Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (2): 239-253.DOI: 10.12211/2096-8280.2023-061
• Invited Review • Previous Articles Next Articles
Chao FANG1, Weiren HUANG1,2,3
Received:
2023-08-25
Revised:
2024-02-29
Online:
2024-04-28
Published:
2024-04-30
Contact:
Weiren HUANG
方超1, 黄卫人1,2,3
通讯作者:
黄卫人
作者简介:
基金资助:
CLC Number:
Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines[J]. Synthetic Biology Journal, 2024, 5(2): 239-253.
方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-061
肿瘤抗原 | 抗原类型 | 表达位置 | 高丰度表达位置 |
---|---|---|---|
肿瘤相关性抗原 | 高表达蛋白或者多肽 | 肿瘤或正常细胞 | 肿瘤 |
肿瘤种系抗原 | 肿瘤,生殖细胞 | 肿瘤,生殖细胞 | |
肿瘤特异性抗原 | 肿瘤病毒 | 病毒性肿瘤 | 病毒性肿瘤 |
肿瘤新抗原 | 肿瘤 | 肿瘤 |
Table 1 Classification of cancer antigens
肿瘤抗原 | 抗原类型 | 表达位置 | 高丰度表达位置 |
---|---|---|---|
肿瘤相关性抗原 | 高表达蛋白或者多肽 | 肿瘤或正常细胞 | 肿瘤 |
肿瘤种系抗原 | 肿瘤,生殖细胞 | 肿瘤,生殖细胞 | |
肿瘤特异性抗原 | 肿瘤病毒 | 病毒性肿瘤 | 病毒性肿瘤 |
肿瘤新抗原 | 肿瘤 | 肿瘤 |
Fig. 2 Inhibition of tumor metastasis by ALK peptide vaccine characterized by the number of tested mice with metastatic tumors in their central nervous systems[72]
Fig. 3 Immune response of the patients to the autogene cevumera vaccine[88](The number of vaccine-induced IFNγ+ T cells in PBMC collected from the patients after vaccination with new vaccine antigens. R0/R1 indicates surgical resection margin status. Adapted with permission from reference.)
1 | BOYLSTON A. The origins of inoculation[J]. Journal of the Royal Society of Medicine, 2012, 105(7): 309-313. |
2 | DEMARIA P J, BILUSIC M. Cancer vaccines[J]. Hematology/Oncology Clinics of North America, 2019, 33(2): 199-214. |
3 | GARY E N, WEINER D B. DNA vaccines: prime time is now[J]. Current Opinion in Immunology, 2020, 65: 21-27. |
4 | BECK J D, REIDENBACH D, SALOMON N, et al. mRNA therapeutics in cancer immunotherapy[J]. Molecular Cancer, 2021, 20(1): 69. |
5 | GARG A D, COULIE P G, VAN DEN EYNDE B J, et al. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape[J]. Trends in Immunology, 2017, 38(8): 577-593. |
6 | FAN T, ZHANG M N, YANG J X, et al. Therapeutic cancer vaccines: advancements, challenges, and prospects[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 450. |
7 | GEBRE M S, BRITO L A, TOSTANOSKI L H, et al. Novel approaches for vaccine development[J]. Cell, 2021, 184(6): 1589-1603. |
8 | MINATI R, PERREAULT C, THIBAULT P. A roadmap toward the definition of actionable tumor-specific antigens[J]. Frontiers in Immunology, 2020, 11: 583287. |
9 | CHEN G, HUANG A C, ZHANG W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718): 382-386. |
10 | KALAORA S, NAGLER A, WARGO J A, et al. Mechanisms of immune activation and regulation: lessons from melanoma[J]. Nature Reviews Cancer, 2022, 22(4): 195-207. |
11 | CHIA W K, WANG W W, TEO M, et al. A phase Ⅱ study evaluating the safety and efficacy of an adenovirus-ΔLMP1-LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma[J]. Annals of Oncology, 2012, 23(4): 997-1005. |
12 | KENTER G G, WELTERS M J P, VALENTIJN A R P M, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia[J]. The New England Journal of Medicine, 2009, 361(19): 1838-1847. |
13 | TRIMBLE C L, MORROW M P, KRAYNYAK K A, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial[J]. The Lancet, 2015, 386(10008): 2078-2088. |
