | 通过与门耦合到UrpRS提高了灵敏度和特异性 | [ |
Zn2+ | 大肠杆菌 | ZraS | ZraR | P zraP | P zraP 依赖σ54 | [ |
养分可利用性 | ||||||
硫代硫酸盐 | S. halifaxensis | ThsS | ThsR | P phsA342 | 成比例地被与DSS诱导的小鼠结肠炎症所激活 | [ |
连四硫酸盐 | S. baltica | TtrS | TtrR | P ttrB185-269 | 动态范围为100倍 | [ |
硝酸盐 | 大肠杆菌 | NarX | NarLREC-YdflDBD 131 | P ydfJ115 | 在枯草芽孢杆菌中被激活1300倍 | [ |
三甲胺氮氧化物(TMAO) | 大肠杆菌 | TorS | TorRREC-PsdRDBD137 | P psdA110 | DBD交换消除了O2对天然输出启动子的交叉抑制。需要周质TorT辅助蛋白 | [ |
氧化剂 | ||||||
O2,H2O2,NO | 金黄色葡萄球菌 | AirS | AirR | P crtO | AirS需要一个[2Fe-2S]2+簇 | [ |
小分子代谢物 | ||||||
α-酮戊二酸 (细胞外) | 铜绿假单胞菌PAO1 | MifS | MitR | P PA5530 | 激活10倍。对L-谷氨酸有微弱的响应 | [ |
丁醇 | 乙酰丁酸单胞菌 | BtrK | BtrR | P btrT | 参与丁醇的耐受性 | [ |
柠檬酸 | 肺炎克雷伯氏菌 | CitA | CitB | P citC | 需厌氧条件 | [ |
岩藻糖 | 大肠杆菌 | FusK | FusR | P z0461 | 岩藻糖抑制转录输出 | [ |
富马酸 | 大肠杆菌 | DcuSZ | OmpR | P ompC | 激活2倍 | [ |
葡萄糖-6-磷酸 | 大肠杆菌 | UhpB | UhpA | P uhpT99 | 需要UhpC内膜辅助蛋白 | [ |
L-谷氨酸 | 铜绿假单胞菌PAO1 | AauS | AauR | P aatJ | 被L-天冬氨酸、谷氨酰胺和天冬酰胺微弱激活 | [ |
血红素(细胞外) | 金黄色葡萄球菌 | HssS | HssR | P hrtA | 激活100倍以上 | [ |
吲哚 | 大肠杆菌 | BaeS | BaeR | P arcD | CpxAR TCS的存在放大了对吲哚的响应 | [ |
苹果酸 | 枯草芽孢杆菌 | YufL | YufM | P maeN381 | 激活100倍 | [ |
甲醇 | 脱氮假单胞菌 大肠杆菌 | FlhS-EnvZ | OmpR | P ompC | 激活2倍 | [ |
丙酮酸(细胞外) | 大肠杆菌 | BtsS | BtsR | P yjiY | 泌尿道感染期间在泌尿致病性大肠杆菌中被激活 | [ |
D-木糖(细胞外) | 拜氏梭菌 | LytS | YesN | P xylF | 外膜转运蛋白XylFⅡ识别D-木糖 | [ |
苯乙烯 | 假单胞菌菌株Y2 | StyS | StyR | P styA | [ | |
细菌间通信信号 | ||||||
CaI-1[(S)-3羟基十三烷-4-酮] | 霍乱弧菌 | CqsS | LuxO | P tpqrr4 | 需要中间磷酸转移蛋白LuxU | [ |
CSP(能力刺激肽) | 格登链球菌 | ComD | ComE | P comC | [ | |
ComX(胞外信息素) | 枯草芽孢杆菌 | ComP | ComA | P srfA | [ | |
抗生素 | ||||||
β-内酰胺 | 霍乱弧菌 | VxrA | VxrB | P murJ | 通常由细胞被膜损伤激活 | [ |
线霉菌素(膜内) | 枯草芽孢杆菌 | LnrJ | LnrK | P lnrL | 还可以检测到抗真菌多烯两性霉素B | [ |
万古霉素(胞外) | 腔血链球菌 | VanS | VanR | P vanJ | 磷酸化的VanR也激活VanSR操纵子 | [ |
抗菌肽 | ||||||
口腔致病菌变形链球菌产生的抗菌肽(胞外) | 链球菌A12 | PcfK | PcfR | P pcfF | 大约激活100倍 | [ |
杆菌肽(胞外) | 枯草芽孢杆菌 | LiaS | LiaR | P lial(opt) | 激活1000倍。需要辅膜蛋白LiaF | [ |
Nisin(胞外) | 乳酸乳杆菌 | NisK | NisR | P nisA | 激活1000倍 | [ |
枯草蛋白(细胞外) | 枯草芽孢杆菌 | SpaK | SpaR | P spaS | 激活110倍 | [ |
低聚糖 | ||||||
阿拉伯半乳聚糖 | 双歧杆菌 | BT0267 | BT0267 | P BT0268 | BT0267是一种杂交的TCS,其中SK和RR融合在一起 | [ |
硫酸软骨素 | 双歧杆菌 | BT3334 | BT3334 | P BT3324 | BT3334是一种杂交的双组分系统 | [ |
黏蛋白多糖 | 铜绿假单胞菌 | GacS | GacA | P rsmY | 黏蛋白多聚糖是通过辅助组氨酸激酶rets感受到的 | [ |
双歧杆菌 | BT0366 | BT0366 | P BT0365 | BT0366是一种杂交的双组分系统 | [ | |
蛋白质 | ||||||
PilA | 铜绿假单胞菌 | PilS | PilR | P pilA | PilA是主要的Ⅳ型菌毛蛋白 | [ |
宿主信号 | ||||||
哺乳动物感染过程中产生的抗菌肽、二价阳离子限制和酸性pH | 鼠伤寒沙门氏菌 | PhoQ | PhoP | P virK | — | [ |
肾上腺素,去甲肾上腺素 | 大肠杆菌 O157:H7 | QseC | QseB | P flhD | 被肾上腺素激活2倍,去甲肾上腺素抑制1.5倍 | [ |
吲哚-3-乙酸 (生长素) | P. phytofirmans PsJN | lacS | lacR1 | P iacA | 二氧吲哚-3-乙酸放大信号 | [ |
2-异戊烯基腺嘌呤(细胞分裂素) | X. campestris | PcrK | PcrR | P ctrA | 激活3倍 | [ |
植物伤口中存在的酚类物质、单糖和酸性pH | 根癌农杆菌 | VirA | VirG | P vir | 对单糖的感应需要周质辅助蛋白ChvE | [ |
