• 特约评述 •
黄如平1, 孙文钊1, 金娟1, 吕雪丽2, 盛静逸3, 黄斌1, 顾宁1,3,4
收稿日期:2025-10-11
修回日期:2025-11-12
出版日期:2025-11-17
通讯作者:
黄斌,顾宁
作者简介:基金资助:HUANG Ruping1, SUN Wenzhao1, JIN Juan1, LV Xueli2, SHENG Jingyi3, HUANG Bin1, GU Ning1,3,4
Received:2025-10-11
Revised:2025-11-12
Online:2025-11-17
Contact:
HUANG Bin, GU Ning
摘要:
人工血液是一类具有载氧能力、可替代血液部分功能的液体制剂,其研发旨在缓解对献血供给的依赖,以应对血液供应不足及输血风险隐患。近年来,随着合成生物学技术的突破,人工血液主要成分如红细胞、血小板和血浆等在功能重构与系统集成方面取得了显著进展。本文基于合成生物学视角,系统阐述人工血液主要成分的构建策略与研究进展。在人工红细胞方面,通过血红蛋白结构优化、血红素合成通路重构及仿生膜封装,显著提升携氧效率和体内稳定性;在人工血小板方面,通过干细胞编程与基因编程,血小板生成效率显著提高;在人工血浆方面,通过核心功能蛋白表达优化与多功能融合蛋白设计,为实现稳定的血容量维持以及免疫支持提供可能性。最后,本文探讨了当前人工血液研究面临的挑战与未来发展方向。目前,人工血液的研究仍主要聚焦于单一功能模块的构建,且在生物相容性、长期稳定性、规模化制备及质量标准体系建设等方面存在诸多瓶颈。未来,可借助合成生物学的模块化设计理念与人工智能辅助,整合红细胞、血小板及血浆等关键功能模块,推动人工血液研究的临床转化,从而为开发更安全、高效的新一代血液替代品提供重要支撑。
中图分类号:
黄如平, 孙文钊, 金娟, 吕雪丽, 盛静逸, 黄斌, 顾宁. 合成生物学策略下的人工血液研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-094.
HUANG Ruping, SUN Wenzhao, JIN Juan, LV Xueli, SHENG Jingyi, HUANG Bin, GU Ning. Synthetic biology-driven advances in artificial blood research[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-094.
| 名称 | 构成 | 功能 | 研究进展 |
|---|---|---|---|
| HemAssist [ | 2,3-二阿司匹林交联血红蛋白 | 急救输血扩容兼携氧 | 1999年未通过三期试验 |
| PolyHeme [ | 吡哆醛磷酸盐交联戊二醛血红蛋白 | 紧急氧供应 | 2009在美国完成III期试验,但没有获得FDA批准 |
| Hemolink [ | O-棉子糖交联血红蛋白 | 即时携氧与扩容支持 | 已通过三期临床;已停止研究 |
| Hemospan [ | 马来酰亚胺修饰的聚乙二醇化人血红蛋白 | 维持组织氧合 减少血管收缩 | 已通过三期临床;2015年停止开发 |
| Hemoximer [ | 共轭的磷酸化血红蛋白/交联的人血红蛋白 | 高效携氧与NO清除 适应低温和极端环境 | 三期临床于2011年终止 |
| | | | |
| OxyVita [ | 聚合牛血红蛋白 | 减少血管渗漏 | 临床试验进行中; 研究进行中 |
| Sanguinate [ | 聚乙二醇化羧基血红蛋白 | 用于镰状细胞病和缺血性疾病 | 未通过三期临床,研究进行中 |
| SynthoplateTM [ | 脂质体共价修饰三类功能肽:RGD肽(聚集)、vWF肽(黏附)、胶原肽(定位) | 可快速止血 | 在多动物模型中验证止血效果良好,正推进临床前安全性评估 |
表1 人工血液的研究进展[14-22]
Table 1 Clinical progress of artificial blood products
| 名称 | 构成 | 功能 | 研究进展 |
|---|---|---|---|
| HemAssist [ | 2,3-二阿司匹林交联血红蛋白 | 急救输血扩容兼携氧 | 1999年未通过三期试验 |
| PolyHeme [ | 吡哆醛磷酸盐交联戊二醛血红蛋白 | 紧急氧供应 | 2009在美国完成III期试验,但没有获得FDA批准 |
| Hemolink [ | O-棉子糖交联血红蛋白 | 即时携氧与扩容支持 | 已通过三期临床;已停止研究 |
| Hemospan [ | 马来酰亚胺修饰的聚乙二醇化人血红蛋白 | 维持组织氧合 减少血管收缩 | 已通过三期临床;2015年停止开发 |
| Hemoximer [ | 共轭的磷酸化血红蛋白/交联的人血红蛋白 | 高效携氧与NO清除 适应低温和极端环境 | 三期临床于2011年终止 |
| | | | |
| OxyVita [ | 聚合牛血红蛋白 | 减少血管渗漏 | 临床试验进行中; 研究进行中 |
| Sanguinate [ | 聚乙二醇化羧基血红蛋白 | 用于镰状细胞病和缺血性疾病 | 未通过三期临床,研究进行中 |
| SynthoplateTM [ | 脂质体共价修饰三类功能肽:RGD肽(聚集)、vWF肽(黏附)、胶原肽(定位) | 可快速止血 | 在多动物模型中验证止血效果良好,正推进临床前安全性评估 |
| 工具类型 | 核心原理 | 优势 | 局限性 | 参考文献 |
|---|---|---|---|---|
| 基因编辑与调控系统 | 利用 Cas 核酸酶对目标 DNA 精确切割与修复,实现基因定点插入或敲除 | 高精度、可编程、可实现多基因并行调控 | 潜在脱靶风险、伦理限制 | [ |
| 底盘细胞与代谢工程 | 通过基因组与代谢优化,重构宿主的生产能力与安全性 | 支持多模块组合与迭代优化,实现高效生物合成 | 代谢负担大,调控复杂 | [ |
| 无细胞与人工系统构建 | 通过细胞提取或纯化组分体系在体外重建转录翻译与代谢反应,实现蛋白合成与人工细胞构建 | 高可控性、模块化、支持多回路测试与人工细胞构建 | 能量维持时间短、体系成本高、缺乏自我复制与长期稳态 | [ |
| AI与自动化DBTL循环 | 将机器学习嵌入DBTL循环,实现实验预测与迭代优化 | 加速设计迭代、提升预测精度、多变量优化,减少成本 | 需大规模数据支撑 | [ |
表2 合成生物学的主要工具
Table 2 Main tools of synthetic biology
| 工具类型 | 核心原理 | 优势 | 局限性 | 参考文献 |
|---|---|---|---|---|
| 基因编辑与调控系统 | 利用 Cas 核酸酶对目标 DNA 精确切割与修复,实现基因定点插入或敲除 | 高精度、可编程、可实现多基因并行调控 | 潜在脱靶风险、伦理限制 | [ |
