合成生物学 ›› 2023, Vol. 4 ›› Issue (2): 373-393.DOI: 10.12211/2096-8280.2022-063
谢君鸿1, 何晶晶2, 周鹏辉3
收稿日期:
2022-11-17
修回日期:
2023-02-01
出版日期:
2023-04-30
发布日期:
2023-04-27
通讯作者:
何晶晶,周鹏辉
作者简介:
基金资助:
Junhong XIE1, Jingjing HE2, Penghui ZHOU3
Received:
2022-11-17
Revised:
2023-02-01
Online:
2023-04-30
Published:
2023-04-27
Contact:
Jingjing HE, Penghui ZHOU
摘要:
近年来,工程化T细胞治疗在肿瘤免疫治疗领域取得了重大进展。工程化T细胞治疗主要包括T细胞受体基因工程T细胞(T-cell receptor-engineered T cell, TCR-T)疗法和嵌合抗原受体T细胞(chimeric antigen receptor T cell, CAR-T)疗法,其中,CAR-T疗法在恶性血液肿瘤中展现出了巨大的潜力和应用价值,而TCR-T疗法则在部分实体瘤中呈现出了较好的治疗效果。然而,针对大部分肿瘤,特别是实体肿瘤,当前工程化T细胞疗法还存在效率低、安全性不足等问题。通过合成生物学手段使工程化T细胞克服当前限制,将为研制更安全、高效的工程化T细胞带来新的机遇。本文将从工程化T细胞的结构和信号激活、靶点选择、亲和力优化、安全性改造以及基因编辑改造等方面综述工程化T细胞的合成生物学改造策略,并探讨这些优化措施在肿瘤免疫治疗应用中的最新进展。
中图分类号:
谢君鸿, 何晶晶, 周鹏辉. 合成生物学与工程化T细胞治疗[J]. 合成生物学, 2023, 4(2): 373-393.
Junhong XIE, Jingjing HE, Penghui ZHOU. Synthetic biology and engineered T cell therapy[J]. Synthetic Biology Journal, 2023, 4(2): 373-393.
1 | ROSENBERG S A, PACKARD B S, AEBERSOLD P M, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report[J]. The New England Journal of Medicine, 1988, 319(25): 1676-1680. |
2 | WATANABE K, NISHIKAWA H. Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies[J]. International Immunology, 2021, 33(11): 551-562. |
3 | WEBER E W, MAUS M V, MACKALL C L. The emerging landscape of immune cell therapies[J]. Cell, 2020, 181(1): 46-62. |
4 | GRUPP S A, KALOS M, BARRETT D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia[J]. The New England Journal of Medicine, 2013, 368(16): 1509-1518. |
5 | KERSTEN M J, SPANJAART A M, THIEBLEMONT C. CD19-directed CAR T-cell therapy in B-cell NHL[J]. Current Opinion in Oncology, 2020, 32(5): 408-417. |
6 | MULLARD A. FDA approves fourth CAR-T cell therapy[J]. Nature Reviews Drug Discovery, 2021, 20(3): 166. |
7 | ANDERSON, A K, STROMNES I M, GREENBERG P D. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies[J]. Cancer Cell, 2017, 31(3): 311-325. |
8 | LARSON R C, MAUS M V. Recent advances and discoveries in the mechanisms and functions of CAR T cells[J]. Nature Reviews Cancer, 2021, 21(3): 145-161. |
9 | NISHIKAWA H, MAEDA Y, ISHIDA T, et al. Cancer/testis antigens are novel targets of immunotherapy for adult T-cell leukemia/lymphoma[J]. Blood, 2012, 119(13): 3097-3104. |
10 | JUNGBLUTH A A, ANTONESCU C R, BUSAM K J, et al. Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7[J]. International Journal of Cancer, 2001, 94(2): 252-256. |
11 | D'ANGELO S P, MELCHIORI L, MERCHANT M S, et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T cells in synovial sarcoma[J]. Cancer Discovery, 2018, 8(8): 944-957. |
12 | CHEN L P, FLIES D B. Molecular mechanisms of T cell co-stimulation and co-inhibition[J]. Nature Reviews Immunology, 2013, 13(4): 227-242. |
13 | RAEBER M E, ZURBUCHEN Y, IMPELLIZZIERI D, et al. The role of cytokines in T-cell memory in health and disease[J]. Immunological Reviews, 2018, 283(1): 176-193. |
14 | DRIESSENS G, KLINE J, GAJEWSKI T F. Costimulatory and coinhibitory receptors in anti-tumor immunity[J]. Immunological Reviews, 2009, 229(1): 126-144. |
15 | GLOBERSON LEVIN A, RIVIÈRE I, ESHHAR Z, et al. CAR T cells: building on the CD19 paradigm[J]. European Journal of Immunology, 2021, 51(9): 2151-2163. |
16 | STERNER R C, STERNER R M. CAR-T cell therapy: current limitations and potential strategies[J]. Blood Cancer Journal, 2021, 11: 69. |
17 | JAYARAMAN J, MELLODY M P, HOU A J, et al. CAR-T design: elements and their synergistic function[J]. EBioMedicine, 2020, 58: 102931. |
18 | CHEEVER M A, ALLISON J P, FERRIS A S, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research[J]. Clinical Cancer Research, 2009, 15(17): 5323-5337. |