14 | HARPER D M, NIEMINEN P, DONDERS G, et al. The efficacy and safety of Tipapkinogen Sovacivec therapeutic HPV vaccine in cervical intraepithelial neoplasia grades 2 and 3: randomized controlled phase Ⅱ trial with 2.5 years of follow-up[J]. Gynecologic Oncology, 2019, 153(3): 521-529. |
15 | KIM T J, JIN H T, HUR S Y, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients[J]. Nature Communications, 2014, 5: 5317. |
16 | PIPERNO-NEUMANN S, HASSEL J C, RUTKOWSKI P, et al. Abstract CT002: phase 3 randomized trial comparing tebentafusp with investigator’s choice in first line metastatic uveal melanoma[J]. Cancer Research, 2021, 81(): CT002. |
17 | ROSENBERG S A, YANG J C, SCHWARTZENTRUBER D J, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma[J]. Nature Medicine, 1998, 4(3): 321-327. |
18 | CUNHA A C, WEIGLE B, KIESSLING A, et al. Tissue-specificity of prostate specific antigens: comparative analysis of transcript levels in prostate and non-prostatic tissues[J]. Cancer Letters, 2006, 236(2): 229-238. |
19 | KANTOFF P W, HIGANO C S, SHORE N D, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer[J]. The New England Journal of Medicine, 2010, 363(5): 411-422. |
20 | O’ROURKE D M, NASRALLAH M P, DESAI A, et al. A single dose of peripherally infused EGFRvⅢ-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma[J]. Science Translational Medicine, 2017, 9(399): eaaa0984. |
21 | ZAHEDIPOUR F, ZAMANI P, MASHREGHI M, et al. Nanoliposomal VEGF-R2 peptide vaccine acts as an effective therapeutic vaccine in a murine B16F10 model of melanoma[J]. Cancer Nanotechnology, 2023, 14(1): 62. |
22 | SCHUSTER J, LAI R K, RECHT L D, et al. A phase Ⅱ, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT Ⅲ study[J]. Neuro-oncology, 2015, 17(6): 854-861. |
23 | REARDON D A, DESJARDINS A, VREDENBURGH J J, et al. Rindopepimut with bevacizumab for patients with relapsed EGFRvⅢ-expressing glioblastoma (ReACT): results of a double-blind randomized phase Ⅱ trial[J]. Clinical Cancer Research, 2020, 26(7): 1586-1594. |
24 | WELLER M, BUTOWSKI N, TRAN D D, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvⅢ-expressing glioblastoma (ACT Ⅳ): a randomised, double-blind, international phase 3 trial[J]. The Lancet Oncology, 2017, 18(10): 1373-1385. |
25 | LIU C, YE D Y, YANG H L, et al. RAS-targeted cancer therapy: advances in drugging specific mutations[J]. MedComm, 2023, 4(3): e285. |
26 | BANNOURA S F, UDDIN M H, NAGASAKA M, et al. Targeting KRAS in pancreatic cancer: new drugs on the horizon[J]. Cancer Metastasis Reviews, 2021, 40(3): 819-835. |
27 | LIU X Q, HUANG P, YANG R S, et al. mRNA cancer vaccines: construction and boosting strategies[J]. ACS Nano, 2023, 17(20): 19550-19580. |
28 | CHEEVER M A, ALLISON J P, FERRIS A S, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research[J]. Clinical Cancer Research, 2009, 15(17): 5323-5337. |
29 | QI X W, ZHANG F, WU H, et al. Wilms’ tumor 1 (WT1) expression and prognosis in solid cancer patients: a systematic review and meta-analysis[J]. Scientific Reports, 2015, 5: 8924. |
30 | OKA Y, TSUBOI A, TAGUCHI T, et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38): 13885-13890. |
31 | MASLAK P G, TAO D, BERNAL Y, et al. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia[J]. Blood Advances, 2018, 2(3): 224-234. |
32 | KEILHOLZ U, LETSCH A, BUSSE A, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS[J]. Blood, 2009, 113(26): 6541-6548. |