| 底盘细胞与代谢工程 | 通过基因组与代谢优化,重构宿主的生产能力与安全性 | 支持多模块组合与迭代优化,实现高效生物合成 | 代谢负担大,调控复杂 | [ |
| 无细胞与人工系统构建 | 通过细胞提取或纯化组分体系在体外重建转录翻译与代谢反应,实现蛋白合成与人工细胞构建 | 高可控性、模块化、支持多回路测试与人工细胞构建 | 能量维持时间短、体系成本高、缺乏自我复制与长期稳态 | [ |
| AI与自动化DBTL循环 | 将机器学习嵌入DBTL循环,实现实验预测与迭代优化 | 加速设计迭代、提升预测精度、多变量优化,减少成本 | 需大规模数据支撑 | [ |
| [1] | JAHR J S , GUINN N R , LOWERY D R , et al . Blood Substitutes and Oxygen Therapeutics: A Review [J]. Anesthesia & Analgesia, 2021, 132(1): 119-129. |
| [2] | MOHANTO N , PARK Y J , JEE J P . Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments [J]. Journal of Pharmaceutical Investigation, 2023, 53(1): 153-190. |
| [3] | NAICKER K , RANCHOD D , MSIZA K , et al . COVID-19 impact on blood donation and blood product use in Mangaung Metropolitan Municipality [J]. South African Family Practice (2004), 2025, 67(1): e1-e9. |
| [4] | SHARMA R , KASHYAP M , ZAYED H , et al . Artificial blood—hope and the challenges to combat tumor hypoxia for anti-cancer therapy [J]. Medical & Biological Engineering & Computing, 2025, 63(4): 933-957. |
| [5] | CAMERON D E , BASHOR C J , COLLINS J J . A brief history of synthetic biology [J]. Nature Reviews Microbiology, 2014, 12(5): 381-390. |
| [6] | ZHUANG J , YING M , SPIEKERMANN K , et al . Biomimetic Nanoemulsions for Oxygen Delivery In Vivo [J]. Advanced Materials, 2018, 30(49): e1804693. |
| [7] | WAETERSCHOOT J , GOSSELE W , LEMEZ S , et al . Artificial cells for in vivo biomedical applications through red blood cell biomimicry [J]. Nature Communications, 2024, 15(1): 2504. |
| [8] | NATANSON C , KERN S J , LURIE P , et al . Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis [J]. Jama, 2008, 299(19): 2304-2312. |
| [9] | WANG S , JUN Y, JIE Y, et al . Advancement of platelet-inspired nanomedicine[J]. Platelets, 2018, 29(7): 690-694. |
| [10] | ITO Y , NAKAMURA S , SUGIMOTO N , et al . Turbulence Activates Platelet Biogenesis to Enable Clinical Scale Ex Vivo Production [J]. Cell, 2018, 174(3):636-648.e618. |
| [11] | 畅正阳, 李明, 高建朋, 等 . 人工胶体血浆代用品的分类及其临床研究 [J].中国输血杂志, 2025, 38(01): 136-141. |
| CHANG Z. , Li M. , Gao J. , et al .. Classification and clinical research of artificial colloidal plasma substitutes. Chinese Journal of Blood Transfusion [J], (2025), 38(1), 136–141. | |
| [12] | 低血容量休克复苏指南( 2007) [J]. 中国实用外科杂志, 2007, (08): 581-587. |
| Low-volume shock resuscitation guidelines (2007) [J]. Chinese Journal of Practical Surgery, 2007, (08): 581–587. | |
| [13] | WOODCOCK T E , MICHEL C C . Advances in the Starling Principle and Microvascular Fluid Exchange; Consequences and Implications for Fluid Therapy [J]. Frontiers in Veterinary Science, 2021, 8: 623671. |
| [14] | SPAHN D R , KOCIAN R . Artificial O2 carriers: status in 2005 [J]. Current pharmaceutical design, 2005, 11(31): 4099-4114. |
| [15] | JAHR J S , PolyHeme VARMA N. . Northfield Laboratories [J]. IDrugs: the investigational drugs journal, 2004, 7(5): 478-482. |
