合成生物学 ›› 2021, Vol. 2 ›› Issue (6): 920-941.DOI: 10.12211/2096-8280.2020-090
汪庆卓, 宋萍, 黄和
收稿日期:
2020-12-21
修回日期:
2021-03-17
出版日期:
2021-12-31
发布日期:
2022-01-21
通讯作者:
黄和
作者简介:
基金资助:
Qingzhuo WANG, Ping SONG, He HUANG
Received:
2020-12-21
Revised:
2021-03-17
Online:
2021-12-31
Published:
2022-01-21
Contact:
He HUANG
摘要:
油脂是重要的工业原料,也是人类生存的三大营养素之一。为避免因国际环境变化导致外部资源进口遭到封锁,我国亟需建设、补充和完善油脂供给的新方式。以丰富、廉价的生物质原料替代化石原料生产食用油脂和功能性油脂,在保障国家能源安全、粮食安全方面意义重大。细菌、酵母、霉菌、微藻等多种微生物具有利用葡萄糖、木质纤维素、淀粉、甘油甚至一碳化合物等原料合成脂肪酸的能力。由于微生物,特别是产油真菌相比产油植物和动物具有生产周期短、易于大规模生产、占地少、受天气影响小、原料来源丰富等优势,近年来备受学术界和产业界重视。然而,如何获取生产效率高且鲁棒性强的微生物油脂细胞工厂,仍然面临着使能工具有限、油脂产量不高、油脂组分难以控制等诸多挑战。近年来,合成生物学技术的发展为本领域的研究提供了新的资源、工具和思路。使得产油微生物研究在遗传操作工具创制、代谢途径改造以及高附加值产品开发等方面不断获得突破。本文聚焦于真核油脂细胞工厂的开发,从天然产油底盘菌株的基因元件、遗传转化方法、基因编辑工具的开发,油脂细胞工厂代谢途径的重构/调试以及向高附加值脂质化学品方向的升级等方面,系统总结了合成生物技术驱动油脂细胞工厂开发的研究进展,可为后续研究提供借鉴。
中图分类号:
汪庆卓, 宋萍, 黄和. 合成生物技术驱动天然的真核油脂细胞工厂开发[J]. 合成生物学, 2021, 2(6): 920-941.
Qingzhuo WANG, Ping SONG, He HUANG. Synthetic biotechnology drives the development of natural eukaryotic lipid cell factories[J]. Synthetic Biology Journal, 2021, 2(6): 920-941.
菌株 | 底物 | 油脂产量/(g/L) | 生产强度/[g/(L·h)] | 文献 |
---|---|---|---|---|
Chlorella vulgaris | CO2/葡萄糖 | 41.95 | 0.583 | [ |
Rhodococcus opacus | 乳制品废水 | 2.2 | 0.023 | [ |
Rhodobacter sphaeroides | 乳酸/光照 | — | 0.028 | [ |
Escherichia coli | 葡萄糖 | 3.6 | 0.075 | [ |
E. coli | 葡萄糖 | 7.0 | 0.12 | [ |
E. coli | 葡萄糖 | 21.5 | 0.5 | [ |
Saccharomyces cerevisiae | 葡萄糖 | 10.4 | 0.087 | [ |
S. cerevisiae | 葡萄糖 | 33.4 | 0.17 | [ |
Yarrowia lipolytica | 葡萄糖 | 15.25 | 0.105 | [ |
Y. lipolytica | 葡萄糖 | 98.9 | 1.2 | [ |
Rhodosporidium toruloides | 葡萄糖 | 78.7 | 0.57 | [ |
R. toruloides | 葡萄糖 | 89.4 | 0.62 | [ |
Schizochytrium sp. | 葡萄糖 | 55.3 | 0.46 | [ |
Schizochytrium sp. | 葡萄糖 | 80.14 | 0.53 | [ |
Lipomyces starkeyi | 甜高粱茎汁 | 6.4 | 0.033 | [ |
L. starkeyi | 玉米棒芯水解液 | 8.1 | 0.042 | [ |
Mortierella isabellina | 冷杉木水解液 | 18.55 | 0.086 | [ |
Cryptococcus curvatus | 废纸水解液 | 5.75 | 0.08 | [ |
Trichosporon fermentans | 甘薯藤水解液 | 6.98 | 0.024 | [ |
Trichosporon oleaginosus | 生物柴油副产物 | 21.87 | [ | |
Rhodotorula glutinis | 纯甘油 | 16.28 | 0.1 | [ |
表1 近几年主流的微生物油脂细胞工厂的研究进展
Tab. 1 Research progress of microbial lipid cell factories in recent years
菌株 | 底物 | 油脂产量/(g/L) | 生产强度/[g/(L·h)] | 文献 |
---|---|---|---|---|
Chlorella vulgaris | CO2/葡萄糖 | 41.95 | 0.583 | [ |
Rhodococcus opacus | 乳制品废水 | 2.2 | 0.023 | [ |
Rhodobacter sphaeroides | 乳酸/光照 | — | 0.028 | [ |
Escherichia coli | 葡萄糖 | 3.6 | 0.075 | [ |
E. coli | 葡萄糖 | 7.0 | 0.12 | [ |
E. coli | 葡萄糖 | 21.5 | 0.5 | [ |
Saccharomyces cerevisiae | 葡萄糖 | 10.4 | 0.087 | [ |
S. cerevisiae | 葡萄糖 | 33.4 | 0.17 | [ |
Yarrowia lipolytica | 葡萄糖 | 15.25 | 0.105 | [ |
Y. lipolytica | 葡萄糖 | 98.9 | 1.2 | [ |
Rhodosporidium toruloides | 葡萄糖 | 78.7 | 0.57 | [ |
R. toruloides | 葡萄糖 | 89.4 | 0.62 | [ |
Schizochytrium sp. | 葡萄糖 | 55.3 | 0.46 | [ |
Schizochytrium sp. | 葡萄糖 | 80.14 | 0.53 | [ |
Lipomyces starkeyi | 甜高粱茎汁 | 6.4 | 0.033 | [ |
L. starkeyi | 玉米棒芯水解液 | 8.1 | 0.042 | [ |
Mortierella isabellina | 冷杉木水解液 | 18.55 | 0.086 | [ |
Cryptococcus curvatus | 废纸水解液 | 5.75 | 0.08 | [ |
Trichosporon fermentans | 甘薯藤水解液 | 6.98 | 0.024 | [ |
Trichosporon oleaginosus | 生物柴油副产物 | 21.87 | [ | |
Rhodotorula glutinis | 纯甘油 | 16.28 | 0.1 | [ |
菌株 | 工具 | 原理 | 载体 | 转化方法 | 文献 |
---|---|---|---|---|---|
Yarrowia lipolytica | Golden Gate或Biobrick体外多片段组装; | 体外分子砌块组装,体内同源重组(双交换) | 线性化质粒 | 醋酸锂转化 | [ |
Y. lipolytica | 体内多片段组装 | 同源重组(双交换) | 线性化DNA片段 | 醋酸锂转化 | [ |
Y. lipolytica | Cre-lox重组酶系统 | 位点特异性重组 | 复制型质粒 | 醋酸锂转化 | [ |
Y. lipolytica | 基于rDNA或zeta位点的多拷贝整合 | 同源重组(单交换或双交换) | 自杀质粒或者线性化片段 | 醋酸锂转化 | [ |
Y. lipolytica | 染色体随机整合 | 非同源末端连接 | 线性化片段 | 醋酸锂转化 | [ |
Y. lipolytica | CRISPR/Cas9介导的基因编辑,单基因或多基因敲除、整合 | Cas9切割基因组后,宿主启动同源重组及非同源末端连接修复 | 复制型质粒 | 醋酸锂转化或 电转化 | [ |
Y. lipolytica | CRISPR/dCas9介导的转录抑制 | 失去切割活性的Cas9结合在靶标序列可阻碍转录正常进行 | 复制型质粒 | 醋酸锂转化 | [ |
Y. lipolytica | CRISPR/dCas9介导的转录激活 | 失去切割活性的Cas9结合在启动子区域,招募激活因子后可上调转录 | 复制型质粒 | 醋酸锂转化 | [ |
Y. lipolytica | CRISPR/Cpf1介导的基因编辑 | Cas9切割基因组后,宿主进行非同源末端连接修复 | 复制型质粒 | 醋酸锂转化 | [ |
Y. lipolytica | CRISPR/Cas9辅助的碱基编辑系统 | 胞嘧啶脱氨酶作用后,宿主碱基对由C-G转变为T-A | 复制型质粒 | 醋酸锂转化 | [ |
Rhodosporidium toruloides | CRISPR/Cas9基因编辑,单基因或多基因敲除 | 非同源末端连接 | Ti质粒 | 农杆菌介导转化 | [ |
R. toruloides | CRISPR/Cas9基因编辑,单基因或多基因敲除 | 非同源末端连接 | 自杀质粒 | 醋酸锂化学转化 | [ |
R. toruloides | CRISPR/Cas9基因编辑,单基因或整合,多基因敲除 | 非同源末端连接或同源重组 | Ti质粒 | 农杆菌介导转化 | [ |
R. toruloides | 等位基因替换 | 同源重组(双交换) | Ti质粒 | 农杆菌介导转化 | [ |
R. toruloides | 重组酶系统(Cre-loxP, Flipase-FRT, I-SceI) | 位点特异性重组 | 自杀质粒或Ti质粒 | 农杆菌介导转化或PEG介导原生质体转化 | [ |
R. toruloides | 染色体随机整合 | 非同源末端连接 | Ti质粒 | 农杆菌介导转化 | [ |
R. toruloides | 染色体随机整合 | 非同源末端连接 | 自杀质粒 | PEG介导原生质体转化 | [ |
R. toruloides | 染色体随机整合 | 非同源末端连接 | 线性化DNA片段 | 电转化 | [ |
Schizochytrium sp. | 染色体定点整合 | 同源重组(双交换) | (线性化的)自杀质粒 | 电穿孔转化 | [ |
Schizochytrium sp. TIO1101 | 染色体定点整合 | 同源重组(单交换) | 线性化自杀质粒 | 电穿孔转化 | [ |
Schizochytrium sp. | 染色体随机整合 | 非同源末端连接 | 线性化自杀质粒 | 电穿孔转化 | [ |
Schizochytrium sp. | 染色体随机整合 | 非同源末端连接 | Ti质粒 | 农杆菌介导转化 | [ |
Lipomyces starkeyi | 染色体随机整合 | 非同源末端连接 | Ti质粒 | 农杆菌介导转化 | [ |
L. starkeyi | 染色体定点整合 | 同源重组(双交换) | 线性化的自杀质粒 | PEG介导原生质体转化 | [ |
表2 典型产油真菌遗传操作工具研究进展