反式玉米素(细胞分裂素) | 拟南芥, 大肠杆菌 | AQ4* | PhoP4* | P mgrB | AQ4*为拟南芥AHK4和大肠杆菌PhoQ的传感域嵌体,经改造与所有大肠杆菌双组分系统绝缘,可防止磷酸化串扰 | [ |
Table 1 Biosensors designed and developed based on bacterial two-component systems
输入 | 天然宿主 | SK | RR | 输出 启动子 | 表现特点 | 参考文献 |
---|---|---|---|---|---|---|
光 | ||||||
紫外光 | 聚球藻PCC6803 | UirS | UirR | P csiR1 | 激活5倍 | [ |
蓝光 | 枯草芽孢杆菌, 日本血吸虫 | YF1 | FixJ | P fixK2 | 嵌合体与pDusk系统偶联时激活460倍 | [ |
绿光 | 聚球藻PCC6803 | CcaSmini#10 | CcaR | P cpcG2-172 | 激活600倍 | [ |
红光 | 聚球藻PCC6803 大肠杆菌 | Cph8* | OmpR | P ompF112 | 抑制80倍 | [ |
近红外光 | 大豆根瘤菌 | BphP1 | PpsR2 | PBr_ crtE | 激活2倍 | [ |
pH | ||||||
酸性pH(<6.2) | 奥奈登斯链球菌 枯草芽孢杆菌 | SO-4387 | SO_4388REC-PsdRDBD 137 | P psdA110 | 用于检测小鼠的肠道炎症 | [ |
金属离子 | ||||||
As3+(胞外) | 根癌土壤杆菌 | AioS | AioR | P aioB | 需要 AioX 内膜辅助蛋白 | [ |
Ca2+(胞外) | 铜绿假单胞菌PAO1 | CarS | CarR | P carO | CARS与PhoQ有关 | [ |
Cu+(胞外) | 大肠杆菌 | CusS | CusR | P cusC | 也被Ag+激活 | [ |
Cu2+(胞内和胞外) | 聚球藻PCC6803 | CopS | CopR | P couM | CopS位于类囊体膜 | [ |
Cu2+(胞外) | 黄曲霉 | CorS | CorR | P couA | — | [ |
Fe2+,Fe3+(胞外) | 黏质沙雷氏菌 | RssA | RssB | P pvcA | 活性受天然产物2-异氰基-6,7-二羟基香豆素调节 | [ |
K+(胞内及胞外) | 大肠杆菌 | KdpD | KdpE | P kdpF | K+抑制 | [ |
U | 月柄杆菌 | UzcS | UzcR | P urcA | 通过与门耦合到UrpRS提高了灵敏度和特异性 | [ |
Zn2+ | 大肠杆菌 | ZraS | ZraR | P zraP | P zraP 依赖σ54 | [ |
养分可利用性 | ||||||
硫代硫酸盐 | S. halifaxensis | ThsS | ThsR | P phsA342 | 成比例地被与DSS诱导的小鼠结肠炎症所激活 | [ |
连四硫酸盐 | S. baltica | TtrS | TtrR | P ttrB185-269 | 动态范围为100倍 | [ |
硝酸盐 | 大肠杆菌 | NarX | NarLREC-YdflDBD 131 | P ydfJ115 | 在枯草芽孢杆菌中被激活1300倍 | [ |
三甲胺氮氧化物(TMAO) | 大肠杆菌 | TorS | TorRREC-PsdRDBD137 | P psdA110 | DBD交换消除了O2对天然输出启动子的交叉抑制。需要周质TorT辅助蛋白 | [ |
氧化剂 | ||||||
O2,H2O2,NO | 金黄色葡萄球菌 | AirS | AirR | P crtO | AirS需要一个[2Fe-2S]2+簇 | [ |
小分子代谢物 | ||||||
α-酮戊二酸 (细胞外) | 铜绿假单胞菌PAO1 | MifS | MitR | P PA5530 | 激活10倍。对L-谷氨酸有微弱的响应 | [ |
丁醇 | 乙酰丁酸单胞菌 | BtrK | BtrR | P btrT | 参与丁醇的耐受性 | [ |
柠檬酸 | 肺炎克雷伯氏菌 | CitA | CitB | P citC | 需厌氧条件 | [ |
岩藻糖 | 大肠杆菌 | FusK | FusR | P z0461 | 岩藻糖抑制转录输出 | [ |
富马酸 | 大肠杆菌 | DcuSZ | OmpR | P ompC | 激活2倍 | [ |
葡萄糖-6-磷酸 | 大肠杆菌 | UhpB | UhpA | P uhpT99 | 需要UhpC内膜辅助蛋白 | [ |
L-谷氨酸 | 铜绿假单胞菌PAO1 | AauS | AauR | P aatJ | 被L-天冬氨酸、谷氨酰胺和天冬酰胺微弱激活 | [ |
血红素(细胞外) | 金黄色葡萄球菌 | HssS | HssR | P hrtA | 激活100倍以上 | [ |
吲哚 | 大肠杆菌 | BaeS | BaeR | P arcD | CpxAR TCS的存在放大了对吲哚的响应 | [ |
苹果酸 | 枯草芽孢杆菌 | YufL | YufM | P maeN381 | 激活100倍 | [ |
甲醇 | 脱氮假单胞菌 大肠杆菌 | FlhS-EnvZ | OmpR | P ompC | 激活2倍 | [ |
丙酮酸(细胞外) | 大肠杆菌 | BtsS | BtsR | P yjiY | 泌尿道感染期间在泌尿致病性大肠杆菌中被激活 | [ |
D-木糖(细胞外) | 拜氏梭菌 | LytS | YesN | P xylF | 外膜转运蛋白XylFⅡ识别D-木糖 | [ |
苯乙烯 | 假单胞菌菌株Y2 | StyS | StyR | P styA | [ | |
细菌间通信信号 | ||||||
CaI-1[(S)-3羟基十三烷-4-酮] | 霍乱弧菌 | CqsS | LuxO | P tpqrr4 | 需要中间磷酸转移蛋白LuxU | [ |
CSP(能力刺激肽) | 格登链球菌 | ComD | ComE | P comC | [ | |
ComX(胞外信息素) | 枯草芽孢杆菌 | ComP | ComA | P srfA | [ | |
