• •
李睿1,2,3, 左方婷1,2,4, 杨弋1,2
收稿日期:
2025-05-13
修回日期:
2025-08-28
出版日期:
2025-08-29
通讯作者:
杨弋
作者简介:
基金资助:
Li Rui1,2,3, Zuo Fangting1,2,4, Yang Yi1,2
Received:
2025-05-13
Revised:
2025-08-28
Online:
2025-08-29
Contact:
Yang Yi
摘要:
近年来,遗传编码荧光探针在结构优化与疾病诊断应用中取得了快速发展。通过蛋白质工程,荧光蛋白在光稳定性、灵敏度和光谱范围方面显著提升,并涌现出多种新型传感机制,实现了离子、代谢物及神经递质等生理信号的实时可视化。与此同时,荧光RNA在折叠稳定性、激活效率和亮度上不断突破,多色工具箱的建立使 RNA 动态成像成为可能。这两类探针已广泛应用于肿瘤代谢、糖尿病及神经疾病研究,在代谢监测、病理状态识别和早期诊断等方面展现出独特优势,推动了疾病机制解析与诊断技术进步。未来,随着探针性能持续优化和设计创新,遗传编码荧光探针有望在基础研究和临床转化中发挥更大作用,为精准诊断和个性化医疗提供有力支持。
中图分类号:
李睿, 左方婷, 杨弋. 遗传编码荧光探针在疾病诊断中的最新进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-045.
Li Rui, Zuo Fangting, Yang Yi. Recent advances in genetically encoded fluorescent sensors for disease diagnosis[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-045.
图1 遗传编码荧光探针设计构建图(a)基于 FRET 原理构建遗传编码荧光探针的示意图;(b)基于周质结合蛋白 构建的遗传编码荧光探针,结合底物后其构象变化将会改变环化荧光蛋白(Circularly Permuted Fluorescent Protein,cpFP)的荧光;(c)基于G蛋白偶联受体 构建的遗传编码荧光探针,cpFP 通常插入在G蛋白偶联受体位于胞内的第五和第六跨膜结构域之间,结合底物后G蛋白偶联受体的构象变化将会改变 cpFP 的荧光[6];(d)基于ATOM原理构建遗传编码荧光探针,配体结合诱导荧光蛋白结构域折叠,恢复其天然构象,使发色团成熟[5]。
Fig.1 Design and construction of genetically encoded fluorescent sensors(a) Diagram of genetically encoded fluorescent sensor based on FRET principle. (b) PBP-based genetically encoded indicators, following substrate binding, conformational changes of PBPs will change fluorescence of cpFP. (c) GPCRs-based genetically encoded indicators, cpFP is inserted into the intracellular loop of GPCRs between transmembrane domains 5 and 6, following substrate binding, conformational changes of GPCRs will change fluorescence of cpFP[6]. (d) ATOM-based genetically encoded fluorescence indicators, ligand is binded to fluorescence protein domain, restored its natural conformation, and matured the chromophore[5].
图2 Pepper[14]、Clivia[19]、Okra[20]、mSquash[23]和Myosotis[21]适配体结构示意图
Fig.2 Schematic diagram of Pepper[14], Clivia[19], Okra[20], mSquash[23] and Myosotis[21] aptamer structures.
图3 检测SAM的RNA传感器(a)Pepper-SAM-C14U探针设计原理及其对SAM的响应[17];(b)基于Pepper和RhoBAST的比率型SAM传感器设计原理及响应[18]。
Fig.3 RNA sensors for detecting SAM(a) Design principle of Pepper-SAM-C14U sensor and its response to SAM[17]. (b) Design principle of ratiometric SAM sensor based on Pepper and RhoBAST and its response to SAM[18].