| [16] | LEYTIN V , MAZER D , MODY M , et al . Hemolink™, an o‐raffinose cross‐linked haemoglobin‐based oxygen carrier, does not affect activation and function of human platelets in whole blood in vitro [J]. British journal of haematology, 2003, 120(3): 535-541. |
| [17] | SMANI Y . Hemospan: a hemoglobin-based oxygen carrier for potential use as a blood substitute and for the potential treatment of critical limb ischemia [J]. Curr Current Opinion in Investigational Drugs, 2008, 9(9): 1009-1019. |
| [18] | CHEN L , YANG Z , LIU H . Hemoglobin-based oxygen carriers: where are we now in 2023? [J]. Medicina, 2023, 59(2): 396. |
| [19] | HUGHES JR G S , YANCEY E P , ALBRECHT R , et al . Hemoglobin‐based oxygen carrier preserves submaximal exercise capacity in humans [J]. Clinical Pharmacology & Therapeutics, 1995, 58(4): 434-443. |
| [20] | HARRINGTON J P , WOLLOCKO H . Pre-clinical studies using OxyVita hemoglobin, a zero-linked polymeric hemoglobin: a review [J]. Journal of Artificial Organs, 2010, 13(4): 183-188. |
| [21] | ABUCHOWSKI A . SANGUINATE (PEGylated Carboxyhemoglobin Bovine): Mechanism of Action and Clinical Update [J]. Artif Organs, 2017, 41(4): 346-350. |
| [22] | SHUKLA M , SEKHON U D , BETAPUDI V , et al . In vitro characterization of SynthoPlate™ (synthetic platelet) technology and its in vivo evaluation in severely thrombocytopenic mice [J]. Journal of Thrombosis and Haemostasis, 2017, 15(2): 375-387. |
| [23] | SQUIRES J E . Artificial blood [J]. Science, 2002, 295(5557): 1002-1005. |
| [24] | HALDAR R , GUPTA D , CHITRANSHI S , et al . Artificial Blood: A Futuristic Dimension of Modern Day Transfusion Sciences [J]. Cardiovascular & Hematological Agents in Medicinal Chemistry, 2019, 17(1): 11-16. |
| [25] | JAHR J S . Blood substitutes: Basic science, translational studies and clinical trials [J]. Frontiers in Medical Technology, 2022, 4: 989829. |
| [26] | AMBERSON W R , JENNINGS J J , RHODE C M . Clinical experience with hemoglobin-saline solutions [J]. Journal of Applied Physiology, 1949, 1(7): 469-489. |
| [27] | KHAN F , SINGH K , FRIEDMAN M T . Artificial blood: the history and current perspectives of blood substitutes [J]. Discoveries, 2020, 8(1): e104. |
| [28] | GUPTA A SEN . Bio-inspired nanomedicine strategies for artificial blood components [J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9(6): e1457. |
| [29] | LOWE K C . Fluosol®: The first commercial injectable perfluorocarbon oxygen carrier [J]. Blood substitutes, 2006: 276-287. |
| [30] | GUPTA A SEN . Hemoglobin-based Oxygen Carriers: Current State-of-the-art and Novel Molecules [J]. Shock, 2019, 52(1S ): 70-83. |
| [31] | LIU X , JANSMAN M M , HOSTA-RIGAU L . Haemoglobin-loaded metal organic framework-based nanoparticles camouflaged with a red blood cell membrane as potential oxygen delivery systems [J]. Biomaterials Science, 2020, 8(21): 5859-5873. |
| [32] | NIELSEN J , KEASLING J D . Engineering Cellular Metabolism [J]. Cell, 2016, 164(6): 1185-1197. |