Tab. 2 Research progress on genetic tools of typical lipid producing fungi
菌株 | 工具 | 原理 | 载体 | 转化方法 | 文献 |
---|---|---|---|---|---|
Yarrowia lipolytica | Golden Gate或Biobrick体外多片段组装; | 体外分子砌块组装,体内同源重组(双交换) | 线性化质粒 | 醋酸锂转化 | [ |
Y. lipolytica | 体内多片段组装 | 同源重组(双交换) | 线性化DNA片段 | 醋酸锂转化 | [ |
Y. lipolytica | Cre-lox重组酶系统 | 位点特异性重组 | 复制型质粒 | 醋酸锂转化 | [ |
Y. lipolytica | 基于rDNA或zeta位点的多拷贝整合 | 同源重组(单交换或双交换) | 自杀质粒或者线性化片段 | 醋酸锂转化 | [ |
Y. lipolytica | 染色体随机整合 | 非同源末端连接 | 线性化片段 | 醋酸锂转化 | [ |
Y. lipolytica | CRISPR/Cas9介导的基因编辑,单基因或多基因敲除、整合 | Cas9切割基因组后,宿主启动同源重组及非同源末端连接修复 | 复制型质粒 | 醋酸锂转化或 电转化 | [ |
Y. lipolytica | CRISPR/dCas9介导的转录抑制 | 失去切割活性的Cas9结合在靶标序列可阻碍转录正常进行 | 复制型质粒 | 醋酸锂转化 | [ |
Y. lipolytica | CRISPR/dCas9介导的转录激活 | 失去切割活性的Cas9结合在启动子区域,招募激活因子后可上调转录 | 复制型质粒 | 醋酸锂转化 | [ |
Y. lipolytica | CRISPR/Cpf1介导的基因编辑 | Cas9切割基因组后,宿主进行非同源末端连接修复 | 复制型质粒 | 醋酸锂转化 | [ |
Y. lipolytica | CRISPR/Cas9辅助的碱基编辑系统 | 胞嘧啶脱氨酶作用后,宿主碱基对由C-G转变为T-A | 复制型质粒 | 醋酸锂转化 | [ |
Rhodosporidium toruloides | CRISPR/Cas9基因编辑,单基因或多基因敲除 | 非同源末端连接 | Ti质粒 | 农杆菌介导转化 | [ |
R. toruloides | CRISPR/Cas9基因编辑,单基因或多基因敲除 | 非同源末端连接 | 自杀质粒 | 醋酸锂化学转化 | [ |
R. toruloides | CRISPR/Cas9基因编辑,单基因或整合,多基因敲除 | 非同源末端连接或同源重组 | Ti质粒 | 农杆菌介导转化 | [ |
R. toruloides | 等位基因替换 | 同源重组(双交换) | Ti质粒 | 农杆菌介导转化 | [ |
R. toruloides | 重组酶系统(Cre-loxP, Flipase-FRT, I-SceI) | 位点特异性重组 | 自杀质粒或Ti质粒 | 农杆菌介导转化或PEG介导原生质体转化 | [ |
R. toruloides | 染色体随机整合 | 非同源末端连接 | Ti质粒 | 农杆菌介导转化 | [ |
R. toruloides | 染色体随机整合 | 非同源末端连接 | 自杀质粒 | PEG介导原生质体转化 | [ |
R. toruloides | 染色体随机整合 | 非同源末端连接 | 线性化DNA片段 | 电转化 | [ |
Schizochytrium sp. | 染色体定点整合 | 同源重组(双交换) | (线性化的)自杀质粒 | 电穿孔转化 | [ |
Schizochytrium sp. TIO1101 | 染色体定点整合 | 同源重组(单交换) | 线性化自杀质粒 | 电穿孔转化 | [ |
Schizochytrium sp. | 染色体随机整合 | 非同源末端连接 | 线性化自杀质粒 | 电穿孔转化 | [ |
Schizochytrium sp. | 染色体随机整合 | 非同源末端连接 | Ti质粒 | 农杆菌介导转化 | [ |
Lipomyces starkeyi | 染色体随机整合 | 非同源末端连接 | Ti质粒 | 农杆菌介导转化 | [ |
L. starkeyi | 染色体定点整合 | 同源重组(双交换) | 线性化的自杀质粒 | PEG介导原生质体转化 | [ |
工程菌 | 宿主 | 遗传操作 | 产物 | 产量 | 底物 | 培养方式 |
---|---|---|---|---|---|---|
S14G19O-ACC1 Y-4311a[ | ATCC 20460 | 敲除甘油-3-磷酸脱氢酶(Gpd1和Gut2)和氧化物酶体基质蛋白Pex10;过表达乙酰辅酶A羧化酶 ACC1 | 游离脂肪酸 | 2.03 g/L | 甘油和 正十二烷 | 摇瓶 |
M-MHY1[ | ACA-DC 50109 | 敲除C2H2锌指蛋白Mhy1 | 三乙酰甘油酯 | 43.1% (DCW) | 葡萄糖 | 摇瓶 |
ylXYL+Obese-XA[ | PO1d | 敲除酰基辅酶A氧化酶(POX1-6)和脂肪酶Tgl4;过表达DAG酰基转移酶DGA1、磷酸转酮酶XPKA、乙酸激酶ACK、乙酰辅酶A合成酶ACS2、磷酸转乙酰酶XA、木糖还原酶XR、木糖醇脱氢酶XDH和木酮糖激酶XK | 三乙酰甘油酯 | 16.5 g/L | 蔗糖 | 发酵罐 |
JMY3580[ | ATCC 20460 | 敲除DAG酰基转移酶(Dga1、Dga2和Lro1)和酰基辅酶A甾醇酰基转移酶;过表达DAG酰基转移酶DGA2 | 脂肪酸 | 9.9 g/L | 甘油 | 摇瓶 |
ADgm-hia[ | Po1g | 过表达乙酰辅酶A羧化酶 ACC1、DAG酰基转移酶DGA1、NAD+激酶YEF和3-磷酸甘油醛脱氢酶GapC | 脂肪酸甲酯 | 98.9 g/L | 葡萄糖 | 发酵罐 |
W29 (Dpex10 ZWF1 ACBP) [ | ATCC 20460 | 敲除氧化物酶体基质蛋白Pex10;过表达葡萄糖-6-磷酸脱氢酶ZWF | 三乙酰甘油酯 | 30% (DCW) | 葡萄糖 | 摇瓶 |
Po1f-6-D[ | PO1f | 过表达来源Mortierella alpina的Δ6去饱和酶 | γ-亚油酸 | 71.6 mg/L | 葡萄糖 | 摇瓶 |
ALDH[ | PO1g | 过表达乙酰辅酶A羧化酶ACC1、DAG酰基转移酶DGA1、醛脱氢酶EcAldH(来源于E. coli)、葡萄糖-6-磷酸脱氢酶ZWF(来源于S. cerevisiae)、谷胱甘肽二硫还原酶GSR和硫氧还蛋白还原酶TRX | 三乙酰甘油酯 | 72.7 g/L | 葡萄糖 | 发酵罐 |
Tafar1-5copy-Δdga1 fao1[ | PO1f | 敲除DAG酰基转移酶Dga1和脂肪醇氧化酶Fao1;过表达脂肪酰辅酶A还原酶Tafar1 | 脂肪醇 | 690.21 mg/L | 甘油 | 发酵罐 |
AD pYLXP-ylFAS1-EcTesA[ | PO1g | 表达脂肪酸合酶FAS1和硫脂酶EcTesA(来源于E. coli) | 游离脂肪酸 | 9.67 g/L | 葡萄糖 | 发酵罐 |
AD pYLXP-AbAtfA-scCat2[ | PO1g | 表达蜡酯合酶AbAtfA(来源于A. baylyi ADP1)和肉碱乙酰转移 酶scCat2 | 脂肪酸乙酯 | 142.5 mg/L | 葡萄糖 | 摇瓶 |
AD pYLXP- Maqu2220-EcfadD[ | PO1g | 表达脂酰辅酶A合成酶Maqu2220和EcfadD(来源于Marinobacter aquaeolei和E. coli) | 脂肪酸醇 | 2.15 g/L | 葡萄糖 | 摇瓶 |
AD pYLXP-MmCAR-BsuSfp-PmADO[ | PO1g | 表达羧酸还原酶MmCAR(来源于M. marinum)、磷酸泛酰巯基乙胺基转移酶BsuSfp(来源于Bacillus subtilis)和醛脱甲氧化酶PmADO(Prochlorococcus marinus) | 脂肪烷烃 | 23.3 mg/L | 葡萄糖 | 摇瓶 |
AD pYLXP-ylACC1-ylDGA1-scCat2[ | PO1g | 表达乙酰辅酶A羧化酶ACC1、DAG酰基转移酶DGA1和肉碱乙酰转移酶Cat2 | 三乙酰甘油酯 | 66.4 g/L | 葡萄糖 | 发酵罐 |
PMOC[ | PO1h | 表达聚羟基脂肪酸合成酶PhaC1 | 聚羟基链烷酸酯 | 1.11 g/L | 正十二烷 | 摇瓶 |
YL-ad9[ | PO1f | 过表达乙酰辅酶A羧化酶 ACC1、DAG酰基转移酶DGA1和硬脂酰辅酶A去饱和酶SCD | 三乙酰甘油酯 | 55 g/L | 葡萄糖 | 发酵罐 |
Y4305[ | ATCC 20362 | 敲除氧化物酶体基质蛋白Pex10、脂肪酶1、固醇载体蛋白scp2和未知功能基因yali0c1871;过表达C16/18延伸酶和Δ12、Δ9、Δ8、Δ5和Δ17去饱和酶 | ω-3 二十碳五烯酸 | 15%(DCW) | 葡萄糖 | 摇瓶 |
表3 代谢工程改造Yarrowia lipolytica合成油脂及衍生品的研究进展
Tab. 3 Research progress in metabolic engineering of Yarrowia lipolytica synthesizing lipids and derivatives
工程菌 | 宿主 | 遗传操作 | 产物 | 产量 | 底物 | 培养方式 |
---|---|---|---|---|---|---|
S14G19O-ACC1 Y-4311a[ | ATCC 20460 | 敲除甘油-3-磷酸脱氢酶(Gpd1和Gut2)和氧化物酶体基质蛋白Pex10;过表达乙酰辅酶A羧化酶 ACC1 | 游离脂肪酸 | 2.03 g/L | 甘油和 正十二烷 | 摇瓶 |
M-MHY1[ | ACA-DC 50109 | 敲除C2H2锌指蛋白Mhy1 | 三乙酰甘油酯 | 43.1% (DCW) | 葡萄糖 | 摇瓶 |
ylXYL+Obese-XA[ | PO1d | 敲除酰基辅酶A氧化酶(POX1-6)和脂肪酶Tgl4;过表达DAG酰基转移酶DGA1、磷酸转酮酶XPKA、乙酸激酶ACK、乙酰辅酶A合成酶ACS2、磷酸转乙酰酶XA、木糖还原酶XR、木糖醇脱氢酶XDH和木酮糖激酶XK | 三乙酰甘油酯 | 16.5 g/L | 蔗糖 | 发酵罐 |
JMY3580[ | ATCC 20460 | 敲除DAG酰基转移酶(Dga1、Dga2和Lro1)和酰基辅酶A甾醇酰基转移酶;过表达DAG酰基转移酶DGA2 | 脂肪酸 | 9.9 g/L | 甘油 | 摇瓶 |
ADgm-hia[ | Po1g | 过表达乙酰辅酶A羧化酶 ACC1、DAG酰基转移酶DGA1、NAD+激酶YEF和3-磷酸甘油醛脱氢酶GapC | 脂肪酸甲酯 | 98.9 g/L | 葡萄糖 | 发酵罐 |
W29 (Dpex10 ZWF1 ACBP) [ | ATCC 20460 | 敲除氧化物酶体基质蛋白Pex10;过表达葡萄糖-6-磷酸脱氢酶ZWF | 三乙酰甘油酯 | 30% (DCW) | 葡萄糖 | 摇瓶 |
Po1f-6-D[ | PO1f | 过表达来源Mortierella alpina的Δ6去饱和酶 | γ-亚油酸 | 71.6 mg/L | 葡萄糖 | 摇瓶 |
ALDH[ | PO1g | 过表达乙酰辅酶A羧化酶ACC1、DAG酰基转移酶DGA1、醛脱氢酶EcAldH(来源于E. coli)、葡萄糖-6-磷酸脱氢酶ZWF(来源于S. cerevisiae)、谷胱甘肽二硫还原酶GSR和硫氧还蛋白还原酶TRX | 三乙酰甘油酯 | 72.7 g/L | 葡萄糖 | 发酵罐 |