19 | COULIE P G, VAN DEN EYNDE B J, VAN DER BRUGGEN P, et al. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy[J]. Nature Reviews Cancer, 2014, 14(2): 135-146. |
20 | GUBIN M M, ARTYOMOV M N, MARDIS E R, et al. Tumor neoantigens: building a framework for personalized cancer immunotherapy[J]. The Journal of Clinical Investigation, 2015, 125(9): 3413-3421. |
21 | SMITH C C, SELITSKY S R, CHAI S J, et al. Alternative tumour-specific antigens[J]. Nature Reviews Cancer, 2019, 19(8): 465-478. |
22 | RAPOPORT A P, STADTMAUER E A, BINDER-SCHOLL G K, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma[J]. Nature Medicine, 2015, 21(8): 914-921. |
23 | KAGEYAMA S, IKEDA H, MIYAHARA Y, et al. Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer[J]. Clinical Cancer Research, 2015, 21(10): 2268-2277. |
24 | MORGAN R A, CHINNASAMY N, ABATE-DAGA D, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy[J]. Journal of Immunotherapy, 2013, 36(2): 133-151. |
25 | MORGAN R A, DUDLEY M E, WUNDERLICH J R, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes[J]. Science, 2006, 314(5796): 126-129. |
26 | HE J J, XIONG X X, YANG H, et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response[J]. Cell Research, 2022, 32(6): 530-542. |
27 | PARKHURST M R, YANG J C, LANGAN R C, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis[J]. Molecular Therapy, 2011, 19(3): 620-626. |
28 | SHAH N, CHARI A, SCOTT E, et al. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches[J]. Leukemia, 2020, 34(4): 985-1005. |
29 | HAN Z W, LYV Z W, CUI B, et al. The old CEACAMs find their new role in tumor immunotherapy[J]. Investigational New Drugs, 2020, 38(6): 1888-1898. |
30 | YAMASHITA N, KUFE D. Addiction of cancer stem cells to MUC1-C in triple-negative breast cancer progression[J]. International Journal of Molecular Sciences, 2022, 23(15): 8219. |
31 | KARSCHNIA P, TESKE N, THON N, et al. Chimeric antigen receptor T cells for glioblastoma: current concepts, challenges, and future perspectives[J]. Neurology, 2021, 97(5): 218-230. |
32 | CAO W J, XING H Z, LI Y M, et al. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy[J]. Biomarker Research, 2022, 10(1): 38. |
33 | HONG M H, CLUBB J D, CHEN Y Y. Engineering CAR-T cells for next-generation cancer therapy[J]. Cancer Cell, 2020, 38(4): 473-488. |
34 | STONE J D, CHERVIN A S, KRANZ D M. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity[J]. Immunology, 2009, 126(2): 165-176. |
35 | ALEKSIC M, LIDDY N, MOLLOY P E, et al. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies[J]. European Journal of Immunology, 2012, 42(12): 3174-3179. |
36 | SCHUMACHER T N, SCHREIBER R D. Neoantigens in cancer immunotherapy[J]. Science, 2015, 348(6230): 69-74. |
37 | STONE J D, KRANZ D M. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies[J]. Frontiers in Immunology, 2013, 4: 244. |
38 | WILLIAMS C M, SCHONNESEN A A, ZHANG S Q, et al. Normalized synergy predicts that CD8 co-receptor contribution to T cell receptor (TCR) and pMHC binding decreases as TCR affinity increases in human viral-specific T cells[J]. Frontiers in Immunology, 2017, 8: 894. |
39 | SHARMA P, HARRIS D T, STONE J D, et al. T-cell receptors engineered de novo for peptide specificity can mediate optimal T-cell activity without self cross-reactivity[J]. Cancer Immunology Research, 2019, 7(12): 2025-2035. |
40 | TAN M P, GERRY A B, BREWER J E, et al. T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells[J]. Clinical and Experimental Immunology, 2015, 180(2): 255-270. |
41 | SCHMID D A, IRVING M B, POSEVITZ V, et al. Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function[J]. Journal of Immunology, 2010, 184(9): 4936-4946. |
42 | HOLLER P D, HOLMAN P O, SHUSTA E V, et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10): 5387-5392. |