| [33] | ZHANG X E , LIU C , DAI J , et al . Enabling technology and core theory of synthetic biology [J]. Science China Life Sciences, 2023, 66(8): 1742-1785. |
| [34] | WANG H H , ISAACS F J , CARR P A , et al . Programming cells by multiplex genome engineering and accelerated evolution [J]. Nature, 2009, 460(7257): 894-898. |
| [35] | GONZALES D T , ZECHNER C , TANG T Y D . Building synthetic multicellular systems using bottom–up approaches [J]. Current Opinion in Systems Biology, 2020, 24: 56-63. |
| [36] | NOIREAUX V , LIBCHABER A . A vesicle bioreactor as a step toward an artificial cell assembly [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(51): 17669-17674. |
| [37] | CHEN H , WANG Y , WANG W , et al . High-yield porphyrin production through metabolic engineering and biocatalysis [J]. Nature biotechnology, 2024: 1-11. |
| [38] | YUE K , CHEN J , LI Y , et al . Advancing synthetic biology through cell-free protein synthesis [J]. Computational and Structural Biotechnology Journal, 2023, 21: 2899-2908. |
| [39] | RICE A J , SWORD T T , CHENGAN K , et al . Cell-free synthetic biology for natural product biosynthesis and discovery [J]. Chemical Society Reviews, 2025, 54(9): 4314-4352. |
| [40] | RAI K, WANG Y , O'CONNELL R W , et al . Using machine learning to enhance and accelerate synthetic biology [J]. Current Opinion in Biomedical Engineering, 2024, 31: 100553. |
| [41] | COOPER C E , SIMONS M , DYSON A , et al . Taming hemoglobin chemistry—a new hemoglobin-based oxygen carrier engineered with both decreased rates of nitric oxide scavenging and lipid oxidation [J]. Experimental & Molecular Medicine, 2024, 56(10): 2260-2270. |
| [42] | ADAMES N R , GALLEGOS J E , PECCOUD J . Yeast genetic interaction screens in the age of CRISPR/Cas [J]. Current Genetics, 2019, 65(2): 307-327. |
| [43] | GASIUNAS G , BARRANGOU R , HORVATH P , et al . Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-2586. |
| [44] | YANG Y , GENG B , SONG H , et al . [Progress and perspective on development of non-model industrial bacteria as chassis cells for biochemical production in the synthetic biology era] [J]. Sheng Wu Gong Cheng Xue Bao, 2021, 37(3): 874-910. |
| [45] | RICHARDSON S M , MITCHELL L A , STRACQUADANIO G , et al . Design of a synthetic yeast genome [J]. Science, 2017, 355(6329): 1040-1044. |
| [46] | IWADATE Y , HONDA H , SATO H , et al . Oxidative stress sensitivity of engineered Escherichia coli cells with a reduced genome [J]. FEMS Microbiology Letters, 2011, 322(1): 25-33. |
| [47] | REUß D R , ALTENBUCHNER J , MäDER U , et al . Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism [J]. Genome Research, 2017, 27(2): 289-299. |
| [48] | UNTHAN S , BAUMGART M , RADEK A , et al . Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters [J]. Biotechnology Journal, 2015, 10(2): 290-301. |
| [49] | SAGT C M . Systems metabolic engineering in an industrial setting [J]. Appl Microbiol Biotechnol, 2013, 97(6): 2319-2326. |
| [50] | 郭意瑶, 黄曙惠, 刘晚秋, 等 . 无细胞合成生物学在生物医学领域的应用研究进展[J].生命科学,2025,37(08):1031-1040. |