Tafar1-5copy-Δdga1 fao1[ | PO1f | 敲除DAG酰基转移酶Dga1和脂肪醇氧化酶Fao1;过表达脂肪酰辅酶A还原酶Tafar1 | 脂肪醇 | 690.21 mg/L | 甘油 | 发酵罐 |
AD pYLXP-ylFAS1-EcTesA[ | PO1g | 表达脂肪酸合酶FAS1和硫脂酶EcTesA(来源于E. coli) | 游离脂肪酸 | 9.67 g/L | 葡萄糖 | 发酵罐 |
AD pYLXP-AbAtfA-scCat2[ | PO1g | 表达蜡酯合酶AbAtfA(来源于A. baylyi ADP1)和肉碱乙酰转移 酶scCat2 | 脂肪酸乙酯 | 142.5 mg/L | 葡萄糖 | 摇瓶 |
AD pYLXP- Maqu2220-EcfadD[ | PO1g | 表达脂酰辅酶A合成酶Maqu2220和EcfadD(来源于Marinobacter aquaeolei和E. coli) | 脂肪酸醇 | 2.15 g/L | 葡萄糖 | 摇瓶 |
AD pYLXP-MmCAR-BsuSfp-PmADO[ | PO1g | 表达羧酸还原酶MmCAR(来源于M. marinum)、磷酸泛酰巯基乙胺基转移酶BsuSfp(来源于Bacillus subtilis)和醛脱甲氧化酶PmADO(Prochlorococcus marinus) | 脂肪烷烃 | 23.3 mg/L | 葡萄糖 | 摇瓶 |
AD pYLXP-ylACC1-ylDGA1-scCat2[ | PO1g | 表达乙酰辅酶A羧化酶ACC1、DAG酰基转移酶DGA1和肉碱乙酰转移酶Cat2 | 三乙酰甘油酯 | 66.4 g/L | 葡萄糖 | 发酵罐 |
PMOC[ | PO1h | 表达聚羟基脂肪酸合成酶PhaC1 | 聚羟基链烷酸酯 | 1.11 g/L | 正十二烷 | 摇瓶 |
YL-ad9[ | PO1f | 过表达乙酰辅酶A羧化酶 ACC1、DAG酰基转移酶DGA1和硬脂酰辅酶A去饱和酶SCD | 三乙酰甘油酯 | 55 g/L | 葡萄糖 | 发酵罐 |
Y4305[ | ATCC 20362 | 敲除氧化物酶体基质蛋白Pex10、脂肪酶1、固醇载体蛋白scp2和未知功能基因yali0c1871;过表达C16/18延伸酶和Δ12、Δ9、Δ8、Δ5和Δ17去饱和酶 | ω-3 二十碳五烯酸 | 15%(DCW) | 葡萄糖 | 摇瓶 |
1 | 谭天伟, 苏海佳, 陈必强, 等. 绿色生物制造 [J]. 北京化工大学学报(自然科学版), 2018, 45(5): 107-118. |
TAN T W, SU H J, CHEN B Q, et al. Green bio-manufacturing[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 107-118. | |
2 | WEN Z Q, ZHANG S F, ODOH C K, et al. Rhodosporidium toruloides-A potential red yeast chassis for lipids and beyond[J]. FEMS Yeast Research, 2020, 20(5): foaa038. |
3 | 胡学超, 任路静, 胡耀池, 等. 裂殖壶菌制备二十二碳六烯酸油脂的研究历程及发展前景[J]. 食品与发酵工业, 2018, 44(11): 311-316. |
HU X C, REN L J, HU Y C, et al. Research progress and development prospect of producing docosahexaenoic acid oil by Schizochytrium sp.[J]. Food and Fermentation Industry, 2018, 44(11): 311-316. | |
4 | SHI S, ZHAO H. Metabolic engineering of oleaginous yeasts for production of fuels and chemicals[J]. Frontiers in Microbiology, 2017, 8: 2185. |
5 | PATEL A, KARAGEORGOU D, ROVA E, et al. An overview of potential oleaginous microorganisms and their role in biodiesel and Omega-3 fatty acid-based industries[J]. Microorganisms, 2020, 8(3). |
6 | PARK Y K, NICAUD J M, LEDESMA-AMARO R. The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications[J]. Trends in Biotechnology, 2018, 36(3): 304-317. |
7 | MA J B, GU Y, MARSAFARI M, et al. Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(9/10): 845-862. |
8 | TAKAKU H, MATSUZAWA T, YAOI K, et al. Lipid metabolism of the oleaginous yeast Lipomyces starkeyi[J]. Applied Microbiology and Biotechnology, 2020, 104(14): 6141-6148. |
9 | XUE Z X, SHARPE PAMELA L, HONG S-P, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica[J]. Nature Biotechnology, 2013, 31(8): 734-740. |
10 | WANG Y N, ZHANG S F, POTTER M, et al. Overexpression of Delta12-fatty acid desaturase in the oleaginous yeast rhodosporidium toruloides for production of linoleic acid-rich lipids[J]. Applied Biochemistry and Biotechnology, 2016, 180(8): 1497-1507. |
11 | FILLET S, RONCHEL C, CALLEJO C, et al. Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils[J]. Applied Microbiology and Biotechnology, 2017, 101(19): 7271-7280. |
12 | ZHOU Y J, BUIJS N A, ZHU Z, et al. Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition[J]. Journal of the American Chemical Society, 2016, 138(47): 15368-15377. |
13 | ZHOU Y J J, BUIJS NICOLAAS A, ZHU Z W, et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories[J]. Nature Communications, 2016, 7: 11709. |
14 | YE Y, HUANG Y, XIA A, et al. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity[J]. Bioresource Technology, 2018, 270: 80-87. |
15 | KUMAR S, GUPTA N, PAKSHIRAJAN K. Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1630-1636. |
16 | KIM D, LEE J, HWANG Y, et al. Continuous cultivation of photosynthetic bacteria for fatty acids production[J]. Bioresource Technology, 2013, 148: 277-282. |
17 | ZHENG Y, LI L, LIU Q, et al. Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase[J]. Biotechnology for Biofuels, 2012, 5(1): 76. |
18 | DELLOMONACO C, CLOMBURG J M, MILLER E N, et al. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals[J]. Nature, 2011, 476(7360): 355-359. |
19 | XIAO Y, BOWEN C H, LIU D, et al. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis[J]. Nature Chemical Biology, 2016, 12(5): 339-344. |
20 | YU T, ZHOU Y J, HUANG M, et al. Reprogramming yeast metabolism from alcoholic fermentation to Lipogenesis[J]. Cell, 2018, 174(6): 1549-1558. |
21 | BLAZECK J, HILL A, LIU L, et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production[J]. Nature Communications, 2014, 5: 3131. |
22 | QIAO K, WASYLENKO T M, ZHOU K, et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism[J]. Nature Biotechnology, 2017, 35(2): 173-177. |
23 | ZHAO X, HU C M, WU S G, et al. Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(5): 627-632. |
24 | LEE J J L, CHEN L W, CAO B, et al. Engineering Rhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture[J]. Applied Microbiology and Biotechnology, 2016, 100(2): 869-877. |
25 | GUO D S, JI X J, REN L J, et al. Development of a multi-stage continuous fermentation strategy for docosahexaenoic acid production by Schizochytrium sp.[J]. Bioresource Technology, 2018, 269: 32-39. |