43 | LI Y, MOYSEY R, MOLLOY P E, et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display[J]. Nature Biotechnology, 2005, 23(3): 349-354. |
44 | DUNN S M, RIZKALLAH P J, BASTON E, et al. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity[J]. Protein Science, 2006, 15(4): 710-721. |
45 | ZOETE V, IRVING M, FERBER M, et al. Structure-based, rational design of T cell receptors[J]. Frontiers in Immunology, 2013, 4: 268. |
46 | PIERCE B G, HELLMAN L M, HOSSAIN M, et al. Computational design of the affinity and specificity of a therapeutic T cell receptor[J]. PLoS Computational Biology, 2014, 10(2): e1003478. |
47 | HARRIS D T, WANG N Y, RILEY T P, et al. Deep mutational scans as a guide to engineering high affinity T cell receptor interactions with peptide-bound major histocompatibility complex[J]. The Journal of Biological Chemistry, 2016, 291(47): 24566-24578. |
48 | LINETTE G P, STADTMAUER E A, MAUS M V, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma[J]. Blood, 2013, 122(6): 863-871. |
49 | SANDERSON J P, CROWLEY D J, WIEDERMANN G E, et al. Preclinical evaluation of an affinity-enhanced MAGE-A4-specific T-cell receptor for adoptive T-cell therapy[J]. OncoImmunology, 2020, 9(1): 1682381. |
50 | THOMAS S, MOHAMMED F, REIJMERS R M, et al. Framework engineering to produce dominant T cell receptors with enhanced antigen-specific function[J]. Nature Communications, 2019, 10: 4451. |
51 | WATSON H A, DURAIRAJ R R P, OHME J, et al. L-selectin enhanced T cells improve the efficacy of cancer immunotherapy[J]. Frontiers in Immunology, 2019, 10: 1321. |
52 | AHMADI M, KING J W, XUE S A, et al. CD3 limits the efficacy of TCR gene therapy in vivo [J]. Blood, 2011, 118(13): 3528-3537. |
53 | WATANABE K, TERAKURA S, MARTENS A C, et al. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 ζ chimeric antigen receptor-modified effector CD8+ T cells[J]. Journal of Immunology, 2015, 194(3): 911-920. |
54 | IRVINE D J, PURBHOO M A, KROGSGAARD M, et al. Direct observation of ligand recognition by T cells[J]. Nature, 2002, 419(6909): 845-849. |
55 | HUANG J, BRAMESHUBER M, ZENG X, et al. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells[J]. Immunity, 2013, 39(5): 846-857. |
56 | LIU X J, JIANG S G, FANG C Y, et al. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice[J]. Cancer Research, 2015, 75(17): 3596-3607. |
57 | CASTELLARIN M, SANDS C, DA T, et al. A rational mouse model to detect on-target, off-tumor CAR T cell toxicity[J]. JCI Insight, 2020, 5(14): e136012. |
58 | CARUSO H G, HURTON L V, NAJJAR A, et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity[J]. Cancer Research, 2015, 75(17): 3505-3518. |
59 | AHMED N, SALSMAN V S, KEW Y, et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors[J]. Clinical Cancer Research, 2010, 16(2): 474-485. |
60 | SZÖŐR, Á, TÓTH G, ZSEBIK B, et al. Trastuzumab derived HER2-specific CARs for the treatment of trastuzumab-resistant breast cancer: CAR T cells penetrate and eradicate tumors that are not accessible to antibodies[J]. Cancer Letters, 2020, 484: 1-8. |
61 | AHMED N, SALSMAN V S, YVON E, et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression[J]. Molecular, 2009, 17(10): 1779-1787 |
62 | HUSZNO J, LEŚ D, SARZYCZNY-SŁOTA D, et al. Cardiac side effects of trastuzumab in breast cancer patients-single centere experiences[J]. Contemporary Oncology, 2013, 17(2): 190-195. |
63 | SUJJITJOON J, SAYOUR E, TSAO S T, et al. GD2-specific chimeric antigen receptor-modified T cells targeting retinoblastoma-assessing tumor and T cell interaction[J]. Translational Oncology, 2021, 14(2): 100971. |
64 | GOLINELLI G, GRISENDI G, PRAPA M, et al. Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors[J]. Cancer Gene Therapy, 2020, 27(7): 558-570. |