| GUO Y Y , Huang S H , Liu W Q , et al . Research progress on the applicationof cell-free synthetic biology in the biomedical field [J]. Life Sciences, 2025, 37(08): 1031-1040. | |
| [51] | 王晟, 王泽琛, 陈威华, 等 . 基于人工智能和计算生物学的合成生物学元件设计[J].合成生物学, 2023, 4(03): 422-443. |
| WANG S , Wang Z C , Chen W H , et al . Design of synthetic biology components based on artificial intelligence and computational biology [J]. Synthetic Biology, 2023, 4(03): 422-443. | |
| [52] | CHUAI G , MA H , YAN J , et al . DeepCRISPR: optimized CRISPR guide RNA design by deep learning [J]. Genome Biology, 2018, 19(1): 80. |
| [53] | LIU F , ZHOU J , LI J , et al . Precise Engineering and Efficient Biosynthesis of Robust and High-Activity Human Haemoglobin for Artificial Oxygen Carriers [J]. Microbial Biotechnology, 2025, 18(3): e70128. |
| [54] | YANG S , GUO Z , SUN J , et al . Recent advances in microbial synthesis of free heme [J]. Applied Microbiology and Biotechnology,2024, 108(1): 68. |
| [55] | XUE J , ZHOU J , LI J , et al . Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins [J]. Bioresource Technology, 2023, 370: 128556. |
| [56] | GE J , WANG X , BAI Y , et al . Engineering Escherichia coli for efficient assembly of heme proteins [J]. Microbial Cell Factories, 2023, 22(1): 59. |
| [57] | LI D , YADAV A , ZHOU H , et al . Advances and Applications of Metal‐Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review [J]. Global Challenges, 2024, 8(2). 2300244. |
| [58] | WANG J , GUO Y , JIAO Z , et al . Generation of micro-nano bubbles by magneto induced internal heat for protecting cells from intermittent hypoxic damage [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130289. |
| [59] | ZARà M , CANOBBIO I , VISCONTE C , et al . Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells [J]. Cell Signal, 2018, 48: 45-53. |
| [60] | ISLAM F , JAVDAN S B , LEWIS M R , et al . Programming megakaryocytes to produce engineered platelets for delivering non-native proteins [J]. Communications Biology, 2025, 8(1): 638. |
| [61] | KRISCH L , BRACHTL G , HOCHMANN S , et al . Improving Human Induced Pluripotent Stem Cell-Derived Megakaryocyte Differentiation and Platelet Production [J]. International Journal of Molecular Sciences, 2021, 22(15): 8824 |
| [62] | CHEN C , WANG N , ZHANG X , et al . Highly efficient generation of mature megakaryocytes and functional platelets from human embryonic stem cells [J]. Stem Cell Research & Therapy, 2024, 15(1): 454. |
| [63] | SIMEONE P , LIANI R , TRIPALDI R , et al . Reduced platelet glycoprotein Ibα shedding accelerates thrombopoiesis and COX-1 recovery: implications for aspirin dosing regimen [J]. Haematologica, 2023, 108(4): 1141-1157. |
| [64] | HUANG B , LI L , YAO S , et al . Enhanced regenerative and developmental potential of embryonal and stem cell-derived platelets compared to adult platelets [J]. Cell Reports Medicine, 2025, 6(8): 102297. |