26 | SUN X M, REN L J, BI Z Q, et al. Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis[J]. Bioresource Technology, 2018, 267: 438-444. |
27 | MATSAKAS L, A-A STERIOTI, ROVA U, et al. Use of dried sweet sorghum for the efficient production of lipids by the yeast Lipomyces starkeyi CBS 1807[J]. Industrial Crops and Products, 2014, 62: 367-372. |
28 | HUANG C, CHEN X F, YANG X Y, et al. Bioconversion of corncob acid hydrolysate into microbial oil by the oleaginous yeast Lipomyces starkeyi[J]. Applied Biochemistry and Biotechnology, 2014, 172(4): 2197-2204. |
29 | HARDE S M, WANG Z, HORNE M, et al. Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina[J]. Fuel, 2016, 175:64-74. |
30 | ANNAMALAI N, SIVAKUMAR N, OLESKOWICZ-POPIEL P. Enhanced production of microbial lipids from waste office paper by the oleaginous yeast Cryptococcus curvatus[J]. Fuel, 2018, 217: 420-426. |
31 | SHEN Q, CHEN Y, LIN H, et al. Agro-industrial waste recycling by Trichosporon fermentans: conversion of waste sweetpotato vines alone into lipid[J]. Environmental Science and Pollution Research, 2018, 25(9): 8793-8799. |
32 | CHEN J X, ZHANG X L, YAN S, et al. Lipid production from fed-batch fermentation of crude glycerol directed by the kinetic study of batch fermentations[J]. Fuel, 2017, 209:1-9. |
33 | KARAMEROU E E, THEODOROPOULOS C, WEBB C. Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis[J]. Engineering in Life Sciences, 2017, 17(3): 314-324. |
34 | MILLER K K, ALPER H S. Yarrowia lipolytica: more than an oleaginous workhorse[J]. Applied Microbiology and Biotechnology, 2019, 103(23/24): 9251-9262. |
35 | MADZAK C, BLANCHIN-ROLAND S, CORDERO OTERO R R, et al. Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter[J]. Microbiology, 1999, 145(Pt 1): 75-87. |
36 | JURETZEK T, WANG H J, NICAUD J M, et al. Comparison of promoters suitable for regulated overexpression of β-galactosidase in the alkane-utilizing yeast Yarrowia lipolytica[J]. Biotechnology and Bioprocess Engineering, 2000, 5(5): 320-326. |
37 | BLAZECK J, LIU L, REDDEN H, et al. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach[J]. Applied and Environmental Microbiology, 2011, 77(22): 7905-7914. |
38 | HONG S P, SEIP J, WALTERS-POLLAK D, et al. Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1IN promoter[J]. Yeast, 2012, 29(2): 59-72. |
39 | MADZAK C, GAILLARDIN C, BECKERICH J M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review[J]. Journal of Biotechnology, 2004, 109(1/2): 63-81. |
40 | DALL M T, NICAUD J M, GAILLARDIN C. Multiple-copy integration in the yeast Yarrowia lipolytica[J]. Current Genetics, 1994, 26(1): 38-44. |
41 | CHEON S A, HAN E J, KANG H A, et al. Isolation and characterization of the TRP1 gene from the yeast Yarrowia lipolytica and multiple gene disruption using a TRP blaster[J]. Yeast, 2010, 20(8): 677-685. |
42 | OTERO R C, GAILLARDIN C. Efficient selection of hygromycin-B-resistant Yarrowia lipolytica transformants[J]. Applied Microbiology and Biotechnology, 1996, 46(2): 143-148. |
43 | LIU L Q, OTOUPAL P, PAN A, et al. Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function[J]. FEMS Yeast Research, 2014, 14(7): 1124-1127. |
44 | FOURNIER P, ABBAS A, CHASLES M, et al. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica[J]. Proceedings of the National Academy of Sciences of the United States of America,1993, 90(11): 4912-4916. |
45 | JURETZEK T, LE DALL M, MAUERSBERGER S, et al. Vectors for gene expression and amplification in the yeast Yarrowia lipolytica[J]. Yeast, 2001, 18(2): 97-113. |
46 | LIU Y, KOH C M J, NGOH S T, et al. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species[J]. Microbial Cell Factories, 2015, 14: 170. |
47 | JOHNS A M, LOVE J, AVES S J. Four inducible promoters for controlled gene expression in the oleaginous yeast Rhodotorula toruloides[J]. Frontiers in Microbiology, 2016, 7: 1666. |
48 | WANG Y N, LIN X P, ZHANG S F, et al. Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides[J]. Yeast, 2016, 33(3): 99-106. |
49 | LIU Y, YAP S A, KOH C M, et al. Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species[J]. Microbial Cell Factories, 2016, 15(1): 200. |
50 | DÍAZ T, FILLET S, CAMPOY S, et al. Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 3287-3300. |
51 | LIN X P, WANG Y N, ZHANG S F, et al. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides[J]. FEMS Yeast Research, 2014, 14(4): 547-555. |
52 | XUE J, BALAMURUGAN S, LI D W, et al. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply[J]. Metabolic Engineering, 2017, 41: 212-221. |
53 | OGURO Y, YAMAZAKI H, SHIDA Y, et al. Multicopy integration and expression of heterologous genes in the oleaginous yeast, Lipomyces starkeyi[J]. Bioscience, Biotechnology, and Biochemistry, 2015, 79(3): 512-515. |
54 | DAI Z Y, DENG S, CULLEY D E, et al. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species[J]. Applied Microbiology and Biotechnology, 2017, 101(15): 6099-6110. |
55 | YAN J F, CHENG R B, LIN X Z, et al. Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium[J]. Applied Microbiology and Biotechnology, 2013, 97(5): 1933-1939. |