[1] | WANG X, DING Q, GROLEAU R R, et al. Fluorescent Probes for Disease Diagnosis [J]. Chemical Reviews, 2024, 124(11): 7106-64. |
[2] | GHOUNEIMY A, MAHAS A, MARSIC T, et al. CRISPR-Based Diagnostics: Challenges and Potential Solutions toward Point-of-Care Applications [J]. ACS Synth Biol, 2023, 12(1): 1-16. |
[3] | HAN Y, YANG J, LI Y, et al. Bright and sensitive red voltage indicators for imaging action potentials in brain slices and pancreatic islets [J]. Sci Adv, 2023, 9(47): eadi4208. |
[4] | ZHANG Y, RóZSA M, LIANG Y, et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations [J]. Nature, 2023, 615(7954): 884-91. |
[5] | SEKHON H, HA J H, PRESTI M F, et al. Adaptable, turn-on maturation (ATOM) fluorescent biosensors for multiplexed detection in cells [J]. Nature Methods, 2023, 20(12): 1920-9. |
[6] | WU Z, LIN D, LI Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators [J]. Nat Rev Neurosci, 2022, 23(5): 257-74. |
[7] | CHANG H, CLEMENS S, GAO P, et al. Fluorogenic Rhodamine-Based Chemigenetic Biosensor for Monitoring Cellular NADPH Dynamics [J]. Journal of the American Chemical Society, 2024, 146(30): 20569-76. |
[8] | HU L, CAO W, JIANG Y, et al. Designing artificial fluorescent proteins and biosensors by genetically encoding molecular rotor-based amino acids [J]. Nature Chemistry, 2024, 16(12): 1960-71. |
[9] | LU S, HOU Y, ZHANG X E, et al. Live cell imaging of DNA and RNA with fluorescent signal amplification and background reduction techniques [J]. Front Cell Dev Biol, 2023, 11: 1216232. |
[10] | SONG Q, TAI X, REN Q, et al. Structure-based insights into fluorogenic RNA aptamers [J]. Acta Biochim Biophys Sin (Shanghai), 2024, 57(1): 108-18. |
[11] | GAO W K C Z Y, RONG X X, ET AL. . Progress in RNA dynamic imaging technology in live cells [J]. SCIENTIA SINICA Vitae, 2024, 54(4): 651-67. |
[12] | ZUO F T, ZHANG Y Q, YANG H M, et al. Progress on fluorescent RNA and fluorescent RNA-based biosensing technology [J]. Yi Chuan, 2024, 46(2): 92-108. |
[13] | LU X, KONG K Y S, UNRAU P J. Harmonizing the growing fluorogenic RNA aptamer toolbox for RNA detection and imaging [J]. Chemical Society Reviews, 2023, 52(12): 4071-98. |
[14] | HUANG K, CHEN X, LI C, et al. Structure-based investigation of fluorogenic Pepper aptamer [J]. Nature Chemical Biology, 2021, 17(12): 1289-95. |
[15] | WANG Q, XIAO F, SU H, et al. Inert Pepper aptamer-mediated endogenous mRNA recognition and imaging in living cells [J]. Nucleic Acids Res, 2022, 50(14): e84. |
[16] | ZHENG H, LIU X, LIU L, et al. Imaging of endogenous RNA in live cells using sequence-activated fluorescent RNA probes [J]. Nucleic Acids Res, 2024. |
[17] | FANG M, LI H, XIE X, et al. Imaging intracellular metabolite and protein changes in live mammalian cells with bright fluorescent RNA-based genetically encoded sensors [J]. Biosens Bioelectron, 2023, 235: 115411. |
[18] | CHEN Z, CHEN W, REHEMAN Z, et al. Genetically encoded RNA-based sensors with Pepper fluorogenic aptamer [J]. Nucleic Acids Research, 2023, 51(16): 8322-36. |
[19] | JIANG L, XIE X, SU N, et al. Large Stokes shift fluorescent RNAs for dual-emission fluorescence and bioluminescence imaging in live cells [J]. Nature Methods, 2023, 20(10): 1563-72. |
[20] | ZUO F, JIANG L, SU N, et al. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA [J]. Nature Chemical Biology, 2024, 20(10): 1272-81. |
[21] | JIANG L, ZUO F, PAN Y, et al. Bright and Stable Cyan Fluorescent RNA Enables Multicolor RNA Imaging in Live Escherichia coli [J]. Small, 2025, 21(9): e2405165. |