| [65] | KHORANA A A , FRANCIS C W , MENZIES K E , et al . Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer [J]. Journal of Thrombosis and Haemostasis, 2008, 6(11): 1983-1985. |
| [66] | LABELLE M , BEGUM S , HYNES R O . Platelets guide the formation of early metastatic niches [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(30): E3053-3061. |
| [67] | JIANPEI X U , QUNWEI X U , XIAOQI W , et al . Advances in biomimetic drug delivery systems based on platelet and platelet membrane [J]. Journal of China Pharmaceutical University, 2018, 49(6): 653-659. |
| [68] | LI S , LU Z , WU S , et al . The dynamic role of platelets in cancer progression and their therapeutic implications [J]. Nature Reviews Cancer, 2024, 24(1): 72-87. |
| [69] | LAWRENCE M , MUELLER A , GHEVAERT C . Using genome editing to engineer universal platelets [J]. Emerging Topics in Life Sciences, 2019, 3(3): 301-311. |
| [70] | MODERY-PAWLOWSKI C L , TIAN L L , PAN V , et al . Approaches to synthetic platelet analogs [J]. Biomaterials, 2013, 34(2): 526-541. |
| [71] | SARKHEL S , JAISWAL A . Emerging Frontiers in In Situ Forming Hydrogels for Enhanced Hemostasis and Accelerated Wound Healing [J]. ACS Applied Materials & Interfaces, 2024, 16(45): 61503-61529. |
| [72] | SHUAI Y , QIAN Y , ZHENG M , et al . Injectable platelet-mimicking silk protein-peptide conjugate microspheres for hemostasis modulation and targeted treatment of internal bleeding [J]. Journal of Nanobiotechnology, 2025, 23(1): 128. |
| [73] | SEKHON U D S , SWINGLE K , GIRISH A , et al . Platelet-mimicking procoagulant nanoparticles augment hemostasis in animal models of bleeding [J]. Science Translational Medicine, 2022, 14(629): eabb8975. |
| [74] | NELLENBACH K , MIHALKO E , NANDI S , et al . Ultrasoft platelet-like particles stop bleeding in rodent and porcine models of trauma [J]. Science Translational Medicine, 2024, 16(742): eadi4490. |
| [75] | LI M , CHENG X , CHEN Z , et al . Platelet magnetic nanocarriers as MRI sensors to delineate vascular injury network and targeted pre-protection in ischemic stroke [J]. Science China Materials, 2023, 66(2): 827-835. |
| [76] | YANHANG G , JUNQI N . The development and application of genetically engineered human serum albumin [J]. Journal of Clinical Hepatobiliary Diseases, 2025, 41(3): 415-419. |
| [77] | NIU J , GAO Y , WANG G , et al . Rice-derived recombinant human serum albumin as an alternative to human plasma for patients with decompensated liver cirrhosis: a randomised, double-blind, positive-controlled and non-inferiority trial [J]. Gut, 2025, 74(9): 1476-1485. |
| [78] | CHEN Z , HE Y , SHI B , et al . Human serum albumin from recombinant DNA technology: challenges and strategies [J]. Biochim Biophys Acta, 2013, 1830(12): 5515-5525. |
| [79] | BUCHACHER A , CURLING J M . Chapter 42 - Current Manufacturing of Human Plasma Immunoglobulin G [M]//Jagschies G, Lindskog E, Łącki K, et al. Biopharmaceutical Processing. Elsevier. 2018: 857-876. |