56 | LI Z, MENG T, LING X, et al. Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production[J]. Journal of Agricultural and Food Chemistry, 2018, 66(21): 5382-5391. |
57 | WANG F, BI Y, DIAO J, et al. Metabolic engineering to enhance biosynthesis of both docosahexaenoic acid and odd-chain fatty acids in Schizochytrium sp. S31[J]. Biotechnology for Biofuels, 2019, 12: 141. |
58 | JIAO X, ZHANG Y, LIU X, et al. Developing a CRISPR/Cas9 system for genome editing in the basidiomycetous yeast Rhodosporidium toruloides[J]. Biotechnology Journal, 2019, 14(7): e1900036. |
59 | OTOUPAL P B, ITO M, ARKIN A P, et al. Multiplexed CRISPR-Cas9 based genome editing of Rhodosporidium toruloides[J]. mSphere. 2019, 20;4(2): e00099-19. |
60 | DAVIDOW L S, APOSTOLAKOS D, O'DONNELL M M, et al. Integrative transformation of the yeast Yarrowia lipolytica[J]. Current Genetics, 1985, 10(1): 39-48. |
61 | CHEN D C, BECKERICH J M, GAILLARDIN C. One-step transformation of the dimorphic yeast Yarrowia lipolytica[J]. Applied Microbiology and Biotechnology, 1997, 48(2): 232-235. |
62 | WANG J H, HUNG W, TSAI S H. High efficiency transformation by electroporation of Yarrowia lipolytica[J]. Journal of Microbiology (Seoul, Korea), 2011, 49(3): 469-472. |
63 | TULLY M, GILBERT H J. Transformation of Rhodosporidium toruloides[J]. Gene, 1985, 36(3): 235-240. |
64 | LIU Y B, KOH C M J, SUN L H, et al. Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides[J]. Applied Microbiology and Biotechnology, 2013, 97(2): 719-729. |
65 | TSAI Y Y, OHASHI T, KANAZAWA T, et al. Development of a sufficient and effective procedure for transformation of an oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16[J]. Current Genetics, 2017, 63(2): 359-371. |
66 | ROESSLER P, MATTHEWS T, RAMSEIER T, et al. Product and process for transformation of thraustochytriales microorganisms: US2003166207-A1[P]. 2001. |
67 | LIPPMEIER J C, CRAWFORD K S, OWEN C B, et al. Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp.[J]. Lipids, 2009, 44(7): 621-630. |
68 | CHENG R, MA R, LI K, et al. Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium[J]. Microbiological Research, 2012, 167(3): 179-186. |
69 | REN L J, ZHUANG X Y, CHEN S L, et al. Introduction of ω-3 desaturase obviously changed the fatty acid profile and sterol content of Schizochytrium sp.[J]. Journal of Agricultural and Food Chemistry, 2015, 63(44): 9770-9776 |
70 | CALVEY C H, WILLIS L B, JEFFRIES T W. An optimized transformation protocol for Lipomyces starkeyi[J]. Current Genetics, 2014, 60(3): 223-230. |
71 | OGURO Y, YAMAZAKI H, ARA S, et al. Efficient gene targeting in non-homologous end-joining-deficient Lipomyces starkeyi strains[J]. Current Genetics, 2017, 63(4): 751-763. |
72 | LARROUDE M, ROSSIGNOL T, NICAUD J M, et al. Synthetic biology tools for engineering Yarrowia lipolytica[J]. Biotechnology Advances, 2018, 36(8): 2150-2164. |
73 | SHI T Q, HUANG H, KERKHOVEN E J, et al. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system[J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9541-9548. |
74 | SCHWARTZ C, SHABBIR-HUSSAIN M, FROGUE K, et al. Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2017, 6(3): 402-409. |
75 | FICKERS P, LE DALL M T, GAILLARDIN C, et al. New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica[J]. Journal of Microbiological Methods, 2003, 55(3): 727-737. |
76 | VANDERMIES M, DENIES O, NICAUD J M, et al. EYK1 encoding erythrulose kinase as a catabolic selectable marker for genome editing in the non-conventional yeast Yarrowia lipolytica[J]. Journal of Microbiological Methods, 2017, 139: 161-164. |
77 | LARROUDE M, PARK Y K, SOUDIER P, et al. A modular Golden Gate toolkit for Yarrowia lipolytica synthetic biology[J]. Microbial Biotechnology, 2019, 12(6): 1249-1259. |
78 | WONG L, ENGEL J, JIN E, et al. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica[J]. Metabolic Engineering Communications, 2017, 5: 68-77. |
79 | BULANI S I, MOLELEKI L, ALBERTYN J, et al. Development of a novel rDNA based plasmid for enhanced cell surface display on Yarrowia lipolytica[J]. AMB Express, 2012, 2(1): 27. |
80 | GAO S L, TONG Y Y, WEN Z Q, et al. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(8): 1085-1093. |
81 | SCHWARTZ C M, HUSSAIN M S, BLENNER M, et al. Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2016, 5(4): 356-359. |
82 | GAO D, SMITH S, SPAGNUOLO M, et al. Dual CRISPR-Cas9 cleavage mediated gene excision and targeted integration in Yarrowia lipolytica[J]. Biotechnology Journal, 2018, 13(9): e1700590. |
83 | ABDEL-MAWGOUD A M, STEPHANOPOULOS G. Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions[J]. Metabolic Engineering, 2020, 62: 106-115. |
84 | BAE S J, PARK B G, KIM B G, et al. Multiplex gene disruption by targeted base editing of Yarrowia lipolytica genome using cytidine deaminase combined with the CRISPR/Cas9 system[J]. Biotechnology Journal, 2020, 15(1): e1900238. |
85 | RICHARD G F, KERREST A, LAFONTAINE I, et al. Comparative genomics of hemiascomycete yeasts: genes involved in DNA replication, repair, and recombination[J]. Molecular Biology and Evolution, 2005, 22(4): 1011-1023. |