抗生素 | ||||||
β-内酰胺 | 霍乱弧菌 | VxrA | VxrB | P murJ | 通常由细胞被膜损伤激活 | [ |
线霉菌素(膜内) | 枯草芽孢杆菌 | LnrJ | LnrK | P lnrL | 还可以检测到抗真菌多烯两性霉素B | [ |
万古霉素(胞外) | 腔血链球菌 | VanS | VanR | P vanJ | 磷酸化的VanR也激活VanSR操纵子 | [ |
抗菌肽 | ||||||
口腔致病菌变形链球菌产生的抗菌肽(胞外) | 链球菌A12 | PcfK | PcfR | P pcfF | 大约激活100倍 | [ |
杆菌肽(胞外) | 枯草芽孢杆菌 | LiaS | LiaR | P lial(opt) | 激活1000倍。需要辅膜蛋白LiaF | [ |
Nisin(胞外) | 乳酸乳杆菌 | NisK | NisR | P nisA | 激活1000倍 | [ |
枯草蛋白(细胞外) | 枯草芽孢杆菌 | SpaK | SpaR | P spaS | 激活110倍 | [ |
低聚糖 | ||||||
阿拉伯半乳聚糖 | 双歧杆菌 | BT0267 | BT0267 | P BT0268 | BT0267是一种杂交的TCS,其中SK和RR融合在一起 | [ |
硫酸软骨素 | 双歧杆菌 | BT3334 | BT3334 | P BT3324 | BT3334是一种杂交的双组分系统 | [ |
黏蛋白多糖 | 铜绿假单胞菌 | GacS | GacA | P rsmY | 黏蛋白多聚糖是通过辅助组氨酸激酶rets感受到的 | [ |
双歧杆菌 | BT0366 | BT0366 | P BT0365 | BT0366是一种杂交的双组分系统 | [ | |
蛋白质 | ||||||
PilA | 铜绿假单胞菌 | PilS | PilR | P pilA | PilA是主要的Ⅳ型菌毛蛋白 | [ |
宿主信号 | ||||||
哺乳动物感染过程中产生的抗菌肽、二价阳离子限制和酸性pH | 鼠伤寒沙门氏菌 | PhoQ | PhoP | P virK | — | [ |
肾上腺素,去甲肾上腺素 | 大肠杆菌 O157:H7 | QseC | QseB | P flhD | 被肾上腺素激活2倍,去甲肾上腺素抑制1.5倍 | [ |
吲哚-3-乙酸 (生长素) | P. phytofirmans PsJN | lacS | lacR1 | P iacA | 二氧吲哚-3-乙酸放大信号 | [ |
2-异戊烯基腺嘌呤(细胞分裂素) | X. campestris | PcrK | PcrR | P ctrA | 激活3倍 | [ |
植物伤口中存在的酚类物质、单糖和酸性pH | 根癌农杆菌 | VirA | VirG | P vir | 对单糖的感应需要周质辅助蛋白ChvE | [ |
反式玉米素(细胞分裂素) | 拟南芥, 大肠杆菌 | AQ4* | PhoP4* | P mgrB | AQ4*为拟南芥AHK4和大肠杆菌PhoQ的传感域嵌体,经改造与所有大肠杆菌双组分系统绝缘,可防止磷酸化串扰 | [ |
Fig. 3 Applications of bacterial two-component biosensors in microbial bioremediation and biorefinery.(Bacterial two-component systems can be designed to genetically encode biosensors in response to heavy metal ions, sugars, aromatic compounds, and other targeted chemicals)
Fig. 4 Applications of bacterial two-component systems in disease detection(The V. cholerae TcpP cholate sensing module is fused to the DBD of CadC to build a TCS in response to bile salt. A biosensor that responds to intestinal thiosulfate is constructed by placing sfGFP under the control of ThsS/ThsR)
1 | BOURRET R B, SILVERSMITH R E. Two-component signal transduction[J]. Current Opinion in Microbiology, 2010, 13(2): 113-115. |
2 | ULRICH L E, ZHULIN I B. The MiST2 database: a comprehensive genomics resource on microbial signal transduction[J]. Nucleic Acids Research, 2010, 38(): D401-D407. |
3 | 杨璐, 吴楠, 白茸茸, 等. 基因回路型全细胞微生物传感器的设计、优化与应用[J]. 合成生物学, 2022, 3(6): 1061-1080. |
YANG L, WU N, BAI R R, et al. Design, optimization and application of whole-cell microbial biosensors with engineered genetic circuits[J]. Synthetic Biology Journal, 2022, 3(6): 1061-1080. | |
4 | MEYER A J, SEGALL-SHAPIRO T H, GLASSEY E, et al. Escherichia coli "Marionette" strains with 12 highly optimized small-molecule sensors[J]. Nature Chemical Biology, 2019, 15(2): 196-204. |
5 | 吴一凡, 林晟豪, 许文涛. 小分子靶标的核糖开关生物传感器研究进展[J]. 生物技术进展, 2022, 12(2): 168-175. |