| [80] | ZHANG J , ZHAO Y , CAO Y , et al . Synthetic sRNA-Based Engineering of Escherichia coli for Enhanced Production of Full-Length Immunoglobulin G [J]. Biotechnology Journal, 2020, 15(5): e1900363. |
| [81] | SHEN G , GAO M , CAO Q , et al . The Molecular Basis of FIX Deficiency in Hemophilia B [J]. International Journal of Molecular Sciences,2022, 23(5): 2762. |
| [82] | 宋政 .重组人凝血因子Ⅸ在鸡输卵管中的特异性表达 [D]; 扬州大学, 2014. |
| SONG Z . Specific expression of recombinant human coagulation factor Ⅸ in chicken oviduct [D]. Yangzhou University, 2014. | |
| [83] | ABRAHAM M K , JOST E , HOHMANN J D , et al . A Recombinant Fusion Construct between Human Serum Albumin and NTPDase CD39 Allows Anti-Inflammatory and Anti-Thrombotic Coating of Medical Devices [J]. Pharmaceutics,2021, 13(9): 1390. |
| [84] | NILSEN J , AAEN K H , BENJAKUL S , et al . Enhanced plasma half-life and efficacy of engineered human albumin-fused GLP-1 despite enzymatic cleavageof its C-terminal end [J]. Communications Biology, 2025, 8(1): 1-17. |
| [85] | PAN M , SUN Z , ZHANG Y , et al . Aggregation‐Disruption‐Induced Multi‐ScaleMediating Strategy for Anticoagulation in Blood‐Contacting Devices [J]. Advanced Materials, 2024, 36(47):e2412701. |
| [86] | SANTAGOSTINO E , MARTINOWITZ U , LISSITCHKOV T , et al . Long-actingrecombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial [J]. Blood, 2016, 127(14): 1761–1769. |
| [87] | CHEN X , LEE H F , ZARO J L , et al . Effects of receptor binding on plasma half-life of bifunctional transferrin fusion proteins [J]. Molecular Pharmaceutics, 2011, 8(2): 457-465. |
| [88] | PAN D , ROGERS S , MISRA S , et al . Erythromer (EM), a nanoscale bio-synthetic artificial red cell: proof of concept and in vivo efficacy results [J]. Blood, 2016, 128(22): 1027. |
| [89] | HICKMAN D A , PAWLOWSKI C L , SHEVITZ A , et al . Intravenous synthetic platelet (SynthoPlate) nanoconstructs reduce bleeding and improve 'golden hour'survival in a porcine model of traumatic arterial hemorrhage [J]. Scientific Reports, 2018, 8(1): 1-14. |
| [90] | WU M , FENG K , LI Q , et al . Glutaraldehyde-polymerized hemoglobin and tempol (PolyHb-tempol) has superoxide dismutase activity that can attenuate oxidative stress on endothelial cells induced by superoxide anion [J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(1): 47-55. |
| [91] | 杨代常 . 利用水稻胚乳细胞作为生物反应器生产重组人血清白蛋白[Z]. |
| CN .2007 | |
| YANG D C . Production of recombinant human serum albumin using rice endosperm cells as a bioreactor [Z]. CN, 2007. | |
| [92] | TORRES L , KRüGER A , CSIBRA E , et al . Synthetic biology approaches to biological containment: pre-emptively tackling potential risks [J]. Essays in Biochemistry, 2016, 60(4): 393-410. |
| [93] | OU Y, GUO S . Safety risks and ethical governance of biomedical applications of synthetic biology [J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1292029. |
| [94] | WANG G , KONG Q , WANG D , et al . Ethical and social insights into synthetic biology: predicting research fronts in the post-COVID-19 era [J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1085797. |