[22] | CHEN Z, CHEN W, XU C, et al. Near-infrared fluorogenic RNA for in vivo imaging and sensing [J]. Nature Communications, 2025, 16(1): 518. |
[23] | YIN P, HUANG C, ZHANG L, et al. Developing Orthogonal Fluorescent RNAs for Photoactive Dual-Color Imaging of RNAs in Live Cells [J]. Angewandte Chemie International Edition, 2025, n/a(n/a): e202424060. |
[24] | HOU J, GUO P, WANG J, et al. Artificial dynamic structure ensemble-guided rational design of a universal RNA aptamer-based sensing tag [J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(52): e2414793121. |
[25] | WONG F, HE D, KRISHNAN A, et al. Deep generative design of RNA aptamers using structural predictions [J]. Nature Computational Science, 2024, 4(11): 829-39. |
[26] | WU Z, CUI Y, WANG H, et al. Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor [J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(14): e2212387120. |
[27] | ZHUO Y, LUO B, YI X, et al. Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo [J]. Nature Methods, 2024, 21(4): 680-91. |
[28] | ZENG J, LI X, ZHANG R, et al. Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning [J]. Neuron, 2023, 111(7): 1118-35.e5. |
[29] | DENG F, WAN J, LI G, et al. Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo [J]. Nature Methods, 2024, 21(4): 692-702. |
[30] | TOUHARA K K, ROSSEN N D, DENG F, et al. Topological segregation of stress sensors along the gut crypt–villus axis [J]. Nature, 2025. |
[31] | QIAN T, WANG H, WANG P, et al. A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments [J]. Nature Biotechnology, 2023, 41(7): 944-57. |
[32] | FENG J, DONG H, LISCHINSKY J E, et al. Monitoring norepinephrine release in vivo using next-generation GRAB(NE) sensors [J]. Neuron, 2024, 112(12): 1930-42.e6. |
[33] | WANG H, QIAN T, ZHAO Y, et al. A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors [J]. Science, 2023, 382(6672): eabq8173. |
[34] | XIA X, LI Y. A high-performance GRAB sensor reveals differences in the dynamics and molecular regulation between neuropeptide and neurotransmitter release [J]. Nature Communications, 2025, 16(1): 819. |
[35] | WU T, KUMAR M, ZHANG J, et al. A genetically encoded far-red fluorescent indicator for imaging synaptically released Zn2+ [J]. Science Advances, 9(9): eadd2058. |
[36] | YANG L, PATHIRANAGE V, ZHOU S, et al. Genetically Encoded Red Fluorescent Indicators for Imaging Intracellular and Extracellular Potassium Ions [J]. bioRxiv, 2024: 2024.12.20.629597. |
[37] | LAI C, YANG L, PATHIRANAGE V, et al. Genetically encoded green fluorescent sensor for probing sulfate transport activity of solute carrier family 26 member a2 (Slc26a2) protein [J]. Communications Biology, 2024, 7(1): 1375. |
[38] | RAHMAN T, PATEL S. Recent developments in probing the levels and flux of selected organellar cations as well as organellar mechanosensitivity [J]. Current Opinion in Chemical Biology, 2025, 87: 102600. |
[39] | MARVIN J S, KOKOTOS A C, KUMAR M, et al. iATPSnFR2: A high-dynamic-range fluorescent sensor for monitoring intracellular ATP [J]. Proceedings of the National Academy of Sciences, 2024, 121(21): e2314604121. |
[40] | WANG K, CHEN T-L, ZHANG X-X, et al. Unveiling tryptophan dynamics and functions across model organisms via quantitative imaging [J]. BMC Biology, 2024, 22(1): 258. |
[41] | LIU B, ZHAO Z, WANG P, et al. GlutaR: A High‐Performance Fluorescent Protein-Based Sensor for Spatiotemporal Monitoring of Glutamine Dynamics In Vivo [J]. Angewandte Chemie International Edition, 2024. |
[42] | LI X, ZHANG Y, XU L, et al. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease [J]. Cell Metab, 2023, 35(1): 200-11 e9. |