33 | ANGUILLE S, VAN DE VELDE A L, SMITS E L, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia[J]. Blood, 2017, 130(15): 1713-1721. |
34 | VANSTEENKISTE J, ZIELINSKI M, LINDER A, et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase Ⅱ randomized study results[J]. Journal of Clinical Oncology, 2013, 31(19): 2396-2403. |
35 | KRUIT W H J, SUCIU S, DRENO B, et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase Ⅱ study of the European Organisation for Research and Treatment of Cancer Melanoma Group in Metastatic Melanoma[J]. Journal of Clinical Oncology, 2013, 31(19): 2413-2420. |
36 | SLINGLUFF C L, LEWIS K D, ANDTBACKA R, et al. Multicenter, double-blind, placebo-controlled trial of seviprotimut-L polyvalent melanoma vaccine in patients with post-resection melanoma at high risk of recurrence[J]. Journal for Immunotherapy of Cancer, 2021, 9(10): e003272. |
37 | THOMAS R, AL-KHADAIRI G, ROELANDS J, et al. NY-ESO-1 based immunotherapy of cancer: current perspectives[J]. Frontiers in Immunology, 2018, 9: 947. |
38 | DHODAPKAR M V, SZNOL M, ZHAO B W, et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205[J]. Science Translational Medicine, 2014, 6(232): 232ra51. |
39 | GASSER O, SHARPLES K J, BARROW C, et al. A phase Ⅰ vaccination study with dendritic cells loaded with NY-ESO-1 and α-galactosylceramide: induction of polyfunctional T cells in high-risk melanoma patients[J]. Cancer Immunology, Immunotherapy, 2018, 67(2): 285-298. |
40 | ODUNSI K, QIAN F, MATSUZAKI J, et al. Vaccination with an NY-ESO-1 peptide of HLA class Ⅰ/Ⅱ specificities induces integrated humoral and T cell responses in ovarian cancer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(31): 12837-12842. |
41 | MITTENDORF E A, ARDAVANIS A, SYMANOWSKI J, et al. Primary analysis of a prospective, randomized, single-blinded phase Ⅱ trial evaluating the HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence[J]. Annals of Oncology, 2016, 27(7): 1241-1248. |
42 | MITTENDORF E A, LU B, MELISKO M, et al. Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase Ⅲ clinical trial[J]. Clinical Cancer Research, 2019, 25(14): 4248-4254. |
43 | LIN M H, SHEN K Y, LIU B S, et al. Immunological evaluation of a novel HLA-A2 restricted phosphopeptide of tumor associated antigen, TRAP1, on cancer therapy[J]. Vaccine: Ⅹ, 2019, 1: 100017. |
44 | CLIFTON G T, HALE D, VREELAND T J, et al. Results of a randomized phase Ⅱb trial of nelipepimut-S+trastuzumab versus trastuzumab to prevent recurrences in patients with high-risk HER2 low-expressing breast cancer[J]. Clinical Cancer Research, 2020, 26(11): 2515-2523. |
45 | COX K E, LIU S L, LWIN T M, et al. The mucin family of proteins: candidates as potential biomarkers for colon cancer[J]. Cancers, 2023, 15(5): 1491. |
46 | PACILIO C, ROSATI G, CRISPO A, et al. An overview of the roles of CDK4/6 inhibitors in metastatic breast cancer elderly patients[J]. In Vivo, 2023, 37(4): 1445-1449. |
47 | CHUNG V M, KOS F, HARDWICK N, et al. A phase 1 study of p53MVA vaccine in combination with pembrolizumab[J]. Journal of Clinical Oncology, 2018, 36(): 206. |
48 | KIM C, LIU S V, SUBRAMANIAM D S, et al. Phase Ⅰ study of the 177Lu-DOTA0-Tyr3-Octreotate (lutathera) in combination with nivolumab in patients with neuroendocrine tumors of the lung[J]. Journal for Immunotherapy of Cancer, 2020, 8(2): e000980. |