WU Y F, LIN S H, XU W T. Research progress of riboswitch biosensors for small molecule target[J]. Current Biotechnology, 2022, 12(2): 168-175. | |
6 | RAVIKUMAR S, BAYLON M G, PARK S J, et al. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery[J].Microbial Cell Factories, 2017, 16: 62. |
7 | RAVIKUMAR S, YOO I K, LEE S Y, et al. Construction of copper removing bacteria through the integration of two-component system and cell surface display[J]. Applied Biochemistry and Biotechnology, 2011, 165(7): 1674-1681. |
8 | ANTUNES M S, MOREY K J, SMITH J J, et al. Programmable ligand detection system in plants through a synthetic signal transduction pathway[J]. PLoS One, 2011, 6(1): e16292. |
9 | LIM H G, JANG S, JANG S, et al. Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals[J]. Current Opinion in Biotechnology, 2018, 54: 18-25. |
10 | 杨慧勤. 富马酸响应型双组分生物传感器的设计与优化[D]. 无锡: 江南大学, 2022. |
YANG H Q. Design and optimization of fumaric acid responsive two-component biosensor[D]. Wuxi: Jiangnan University, 2022. | |
11 | RAVIKUMAR S, DAVID Y, PARK S J, et al. A chimeric two-component regulatory system-based Escherichia coli biosensor engineered to detect glutamate[J]. Applied Biochemistry and Biotechnology, 2018, 186(2): 335-349. |
12 | RAMAKRISHNAN P, TABOR J J. Repurposing Synechocystis PCC6803 UirS-UirR as a UV-violet/green photoreversible transcriptional regulatory tool in E. coli [J]. ACS Synthetic Biology, 2016, 5(7): 733-740. |
13 | OHLENDORF R, VIDAVSKI R R, ELDAR A, et al. From dusk till dawn: one-plasmid systems for light-regulated gene expression[J]. Journal of Molecular Biology, 2012, 416(4): 534-542. |
14 | ONG N T, TABOR J J. A miniaturized Escherichia coli green light sensor with high dynamic range[J]. ChemBioChem, 2018, 19(12): 1255-1258. |
15 | SCHMIDL S R, SHETH R U, WU A, et al. Refactoring and optimization of light-switchable Escherichia coli two-component systems[J]. ACS Synthetic Biology, 2014, 3(11): 820-831. |
16 | ONG N T, OLSON E J, TABOR J J. Engineering an E. coli near-infrared light sensor[J]. ACS Synthetic Biology, 2018, 7(1): 240-248. |
17 | CARTWRIGHT I M, DOWDELL A S, LANIS J M, et al. Mucosal acidosis elicits a unique molecular signature in epithelia and intestinal tissue mediated by GPR31-induced CREB phosphorylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20): e2023871118. |
18 | LIU G H, LIU M Y, KIM E H, et al. A periplasmic arsenite-binding protein involved in regulating arsenite oxidation[J]. Environmental Microbiology, 2012, 14(7): 1624-1634. |
19 | GURAGAIN M, KING M M, WILLIAMSON K S, et al. The Pseudomonas aeruginosa PAO1 two-component regulator CarSR regulates calcium homeostasis and calcium-induced virulence factor production through its regulatory targets CarO and CarP[J]. Journal of Bacteriology, 2016, 198(6): 951-963. |