86 | KRETZSCHMAR A, OTTO C, HOLZ M, et al. Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining[J]. Current Genetics, 2013, 59(1/2): 63-72. |
87 | VERBEKE J, BEOPOULOS A, NICAUD J M. Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains[J]. Biotechnology Letters, 2013, 35(4): 571-576. |
88 | SCHULTZ J C, CAO M F, ZHAO H M. Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides[J]. Biotechnology and Bioengineering, 2019, 116(8): 2103-2109. |
89 | SUN W Y, YANG X B, WANG X Y, et al. Developing a flippase-mediated maker recycling protocol for the oleaginous yeast Rhodosporidium toruloides[J]. Biotechnology Letters, 2018, 40(6): 933-940. |
90 | 孙文怡. 基于农杆菌介导的圆红冬孢酵母遗传重组系统的研究[D].大连: 大连理工大学, 2017. |
SUN W Y. Agrobacterium-mediated genetic transformation-based genetic recombination system for Rhodosporidium toruloides[D]. Dalian: Dalian University of Technology, 2017. | |
91 | FILLET S C, GONZÁLEZ B S, BARRENO M C R, et al. Production of microbial oils with an elevated oleic acid content: WO2016185073A1[P]. 2016. |
92 | KOH C M, LIU Y B, MOEHNINSI, et al. Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides[J]. BMC Microbiology, 2014, 14: 50. |
93 | GAO S L, HAN L N, ZHU L, et al. One-step integration of multiple genes into the oleaginous yeast Yarrowia lipolytica[J]. Biotechnology Letters, 2014, 36(12): 2523-2528. |
94 | CUI Z Y, JIANG X, ZHENG H H, et al. Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica[J]. Biotechnology and Bioengineering, 2019, 116(2): 354-363. |
95 | SCHWARTZ C, WHEELDON I. CRISPR-Cas9-mediated genome editing and transcriptional control in Yarrowia lipolytica[J]. Methods in Molecular Biology, 2018, 1772: 327-345. |
96 | ZHANG J L, PENG Y Z, LIU D, et al. Gene repression via multiplex gRNA strategy in Y. lipolytica[J]. Microbial Cell Factories, 2018, 17(1): 62. |
97 | SCHWARTZ C, CURTIS N, LÖBS A K, et al. Multiplexed CRISPR activation of cryptic sugar metabolism enables Yarrowia lipolytica growth on cellobiose[J]. Biotechnology Journal, 2018, 13(9): e1700584. |
98 | YANG Z, EDWARDS H, XU P. CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica[J]. Metabolic Engineering Communications, 2020, 10: e00112. |
99 | SUN W Y, YANG X B, WANG X Y, et al. Homologous gene targeting of a carotenoids biosynthetic gene in Rhodosporidium toruloides by Agrobacterium-mediated transformation[J]. Biotechnology Letters, 2017, 39(7): 1001-1007. |
100 | ZHANG S, HE Y, SEN B, et al. Alleviation of reactive oxygen species enhances PUFA accumulation in Schizochytrium sp. through regulating genes involved in lipid metabolism[J]. Metabolic Engineering Communications, 2018, 6: 39-48. |
101 | HAN X, ZHAO Z N, WEN Y, et al. Enhancement of docosahexaenoic acid production by overexpression of ATP-citrate lyase and acetyl-CoA carboxylase in Schizochytrium sp.[J]. Biotechnology for Biofuels2020, 13(1): 131. |
102 | JI X J, HUANG H. Engineering microbes to produce polyunsaturated fatty acids[J]. Trends in Biotechnology, 2019, 37(4): 344-346. |
103 | WANG J, LEDESMA-AMARO R, WEI Y, et al. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica-a review[J]. Bioresource Technology, 2020, 313: 123707. |
104 | LIU H H, JI X J, HUANG H. Biotechnological applications of Yarrowia lipolytica: Past, present and future[J]. Biotechnology Advances, 2015, 33(8): 1522-1546. |
105 | GU Y, XU P. Synthetic yeast brews neuroactive compounds[J]. Nature Chemical Biology, 2021, 17: 8-9. |
106 | MARKHAM K A, ALPER H S. Synthetic biology expands the industrial potential of Yarrowia lipolytica[J]. Trends in Biotechnology, 2018, 36(10): 1085-1095. |
107 | QIU X, XU P, ZHAO X, et al. Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica[J]. Metabolic Engineering, 2020, 60: 66-76. |
108 | YUZBASHEVA E Y, AGRIMI G, YUZBASHEV T V, et al. The mitochondrial citrate carrier in Yarrowia lipolytica: its identification, characterization and functional significance for the production of citric acid[J]. Metabolic Engineering, 2019, 54: 264-274. |
109 | GU Y, MA J, ZHU Y, et al. Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals[J]. ACS Synthetic Biology, 2020, 9(8): 2096-2106. |
110 | GU Y, MA J, ZHU Y, et al. Refactoring Ehrlich pathway for high-yield 2-phenylethanol production in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2020, 9(3): 623-633. |
111 | MATTHÄUS F, KETELHOT M, GATTER M, et al. Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica[J]. Applied and Environmental Microbiology, 2014, 80(5): 1660-1669. |
112 | KILDEGAARD K R, ADIEGO-PÉREZ B, DOMÉNECH BELDA D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synthetic and Systems Biotechnology, 2017, 2(4): 287-294. |
113 | LIU Y H, JIANG X, CUI Z Y, et al. Engineering the oleaginous yeast Yarrowia lipolytica for production of α-farnesene[J]. Biotechnology for Biofuels, 2019, 12(1): 1-11. |
114 | CAO X, WEI L J, LIN J Y, et al. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology, 2017, 245(pt b): 1641-1644. |