49 | ANTONIA S J, MIRZA N, FRICKE I, et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer[J]. Clinical Cancer Research, 2006, 12(3 Pt 1): 878-887. |
50 | HARDWICK N R, FRANKEL P, RUEL C, et al. p53-Reactive T cells are associated with clinical benefit in patients with platinum-resistant epithelial ovarian cancer after treatment with a p53 vaccine and gemcitabine chemotherapy[J]. Clinical Cancer Research, 2018, 24(6): 1315-1325. |
51 | SPEETJENS F M, KUPPEN P J K, WELTERS M J P, et al. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer[J]. Clinical Cancer Research, 2009, 15(3): 1086-1095. |
52 | CHUNG V, KOS F J, HARDWICK N, et al. Evaluation of safety and efficacy of p53MVA vaccine combined with pembrolizumab in patients with advanced solid cancers[J]. Clinical & Translational Oncology, 2019, 21(3): 363-372. |
53 | QUANDT J, SCHLUDE C, BARTOSCHEK M, et al. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses[J]. Oncoimmunology, 2018, 7(12): e1500671. |
54 | KJELDSEN J W, LORENTZEN C L, MARTINENAITE E, et al. A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma[J]. Nature Medicine, 2021, 27(12): 2212-2223. |
55 | SCHUMACHER T N, SCHREIBER R D. Neoantigens in cancer immunotherapy[J]. Science, 2015, 348(6230): 69-74. |
56 | XIE N, SHEN G B, GAO W, et al. Neoantigens: promising targets for cancer therapy[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 9. |
57 | WANG L, SHAMARDANI K, BABIKIR H, et al. The evolution of alternative splicing in glioblastoma under therapy[J]. Genome Biology, 2021, 22(1): 48. |
58 | JUHARI W K W, AHMAD AMIN NOORDIN K B, ZAKARIA A D, et al. Whole-genome profiles of Malay colorectal cancer patients with intact MMR proteins[J]. Genes, 2021, 12(9): 1448. |
59 | HANSEN U K, RAMSKOV S, BJERREGAARD A M, et al. Tumor-infiltrating T cells from clear cell renal cell carcinoma patients recognize neoepitopes derived from point and frameshift mutations[J]. Frontiers in Immunology, 2020, 11: 373. |
60 | LU S X, NEEF E D, THOMAS J D, et al. Pharmacologic modulation of RNA splicing enhances anti-tumor immunity[J]. Cell, 2021, 184(15): 4032-4047.e31. |
61 | DAO T, MUN S S, MOLVI Z, et al. A TCR mimic monoclonal antibody reactive with the “public” phospho-neoantigen pIRS2/HLA-A*02: 01 complex[J]. JCI Insight, 2022, 7(5): e151624. |
62 | KRUMP N A, YOU J X. From merkel cell polyomavirus infection to merkel cell carcinoma oncogenesis[J]. Frontiers in Microbiology, 2021, 12: 739695. |
63 | ZHANG W T, ZHU G L, XU W Q, et al. Association of PD-1/PD-L1 expression and Epstein: Barr virus infection in patients with invasive breast cancer[J]. Diagnostic Pathology, 2022, 17(1): 61. |
64 | CHAN C K, AIMAGAMBETOVA G, UKYBASSOVA T, et al. Human papillomavirus infection and cervical cancer: epidemiology, screening, and vaccination-review of current perspectives[J]. Journal of Oncology, 2019, 2019: 3257939. |
65 | PURCELL A W, RAMARATHINAM S H, TERNETTE N. Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics[J]. Nature Protocols, 2019, 14: 1687-1707. |
66 | KRISTENSEN N P, HEEKE C, TVINGSHOLM S A, et al. Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive cell therapy with tumor-infiltrating lymphocytes in melanoma[J]. The Journal of Clinical Investigation, 2022, 132(2): e150535. |