20 | GUDIPATY S A, LARSEN A S, RENSING C, et al. Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS[J]. FEMS Microbiology Letters, 2012, 330(1): 30-37. |
21 | GINER-LAMIA J, LÓPEZ-MAURY L, REYES J C, et al. The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803[J]. Plant Physiology, 2012, 159(4): 1806-1818. |
22 | SÁNCHEZ-SUTIL M C, MARCOS-TORRES F J, PÉREZ J, et al. Dissection of the sensor domain of the copper-responsive histidine kinase CorS from Myxococcus xanthus [J]. Environmental Microbiology Reports, 2016, 8(3): 363-370. |
23 | LIN C S, TSAI Y H, CHANG C J, et al. An iron detection system determines bacterial swarming initiation and biofilm formation[J]. Scientific Reports, 2016, 6: 36747. |
24 | GANESH I, RAVIKUMAR S, LEE S H, et al. Engineered fumarate sensing Escherichia coli based on novel chimeric two-component system[J]. Journal of Biotechnology, 2013, 168(4): 560-566. |
25 | PARK D M, TAFFET M J. Combinatorial sensor design in Caulobacter crescentus for selective environmental uranium detection[J]. ACS Synthetic Biology, 2019, 8(4): 807-817. |
26 | PETIT-HÄRTLEIN I, ROME K, DE ROSNY E, et al. Biophysical and physiological characterization of ZraP from Escherichia coli, the periplasmic accessory protein of the atypical ZraSR two-component system[J]. The Biochemical Journal, 2015, 472(2): 205-216. |
27 | DAEFFLER K N M, GALLEY J D, SHETH R U, et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation[J]. Molecular Systems Biology, 2017, 13(4): 923. |
28 | SCHMIDL S R, EKNESS F, SOFJAN K, et al. Rewiring bacterial two-component systems by modular DNA-binding domain swapping[J]. Nature Chemical Biology, 2019, 15(7): 690-698. |
29 | SUN F, JI Q J, JONES M B, et al. AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in staphylococcus aureus[J]. Journal of the American Chemical Society, 2012, 134(1): 305-314. |
30 | SARWAR Z, WANG M X, LUNDGREN B R, et al. MifS, a DctB family histidine kinase, is a specific regulator of α-ketoglutarate response in Pseudomonas aeruginosa PAO1[J]. Microbiology, 2020, 166(9): 867-879. |
31 | YANG Y P, LANG N N, ZHANG L, et al. A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum [J].Applied Microbiology and Biotechnology, 2020, 104(11): 5011-5023. |
32 | YAMAMOTO K, MATSUMOTO F, OSHIMA T, et al. Anaerobic regulation of citrate fermentation by CitAB in Escherichia coli [J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(11): 3011-3014. |
33 | PACHECO A R, CURTIS M M, RITCHIE J M, et al. Fucose sensing regulates bacterial intestinal colonization[J]. Nature, 2012, 492(7427): 113-117. |
34 | SELVAMANI V, GANESH I, MARUTHAMUTHU M K, et al. Engineering chimeric two-component system into Escherichia coli from Paracoccus denitrificans to sense methanol[J]. Biotechnology and Bioprocess Engineering, 2017, 22(3): 225-230. |