115 | XUE Z X, HE H X, HOLLERBACH D, et al. Identification and characterization of new Δ-17 fatty acid desaturases[J]. Applied Microbiology and Biotechnology, 2013, 97(5): 1973-1985. |
116 | LIU H H, WANG C, LU X Y, et al. Improved production of arachidonic acid by combined pathway engineering and synthetic enzyme fusion in Yarrowia lipolytica[J]. Journal of Agricultural and Food Chemistry, 2019, 67(35): 9851-9857. |
117 | GAO Q, YANG J L, ZHAO X R, et al. Yarrowia lipolytica as a metabolic engineering platform for the production of very-long-chain wax esters[J]. Journal of Agricultural and Food Chemistry, 2020, 68(39): 10730-10740. |
118 | DOUROU M, AGGELI D, PAPANIKOLAOU S, et al. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms[J]. Applied Microbiology and Biotechnology, 2018, 102(6): 2509-2523. |
119 | DULERMO T, NICAUD J M. Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica[J]. Metabolic Engineering, 2011, 13(5): 482-491. |
120 | LEDESMA-AMARO R, DULERMO R, NIEHUS X, et al. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids[J]. Metabolic Engineering, 2016, 38: 38-46. |
121 | LEDESMA-AMARO R, NICAUD J M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids[J]. Progress in Lipid Research, 2016, 61: 40-50. |
122 | LAZAR Z, LIU N, STEPHANOPOULOS G. Holistic approaches in lipid production by Yarrowia lipolytica[J]. Trends in Biotechnology, 2018, 36(11): 1157-1170. |
123 | ATHENSTAEDT K, JOLIVET P, BOULARD C, et al. Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source[J]. Proteomics, 2006, 6(5): 1450-1459. |
124 | XU P, LI L, ZHANG F, et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31): 11299-11304. |
125 | YUZBASHEVA E Y, MOSTOVA E B, ANDREEVA N I, et al. A metabolic engineering strategy for producing free fatty acids by the Yarrowia lipolytica yeast based on impairment of glycerol metabolism[J]. Biotechnology and Bioengineering, 2018, 115(2): 433-443. |
126 | WANG G, LI D, MIAO Z, et al. Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica[J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2018, 1863(1): 81-90. |
127 | NIEHUS X, CRUTZ-LE COQ A M, SANDOVAL G, et al. Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials[J]. Biotechnology for Biofuels, 2018, 11: 11. |
128 | GAJDOŠ P, NICAUD J M, ČERT K M. Glycerol conversion into a single cell oil by engineered Yarrowia lipolytica[J]. Engineering in Life Sciences, 2017, 17(3): 325-332. |
129 | YUZBASHEVA E Y, MOSTOVA E B, ANDREEVA N I, et al. Co-expression of glucose-6-phosphate dehydrogenase and acyl-CoA binding protein enhances lipid accumulation in the yeast Yarrowia lipolytica[J]. New Biotechnology, 2017, 39(pt a): 18-21. |
130 | SUN M L, MADZAK C, LIU H-H, et al. Engineering Yarrowia lipolytica for efficient γ-linolenic acid production[J]. Biochemical Engineering Journal, 2017, 117:172-180. |
131 | XU P, QIAO K, STEPHANOPOULOS G. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica [J]. Biotechnology and Bioengineering, 2017, 114(7): 1521-1530. |
132 | WANG G, XIONG X, GHOGARE R, et al. Exploring fatty alcohol-producing capability of Yarrowia lipolytica[J]. Biotechnology for Biofuels, 2016, 9: 107. |
133 | XU P, QIAO K, AHN W S, et al. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 10848-10853. |
134 | GAO C J, QI Q S, MADZAK C, et al. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(9): 1255-1262. |
135 | QIAO K, IMAM ABIDI S H, LIU H, et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica[J]. Metabolic Engineering, 2015, 29: 56-65. |
136 | DULERMO T, LAZAR Z, DULERMO R, et al. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis[J]. Biochimica et Biophysica Acta, 2015, 1851(9): 1107-1117. |
137 | LEDESMA-AMARO R, LOZANO-MARTÍNEZ P, JIMÉNEZ A, et al. Engineering Ashbya gossypii for efficient biolipid production[J]. Bioengineered, 2015, 6(2): 119-123. |
138 | GAO Q, CAO X, HUANG Y Y, et al. Overproduction of fatty acid ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimization[J]. ACS Synthetic Biology, 2018, 7(5): 1371-1380. |
139 | LIU H, MARSAFARI M, WANG F, et al. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica[J]. Metabolic Engineering, 2019, 56: 60-68. |
140 | TAI M, STEPHANOPOULOS G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production[J]. Metabolic Engineering, 2013, 15: 1-9. |
141 | BELLOU S, TRIANTAPHYLLIDOU I E, MIZERAKIS P, et al. High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium[J]. Journal of Biotechnology, 2016, 234: 116-126. |
142 | WASYLENKO T M, AHN W S, STEPHANOPOULOS G. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica[J]. Metabolic Engineering, 2015, 30: 27-39. |
143 | ZHANG H Y, ZHANG L N, CHEN H Q, et al. Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation[J]. Biotechnology Letters, 2013, 35(12): 2091-2098. |
144 | DULERMO T, TR TON B, BEOPOULOS A, et al. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation[J]. Biochimica et Biophysica Acta, 2013, 1831(9): 1486-1495. |
145 | MAUERSBERGER S, WANG H J, GAILLARDIN C, et al. Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutations in genes involved in hydrophobic substrate utilization[J]. Journal of Bacteriology, 2001, 183(17): 5102-5109. |