[43] | LI R, LI Y, JIANG K, et al. Lighting up arginine metabolism reveals its functional diversity in physiology and pathology [J]. Cell Metabolism, 2025, 37(1): 291-304.e9. |
[44] | HUANG D, ZHANG C, XIAO M, et al. Redox metabolism maintains the leukemogenic capacity and drug resistance of AML cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(13): e2210796120. |
[45] | CHANDRASEKHARAN A, TIWARI S K, MUNIRPASHA H A, et al. Genetically encoded caspase sensor and RFP-LC3 for temporal analysis of apoptosis-autophagy [J]. International Journal of Biological Macromolecules, 2024, 257(Pt 2): 128807. |
[46] | XU B, WANG Y, BAHRIZ S M F M, et al. Probing spatiotemporal PKA activity at the ryanodine receptor and SERCA2a nanodomains in cardomyocytes [J]. Cell Communication and Signaling, 2022, 20(1): 143. |
[47] | ROMERO-SUAREZ D, WULFF T, RONG Y, et al. A Reporter System for Cytosolic Protein Aggregates in Yeast [J]. ACS Synth Biol, 2021, 10(3): 466-77. |
[48] | LIU S, LIU J, FOOTE A, et al. Digital and Tunable Genetically Encoded Tension Sensors Based on Engineered Coiled-Coils [J]. Angewandte Chemie International Edition, 2025, 64(8): e202407359. |
[49] | MOLNAR K, J-B MANNEVILLE. Emerging mechanobiology techniques to probe intracellular mechanics [J]. npj Biological Physics and Mechanics, 2025, 2(1): 12. |
[50] | FREI M S, MEHTA S, ZHANG J. Next-Generation Genetically Encoded Fluorescent Biosensors Illuminate Cell Signaling and Metabolism [J]. Annual Review of Biophysics, 2024, 53(Volume 53, 2024): 275-97. |
[51] | ZHOU L, YANG R, LI X, et al. COF-Coated Microelectrode for Space-Confined Electrochemical Sensing of Dopamine in Parkinson's Disease Model Mouse Brain [J]. Journal of the American Chemical Society, 2023, 145(43): 23727-38. |
[52] | AGGARWAL A, LIU R, CHEN Y, et al. Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission [J]. Nature Methods, 2023, 20(6): 925-34. |
[53] | JI D, WANG B, LO K W, et al. Pre-Defined Stem-Loop Structure Library for the Discovery of L-RNA Aptamers that Target RNA G-Quadruplexes [J]. Angewandte Chemie International Edition in English, 2025, 64(5): e202417247. |
[54] | GUO S K, LIU C X, XU Y F, et al. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis [J]. Nature Biotechnology, 2025, 43(2): 236-46. |
[55] | DING D, ZHAO H, WEI D, et al. The First-in-Human Whole-Body Dynamic Pharmacokinetics Study of Aptamer [J]. Research (Wash D C), 2023, 6: 0126. |
[1] | 陈涛, 赖锦涛, 胡美林, 马显才. 蛋白质优化设计与从头合成引领的疫苗研发革命[J]. 合成生物学, 2025, (): 1-25. |
[2] | 丁怡, 苏敏, 高晓冬, 王宁. N-糖链合成的研究进展[J]. 合成生物学, 2025, (): 1-16. |
[3] | 黄扬, 李一叶, 聂广军. 合成生物学赋能细胞膜纳米颗粒的精准诊疗[J]. 合成生物学, 2025, (): 1-24. |
[4] | 李全飞, 陈乾, 杨凯, 刘浩, 贺坤东, 潘亮, 李莎, 雷鹏, 谷益安, 孙良, 邱益彬, 张琦, 徐虹, 王瑞. 高黏性蛋白材料的生物合成及应用[J]. 合成生物学, 2025, (): 1-20. |
[5] | 肖和, 姚明菊, 乔雪. 长糖链皂苷的生物合成研究进展[J]. 合成生物学, 2025, (): 1-7. |
[6] | 李明辰, 钟博子韬, 余元玺, 姜帆, 张良, 谭扬, 虞慧群, 范贵生, 洪亮. DeepSeek模型分析及其在AI辅助蛋白质工程中的应用[J]. 合成生物学, 2025, 6(3): 636-650. |
[7] | 宋成治, 林一瀚. AI+定向进化赋能蛋白改造及优化[J]. 合成生物学, 2025, 6(3): 617-635. |
[8] | 田晓军, 张日新. 合成基因回路面临的细胞“经济学窘境”[J]. 合成生物学, 2025, 6(3): 532-546. |
[9] | 姜百翼, 钱珑. 活细胞记录器在细胞谱系追踪中的应用和前景[J]. 合成生物学, 2025, 6(3): 651-668. |
[10] | 李倩, FERRELL JR.James E., 陈于平. 细胞质浓度:细胞生物学的老问题、新参数[J]. 合成生物学, 2025, 6(3): 497-515. |
[11] | 张成辛. 基于文本数据挖掘的蛋白功能预测:机遇与挑战[J]. 合成生物学, 2025, 6(3): 603-616. |
[12] | 王珂, 陈文慧, 雷春阳, 聂舟. CRISPR/Cas系统在分子诊断领域的应用研究进展[J]. 合成生物学, 2025, (): 1-27. |
[13] | 甘牡丹, 左静蕊, 曹友志. 工程菌的生物安全防控策略[J]. 合成生物学, 2025, (): 1-14. |
[14] | 王倩, 果士婷, 辛波, 钟成, 王钰. L-精氨酸的微生物合成研究进展[J]. 合成生物学, 2025, 6(2): 290-305. |
[15] | 高琪, 肖文海. 酵母合成单萜类化合物的研究进展[J]. 合成生物学, 2025, 6(2): 357-372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||