67 | HOLM J S, FUNT S A, BORCH A, et al. Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma[J]. Nature Communications, 2022, 13(1): 1935. |
68 | BISWAS N, CHAKRABARTI S, PADUL V, et al. Designing neoantigen cancer vaccines, trials, and outcomes[J]. Frontiers in Immunology, 2023, 14: 1105420. |
69 | VITA R, MAHAJAN S, OVERTON J A, et al. The Immune Epitope Database (IEDB): 2018 update[J]. Nucleic Acids Research, 2019, 47(D1): D339-D343. |
70 | ZHOU W J, QU Z, SONG C Y, et al. NeoPeptide: an immunoinformatic database of T-cell-defined neoantigens[J]. Database, 2019, 2019: baz128. |
71 | CHAROENTONG P, FINOTELLO F, ANGELOVA M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade[J]. Cell Reports, 2017, 18(1): 248-262. |
72 | WU J C, ZHAO W Y, ZHOU B B, et al. TSNAdb: a database for tumor-specific neoantigens from immunogenomics data analysis[J]. Genomics, Proteomics & Bioinformatics, 2018, 16(4): 276-282. |
73 | SHAW A T, BAUER T M, MARINIS F D, et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer[J]. The New England Journal of Medicine, 2020, 383(21): 2018-2029. |
74 | PETERS S, CAMIDGE D R, SHAW A T, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer[J]. The New England Journal of Medicine, 2017, 377(9): 829-838. |
75 | CAMIDGE D R, KIM H R, AHN M J, et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer[J]. The New England Journal of Medicine, 2018, 379(21): 2027-2039. |
76 | KWAK E L, BANG Y J, CAMIDGE D R, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer[J]. The New England Journal of Medicine, 2010, 363(18): 1693-1703. |
77 | SHAW A T, KIM T M, CRINÒ L, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial[J]. The Lancet Oncology, 2017, 18(7): 874-886. |
78 | ZHANG I, ZAORSKY N G, PALMER J D, et al. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer[J]. The Lancet Oncology, 2015, 16(13): e510-e521. |
79 | JOHUNG K L, YEH N, DESAI N B, et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis[J]. Journal of Clinical Oncology, 2016, 34(2): 123-129. |
80 | MOTA I, PATRUCCO E, MASTINI C, et al. ALK peptide vaccination restores the immunogenicity of ALK-rearranged non-small cell lung cancer[J]. Nature Cancer, 2023, 4(7): 1016-1035. |
81 | CHOI Y M, KIM D H, JANG J, et al. A hepatitis B virus-derived peptide combined with HBsAg exerts an anti-HBV effect in an HBV transgenic mouse model as a therapeutic vaccine[J]. Frontiers in Immunology, 2023, 14: 1155637. |
82 | SURI S, DAKSHANAMURTHY S. IntegralVac: a machine learning-based comprehensive multivalent epitope vaccine design method[J]. Vaccines, 2022, 10(10): 1678. |
83 | HU Z T, LEET D E, ALLESØE R L, et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma[J]. Nature Medicine, 2021, 27(3): 515-525. |
84 | WIEDERMANN U, GARNER-SPITZER E, CHAO Y E, et al. Clinical and immunologic responses to a B-cell epitope vaccine in patients with HER2/neu-overexpressing advanced gastric cancer-results from phase ib trial IMU.ACS.001[J]. Clinical Cancer Research, 2021, 27(13): 3649-3660. |
85 | PANDYA A, SHAH Y, KOTHARI N, et al. The future of cancer immunotherapy: DNA vaccines leading the way[J]. Medical Oncology, 2023, 40(7): 200. |
86 | STRIOGA M M, DARINSKAS A, PASUKONIENE V, et al. Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: to use or not to use?[J]. Vaccine, 2014, 32(32): 4015-4024. |