146 | JI X J, LEDESMA-AMARO R. Microbial lipid biotechnology to produce polyunsaturated fatty acids[J]. Trends in Biotechnology, 2020, 38(8): 832-834 |
147 | HONDA D, YOKOCHI T, NAKAHARA T, et al. Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene[J]. The Journal of Eukaryotic Microbiology, 1999, 46(6): 637-647. |
148 | YOKOYAMA R, SALLEH B, HONDA D. Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov[J]. Mycoscience, 2007, 48(6): 329-341. |
149 | YOKOYAMA R, HONDA D. Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov[J]. Mycoscience, 2007, 48(4): 199-211. |
150 | SUN X M, XU Y S, HUANG H. Thraustochytrid cell factories for producing lipid compounds[J]. Trends in Biotechnology, 2021, 39(7): 648-650. |
151 | JI X J, REN L J, HUANG H. Omega-3 biotechnology: a green and sustainable process for omega-3 fatty acids production[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 158. |
152 | BARCLAY W, WEAVER C, METZ J, et al. Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update[M]. Urbana, Illinois: AOCS Press, 2010: 75-96. |
153 | AASEN I M, ERTESVÅG H, HEGGESET T M B, et al. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids[J]. Applied Microbiology and Biotechnology, 2016, 100(10): 4309-4321. |
154 | HAUVERMALE A, KUNER J, ROSENZWEIG B, et al. Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase[J]. Lipids, 2006, 41(8): 739-747. |
155 | RATLEDGE C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production[J]. Biochimie, 2004, 86(11): 807-815. |
156 | MEESAPYODSUK D, QIU X. Biosynthetic mechanism of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185[J]. Journal of Lipid Research, 2016, 57(10): 1854-1864. |
157 | GUO D S, JI X J, REN L J, et al. Development of a scale-up strategy for fermentative production of docosahexaenoic acid by Schizochytrium sp.[J]. Chemical Engineering Science, 2018, 176: 600-608. |
158 | CHEN C Y, YANG Y T. Combining engineering strategies and fermentation technology to enhance docosahexaenoic acid (DHA) production from an indigenous Thraustochytrium sp. BM2 strain[J]. Biochemical Engineering Journal, 2018, 179-185. |
159 | HUANG Z R, LIN Y K, FANG J Y. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology[J]. Molecules, 2009, 14(1): 540-554. |
160 | NAKAZAWA A, MATSUURA H, KOSE R, et al. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production[J]. Bioresource Technology, 2012, 109: 287-291. |
161 | NAKAZAWA A, KOKUBUN Y, MATSUURA H, et al. TLC screening of thraustochytrid strains for squalene production[J]. Journal of Applied Phycology, 2014, 26(1): 29-41. |
162 | REN L J, SUN G N, JI X J, et al. Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp.[J]. Bioresource Technology, 2014, 157: 107-113. |
163 | BERMAN J, ZORRILLA-LÓPEZ U, FARRÉ G, et al. Nutritionally important carotenoids as consumer products[J]. Phytochemistry Reviews, 2015, 14(5): 727-743. |
164 | ARMENTA R E, BURJA A, RADIANINGTYAS H, et al. Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q10 from the Thraustochytrid strain ONC-T18[J]. Journal of Agricultural and Food Chemistry, 2006, 54(26): 9752-9758. |
165 | CARMONA M L, NAGANUMA T, YAMAOKA Y. Identification by HPLC-MS of carotenoids of the Thraustochytrium CHN-1 strain isolated from the seto inland sea[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(4): 884-888. |
166 | AKI T, HACHIDA K, YOSHINAGA M, et al. Thraustochytrid as a potential source of carotenoids[J]. Journal of the American Oil Chemists' Society, 2003, 80(8): 789-794. |
167 | BENITA Quilodrán, HINZPETER Ivonne, HORMAZABAL Emilio, et al. Docosahexaenoic acid (C22:6n-3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp.: evaluation of liquid residues from food industry as nutrient sources[J]. Enzyme & Microbial Technology, 2010, 47(1/2): 24-30. |
168 | GAO S L, TONG Y Y, ZHU L, et al. Production of β-carotene by expressing a heterologous multifunctional carotene synthase in Yarrowia lipolytica[J]. Biotechnology Letters, 2017, 39(6): 1-7. |
169 | GAO S L, TONG Y Y, ZHU L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metabolic Engineering, 2017, 41: 192-201. |
170 | SCHWARTZ C, FROGUE K, MISA J, et al. Host and pathway engineering for enhanced Lycopene biosynthesis in Yarrowia lipolytica[J]. Frontiers in Microbiology, 2017, 8: 2233. |
[1] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[2] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[3] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[4] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[5] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[6] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[7] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[8] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[9] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[10] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[11] | 许志锰, 谢震. 引导编辑研究进展及其应用[J]. 合成生物学, 2024, 5(1): 1-15. |
[12] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
[13] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
[14] | 孙翰, 刘进. 真核微藻脂质代谢工程的研究进展和展望[J]. 合成生物学, 2023, 4(6): 1140-1160. |
[15] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||