35 | OLEKHNOVICH I N, KADNER R J. Mutational scanning and affinity cleavage analysis of UhpA-binding sites in the Escherichia coli uhpT promoter[J]. Journal of Bacteriology, 2002, 184(10): 2682-2691. |
36 | LUNDGREN B R, SHOYTUSH J M, SCHEEL R A, et al. Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP[J].BMC Microbiology, 2021, 21(1): 83. |
37 | HIRAKAWA H, INAZUMI Y, MASAKI T, et al. Indole induces the expression of multidrug exporter genes in Escherichia coli [J]. Molecular Microbiology, 2005, 55(4): 1113-1126. |
38 | TANAKA K, KOBAYASHI K, OGASAWARA N. The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium[J]. Microbiology, 2003, 149(9): 2317-2329. |
39 | BEHR S, KRISTOFICOVA I, WITTING M, et al. Identification of a high-affinity pyruvate receptor in Escherichia coli [J]. Scientific Reports, 2017, 7: 1388. |
40 | SUN Z, CHEN Y X, YANG C, et al. A novel three-component system-based regulatory model for D-xylose sensing and transport in Clostridium beijerinckii [J]. Molecular Microbiology, 2015, 95(4): 576-589. |
41 | VELASCO A, ALONSO S, GARCÍA J L, et al. Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2[J]. Journal of Bacteriology, 1998, 180(5): 1063-1071. |
42 | JAYARAMAN P, HOLOWKO M B, YEOH J W, et al. Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae [J]. ACS Synthetic Biology, 2017, 6(7): 1403-1415. |
43 | DAVEY L, HALPERIN S A, LEE S F. Mutation of the thiol-disulfide oxidoreductase SdbA activates the CiaRH two-component system, leading to bacteriocin expression shutdown in streptococcus gordonii[J]. Journal of Bacteriology, 2016, 198(2): 321-331. |
44 | GUAN C R, CUI W J, CHENG J T, et al. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis [J]. Microbial Cell Factories, 2015, 14: 150. |
45 | SHIN J H, CHOE D, RANSEGNOLA B, et al. A multifaceted cellular damage repair and prevention pathway promotes high-level tolerance to β-lactam antibiotics[J]. EMBO Reports, 2021, 22(2): e51790. |
46 | REVILLA-GUARINOS A, DÜRR F, POPP P F, et al. Amphotericin B specifically induces the two-component system LnrJK: development of a novel whole-cell biosensor for the detection of amphotericin-like polyenes[J]. Frontiers in Microbiology, 2020, 11: 2022. |
47 | LOCKEY C, EDWARDS R J, ROPER D I, et al. The extracellular domain of two-component system sensor kinase VanS from Streptomyces coelicolor binds vancomycin at a newly identified binding site[J]. Scientific Reports, 2020, 10: 5727. |
48 | LEE K, KASPAR J R, ROJAS-CARREÑO G, et al. A single system detects and protects the beneficial oral bacterium Streptococcus sp. A12 from a spectrum of antimicrobial peptides[J]. Molecular Microbiology, 2021, 116(1): 211-230. |