87 | RICCARDO F, BOLLI E, MACAGNO M, et al. Chimeric DNA vaccines: an effective way to overcome immune tolerance[M/OL]//SAVELYEVA N, OTTENSMEIER C. Current topics in microbiology and immunology: cancer vaccines. Cham: Springer International Publishing, 2014: 99-122 [2023-12-01]. . |
88 | SAFAVI A, KEFAYAT A, ABIRI A, et al. In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma[J]. Molecular Immunology, 2019, 112: 93-102. |
89 | LI L J, ZHANG X L, WANG X L, et al. Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation[J]. Genome Medicine, 2021, 13(1): 56. |
90 | DURÁNTEZ M, LÓPEZ-VÁZQUEZ A B, DE CERIO A L D, et al. Induction of multiepitopic and long-lasting immune responses against tumour antigens by immunization with peptides, DNA and recombinant adenoviruses expressing minigenes[J]. Scandinavian Journal of Immunology, 2009, 69(2): 80-89. |
91 | KESKIN D B, ANANDAPPA A J, SUN J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial[J]. Nature, 2019, 565(7738): 234-239. |
92 | MIAO L, ZHANG Y, HUANG L. mRNA vaccine for cancer immunotherapy[J]. Molecular Cancer, 2021, 20(1): 41. |
93 | TEWS B A, MEYERS G. Self-replicating RNA[M/OL]//KRAMPS T, ELBERS K. Methods in molecular Biology: RNA vaccines. New York, NY: Springer New York, 2017, 1499: 15-35 [2023-12-01]. . |
94 | SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17-48. |
95 | BAILEY P, CHANG D K, FORGET M A, et al. Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma[J]. Scientific Reports, 2016, 6: 35848. |
96 | BALACHANDRAN V P, ŁUKSZA M, ZHAO J N, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer[J]. Nature, 2017, 551(7681): 512-516. |
97 | ŁUKSZA M, SETHNA Z M, ROJAS L A, et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer[J]. Nature, 2022, 606(7913): 389-395. |
98 | ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963): 144-150. |
99 | KUAI R, OCHYL L J, BAHJAT K S, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy[J]. Nature Materials, 2017, 16(4): 489-496. |
100 | SCHLOSSER E, MUELLER M, FISCHER S, et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses[J]. Vaccine, 2008, 26(13): 1626-1637. |
101 | FISCHER N O, RASLEY A, CORZETT M, et al. Colocalized delivery of adjuvant and antigen using nanolipoprotein particles enhances the immune response to recombinant antigens[J]. Journal of the American Chemical Society, 2013, 135(6): 2044-2047. |
102 | KOERNER J, HORVATH D, HERRMANN V L, et al. PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy[J]. Nature Communications, 2021, 12(1): 2935. |
103 | HEIDEGGER S, KREPPEL D, BSCHEIDER M, et al. RIG-I activating immunostimulatory RNA boosts the efficacy of anticancer vaccines and synergizes with immune checkpoint blockade[J]. EBioMedicine, 2019, 41: 146-155. |
104 | LI W Z, LIU J Q, CHEN M, et al. Circular RNA in cancer development and immune regulation[J]. Journal of Cellular and Molecular Medicine, 2022, 26(6): 1785-1798. |
105 | YU L L, XIAO Q, YU B, et al. CircRNAs in tumor immunity and immunotherapy: perspectives from innate and adaptive immunity[J]. Cancer Letters, 2023, 564: 216219. |
106 | BALAN S, SAXENA M, BHARDWAJ N. Dendritic cell subsets and locations[M/OL]//International review of cell and molecular biology. Amsterdam: Elsevier, 2019, 348: 1-68 [2023-12-01]. . |