| [95] | 曾小美, 朱泽熙, 翁俊 . 合成生物学产品商业化安全监管思考 [J]. 生物工程学报, 2024, 40(3): 758-772. |
| ZENG X M , Zhu Z X , Weng J . Considerations on safety supervision of synthetic biology product commercialization [J]. Chinese Journal of Biotechnology, 2024, 40(3): 758-772. | |
| [96] | 马诗雯, 王国豫 .如何应对合成生物学的不确定性--«合成生物学的监管:生物砖,生物朋克与生物企业»评介 [J]. 2021, (2019-3): 124-136. |
| MA S W , Wang G Y . How to deal with the uncertainty of synthetic biology: a review of Regulating Synthetic Biology: BioBricks, BioPunks and BioEntrepreneurs [J]. Science and Technology Review, 2021, (2019-3): 124-136. | |
| [97] | MATSUHIRA T , SAKAI H . Artificial oxygen carriers, from nanometer- to micrometer-sized particles, made of hemoglobin composites substituting for red blood cells [J]. Particuology, 2022, 64: 43-55. |
| [98] | BUTCHER J K V , KRISHNA R , MITRA R , et al . De novo Design of All-atom Biomolecular Interactions with RFdiffusion3 [J]. bioRxiv: The Preprint Server for Biology, 2025. |
| [99] | 潘陈梦笑, 刘天罡, 刘然 . 构建链霉菌无细胞平台挖掘套索肽类天然产物 [J].微生物学报, 2022, 62(05): 1754-1768. |
| PAN C . M. X., LIU T. G. Construction of a Streptomyces-based cell-free platform for the exploration of lasso peptide natural products. Acta Microbiologica Sinica, 2022, 62(05): 1754-1768. | |
| [100] | 顾宁, 盛静逸, 王强, 等 . 心血管驱动的多器官关联研究模型:研究进展与科学问题 [J].科学通报, 2025, 70(26): 4551-4559. |
| GU N , Sheng J Y , Wang Q , et al . Cardiovascular-driven multi-organ interactionresearch models: progress and scientific issues [J]. Chinese Science Bulletin, 2025, (26):4551-4559. |
| [1] | 宋开南, 张礼文, 王超, 田平芳, 李广悦, 潘国辉, 徐玉泉. 小分子生物农药及其生物合成研究进展[J]. 合成生物学, 2025, 6(5): 1203-1223. |
| [2] | 于文文, 吕雪芹, 李兆丰, 刘龙. 植物合成生物学与母乳低聚糖生物制造[J]. 合成生物学, 2025, 6(5): 992-997. |
| [3] | 颜钊涛, 周鹏飞, 汪阳忠, 张鑫, 谢雯燕, 田晨菲, 王勇. 植物合成生物学:植物细胞大规模培养的新机遇[J]. 合成生物学, 2025, 6(5): 1107-1125. |
| [4] | 孙扬, 陈立超, 石艳云, 王珂, 吕丹丹, 徐秀美, 张立新. 作物光合作用合成生物学的策略与展望[J]. 合成生物学, 2025, 6(5): 1025-1040. |
| [5] | 赵欣雨, 盛琦, 刘开放, 刘佳, 刘立明. 天冬氨酸族饲用氨基酸微生物细胞工厂的创制[J]. 合成生物学, 2025, 6(5): 1184-1202. |
| [6] | 何杨昱, 杨凯, 王玮琳, 黄茜, 丘梓樱, 宋涛, 何流赏, 姚金鑫, 甘露, 何玉池. 国际基因工程机器大赛中植物合成生物学主题的设计与实践[J]. 合成生物学, 2025, 6(5): 1243-1254. |
| [7] | 张学博, 朱成姝, 陈睿雲, 金庆姿, 刘晓, 熊燕, 陈大明. 农业合成生物学:政策规划与产业发展协同推进[J]. 合成生物学, 2025, 6(5): 1224-1242. |
| [8] | 刘婕, 郜钰, 马永硕, 尚轶. 合成生物学在农业中的进展及挑战[J]. 合成生物学, 2025, 6(5): 998-1024. |
| [9] | 郑雷, 郑棋腾, 张天骄, 段鲲, 张瑞福. 构建根际合成微生物菌群促进作物养分高效吸收利用[J]. 合成生物学, 2025, 6(5): 1058-1071. |
| [10] | 李超, 张焕, 杨军, 王二涛. 固氮合成生物学研究进展[J]. 合成生物学, 2025, 6(5): 1041-1057. |
| [11] | 魏家秀, 嵇佩云, 节庆雨, 黄秋燕, 叶浩, 戴俊彪. 植物人工染色体的构建与应用[J]. 合成生物学, 2025, 6(5): 1093-1106. |
| [12] | 方馨仪, 孙丽超, 霍毅欣, 王颖, 岳海涛. 微生物合成高级醇的发展趋势与挑战[J]. 合成生物学, 2025, 6(4): 873-898. |
| [13] | 朱欣悦, 陈恬恬, 邵恒煊, 唐曼玉, 华威, 程艳玲. 益生菌辅助防治恶性肿瘤的研究进展[J]. 合成生物学, 2025, 6(4): 899-919. |
| [14] | 吴晓燕, 宋琪, 许睿, 丁陈君, 陈方, 郭勍, 张波. 合成生物学研发竞争态势对比分析[J]. 合成生物学, 2025, 6(4): 940-955. |
| [15] | 张建康, 王文君, 郭洪菊, 白北辰, 张亚飞, 袁征, 李彦辉, 李航. 基于机器视觉的高通量微生物克隆挑选工作站研制及应用[J]. 合成生物学, 2025, 6(4): 956-971. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||