49 | TOYMENTSEVA A A, SCHRECKE K, SHARIPOVA M R, et al. The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter[J].Microbial Cell Factories, 2012, 11: 143. |
50 | WOLF D, MASCHER T. The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: expression systems and whole-cell biosensors[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4817-4829. |
51 | MIMEE M, TUCKER A C, VOIGT C A, et al. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota[J]. Cell Systems, 2015, 1(1): 62-71. |
52 | WANG B X, WHEELER K M, CADY K C, et al. Mucin glycans signal through the sensor kinase RetS to inhibit virulence-associated traits in pseudomonas aeruginosa[J]. Current Biology, 2021, 31(1): 90-102.e7. |
53 | N D Ⅲ SCHWALM, TOWNSEND G E Ⅱ, GROISMAN E A. Multiple signals govern utilization of a polysaccharide in the gut bacterium Bacteroides thetaiotaomicron [J]. mBio, 2016, 7(5): e01342-16. |
54 | KILMURY S L N, BURROWS L L. Type Ⅳ pilins regulate their own expression via direct intramembrane interactions with the sensor kinase PilS[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(21): 6017-6022. |
55 | RICHARDS S M, STRANDBERG K L, CONROY M, et al. Cationic antimicrobial peptides serve as activation signals for the Salmonella Typhimurium PhoPQ and PmrAB regulons in vitro and in vivo [J]. Frontiers in Cellular and Infection Microbiology, 2012, 2: 102. |
56 | CLARKE M B, HUGHES D T, ZHU C R, et al. The QseC sensor kinase: a bacterial adrenergic receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10420-10425. |
57 | DONOSO R, LEIVA-NOVOA P, ZÚÑIGA A, et al. Biochemical and genetic bases of indole-3-acetic acid (auxin phytohormone) degradation by the plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN[J]. Applied and Environmental Microbiology, 2017, 83(1): e01991-16. |
58 | WANG F F, CHENG S T, WU Y, et al. A bacterial receptor PcrK senses the plant hormone cytokinin to promote adaptation to oxidative stress[J]. Cell Reports, 2017, 21(10): 2940-2951. |
59 | LIN Y H, DANIEL PIERCE B, FANG F, et al. Role of the VirA histidine autokinase of Agrobacterium tumefaciens in the initial steps of pathogenesis[J]. Frontiers in Plant Science, 2014, 5: 195. |
60 | MCCLUNE C J, ALVAREZ-BUYLLA A, VOIGT C A, et al. Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space[J]. Nature, 2019, 574(7780): 702-706. |
61 | MIMEE M, NADEAU P, HAYWARD A, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health[J]. Science, 2018, 360(6391): 915-918. |
62 | DUTTA A, RUDRA P, BANIK S K, et al. Evidence of robustness in a two-component system using a synthetic circuit[J]. Journal of Bacteriology, 2020, 202(4): e00672-19. |
63 | LANDRY B P, PALANKI R, DYULGYAROV N, et al. Phosphatase activity tunes two-component system sensor detection threshold[J]. Nature Communications, 2018, 9: 1433. |