107 | SALLUSTO F, LANZAVECCHIA A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha[J]. The Journal of Experimental Medicine, 1994, 179(4): 1109-1118. |
108 | LIAU L M, ASHKAN K, BREM S, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial[J]. JAMA Oncology, 2023, 9(1): 112-121. |
109 | GABBA A, ATTARIYA R, BEHREN S, et al. MUC1 glycopeptide vaccine modified with a GalNAc glycocluster targets the macrophage galactose C-type lectin on dendritic cells to elicit an improved humoral response[J]. Journal of the American Chemical Society, 2023, 145(24): 13027-13037. |
110 | LIU C, LIU X, XIANG X C, et al. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy[J]. Nature Nanotechnology, 2022, 17(5): 531-540. |
111 | SOLIMAN H, HOGUE D, HAN H, et al. Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: a phase 2 trial[J]. Nature Medicine, 2023, 29(2): 450-457. |
112 | ZHU J M, KE Y H, LIU Q, et al. Engineered Lactococcus lactis secreting Flt3L and OX40 ligand for in situ vaccination-based cancer immunotherapy[J]. Nature Communications, 2022, 13(1): 7466. |
113 | WANG W G, XU H H, YE Q S, et al. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria[J]. Nature Biomedical Engineering, 2022, 6(1): 44-53. |
[1] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[2] | Jun ZHANG, Shixue JIN, Qian YUN, Xudong QU. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[3] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[4] | Jin FENG, Haixue PAN, Gongli TANG. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[5] | Mengyu XI, Yiling HU, Yucheng GU, Huiming GE. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
[6] | Xinjie SHI, Yiling DU. Research advances in the biosynthesis of nonribosomal peptides within the bisintercalator family as anticancer drugs [J]. Synthetic Biology Journal, 2024, 5(3): 593-611. |
[7] | Yongxiang SONG, Xiufeng ZHANG, Yanqin LI, Hua XIAO, Yan YAN. Resistance-gene directed discovery of bioactive natural products [J]. Synthetic Biology Journal, 2024, 5(3): 474-491. |
[8] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
[9] | Zibin TAN, Kang LIANG, Youhai CHEN. Applications of synthetic biology in developing microbial-vectored cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 221-238. |
[10] | Qiang ZHOU, Dawei ZHOU, Jingxiang SUN, Jingnan WANG, Wankui JIANG, Wenming ZHANG, Yujia JIANG, Fengxue XIN, Min JIANG. Research progress in synthesis of astaxanthin by microbial fermentation [J]. Synthetic Biology Journal, 2024, 5(1): 126-143. |
[11] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[12] | Jiayu DONG, Min LI, Zonghua XIAO, Ming HU, Yudai MATSUDA, Weiguang WANG. Recent advances in heterologous production of natural products using Aspergillus oryzae [J]. Synthetic Biology Journal, 2022, 3(6): 1126-1149. |
[13] | Shiming TANG, Jiyuan HU, Suiping ZHENG, Shuangyan HAN, Ying LIN. Designing, building and rapid prototyping of biosynthesis module based on cell-free system [J]. Synthetic Biology Journal, 2022, 3(6): 1250-1261. |
[14] | Sisi LIN, Chao PAN, Yifan ZHANG, Jinyao LIU. Coated probiotic-based drug carriers for oral delivery of tumor antigens [J]. Synthetic Biology Journal, 2022, 3(4): 810-820. |
[15] | Lu YANG, Xudong QU. Application of imine reductase in the synthesis of chiral amines [J]. Synthetic Biology Journal, 2022, 3(3): 516-529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||