64 | PODGORNAIA A I, LAUB M T. Determinants of specificity in two-component signal transduction[J]. Current Opinion in Microbiology, 2013, 16(2): 156-162. |
65 | LAZAR J T, TABOR J J. Bacterial two-component systems as sensors for synthetic biology applications[J]. Current Opinion in Systems Biology, 2021, 28: 100398. |
66 | GREBE T W, STOCK J. Bacterial chemotaxis: the five sensors of a bacterium[J]. Current Biology, 1998, 8(5): R154-R157. |
67 | WHITAKER W R, DAVIS S A, ARKIN A P, et al. Engineering robust control of two-component system phosphotransfer using modular scaffolds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 18090-18095. |
68 | GAO R, BOUILLET S, STOCK A M. Structural basis of response regulator function[J]. Annual Review of Microbiology, 2019, 73: 175-197. |
69 | HANSEN J, MAILAND E, SWAMINATHAN K K, et al. Transplantation of prokaryotic two-component signaling pathways into mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44): 15705-15710. |
70 | MAZÉ A, BENENSON Y. Artificial signaling in mammalian cells enabled by prokaryotic two-component system[J]. Nature Chemical Biology, 2020, 16(2): 179-187. |
71 | RAVIKUMAR S, YOO I K, LEE S Y, et al. A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria[J]. Bioprocess and Biosystems Engineering, 2011, 34(9): 1119-1126. |
72 | Dı́AZ E, PRIETO M A. Bacterial promoters triggering biodegradation of aromatic pollutants[J]. Current Opinion in Biotechnology, 2000, 11(5): 467-475. |
73 | RUTTER J W, DEKKER L, FEDOREC A J H, et al. Engineered acetoacetate-inducible whole-cell biosensors based on the AtoSC two-component system[J]. Biotechnology Biengineering, 2021, 118(11); 4278-4289. |
74 | SKERKER J M, PERCHUK B S, SIRYAPORN A, et al. Rewiring the specificity of two-component signal transduction systems[J]. Cell, 2008, 133(6): 1043-1054. |
[1] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[2] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[3] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[4] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[5] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[6] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[7] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[8] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[9] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[10] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[11] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[12] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[13] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[14] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[15] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||