65 | YU A L, GILMAN A L, OZKAYNAK F M, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma[J]. The New England Journal of Medicine, 2010, 363(14): 1324-1334. |
66 | ARI P, KARS M, MEANY H, et al. Treatment of transient peripheral neuropathy during chimeric 14.18 antibody therapy in children with neuroblastoma: a case series[J]. Journal of Pediatric Hematology/Oncology, 2018, 40(2): e113-e116. |
67 | NAZHA B, INAL C, OWONIKOKO T K. Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy[J]. Frontiers in Oncology, 2020, 10: 1000. |
68 | RICHMAN S A, NUNEZ-CRUZ S, MOGHIMI B, et al. High-affinity GD2-specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model[J]. Cancer Immunology Research, 2018, 6(1): 36-46. |
69 | KE E E, WU Y L. EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: where do we stand now?[J]. Trends in Pharmacological Sciences, 2016, 37(11): 887-903. |
70 | LI H, HUANG Y, JIANG D Q, et al. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice[J]. Cell Death & Disease, 2018, 9: 177. |
71 | GUO Y L, FENG K C, LIU Y, et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers[J]. Clinical Cancer Research, 2018, 24(6): 1277-1286. |
72 | LIU Y, GUO Y L, WU Z Q, et al. Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: a phase I clinical trial[J]. Cytotherapy, 2020, 22(10): 573-580. |
73 | PEREZ R, MORENO E, GARRIDO G, et al. EGFR-targeting as a biological therapy: understanding nimotuzumab's clinical effects[J]. Cancers, 2011, 3(2): 2014-2031. |
74 | HERNANDEZ-LOPEZ R A, YU W, CABRAL K A, et al. T cell circuits that sense antigen density with an ultrasensitive threshold[J]. Science, 2021, 371(6534): 1166-1171. |
75 | HYRENIUS-WITTSTEN A, SU Y, PARK M, et al. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models[J]. Science Translational Medicine, 2021, 13(591): eabd8836. |
76 | BONINI C, FERRARI G, VERZELETTI S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia[J]. Science, 1997, 276(5319): 1719-1724. |
77 | TRAVERSARI C, MARKTEL S, MAGNANI Z, et al. The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies[J]. Blood, 2007, 109(11): 4708-4715. |
78 | GRECO R, OLIVEIRA G, STANGHELLINI M T L, et al. Improving the safety of cell therapy with the TK-suicide gene[J]. Frontiers in Pharmacology, 2015, 6: 95. |
79 | STRAATHOF K C, PULÈ M A, YOTNDA P, et al. An inducible caspase 9 safety switch for T-cell therapy[J]. Blood, 2005, 105(11): 4247-4254. |
80 | DI STASI A, TEY S K, DOTTI G, et al. Inducible apoptosis as a safety switch for adoptive cell therapy[J]. The New England Journal of Medicine, 2011, 365(18): 1673-1683. |
81 | ZHOU X O, DOTTI G, KRANCE R A, et al. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation[J]. Blood, 2015, 125(26): 4103-4113. |
82 | VOGLER I, NEWRZELA S, HARTMANN S, et al. An improved bicistronic CD20/tCD34 vector for efficient purification and in vivo depletion of gene-modified T cells for adoptive immunotherapy[J]. Molecular Therapy, 2010, 18(7): 1330-1338. |
83 | PHILIP B, KOKALAKI E, MEKKAOUI L, et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy[J]. Blood, 2014, 124(8): 1277-1287. |
84 | BINNEWIES M, ROBERTS E W, KERSTEN K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nature Medicine, 2018, 24(5): 541-550. |
85 | D'ALOIA M M, ZIZZARI I G, SACCHETTI B, et al. CAR-T cells: the long and winding road to solid tumors[J]. Cell Death & Disease, 2018, 9: 282. |
86 | LANITIS E, DANGAJ D, IRVING M, et al. Mechanisms regulating T-cell infiltration and activity in solid tumors[J]. Annals of Oncology, 2017, 28(): xii18-xii32. |
87 | NAGARSHETH N, WICHA M S, ZOU W P. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy[J]. Nature Reviews Immunology, 2017, 17(9): 559-572. |
88 | MAHER J, BRENTJENS R J, GUNSET G, et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor[J]. Nature Biotechnology, 2002, 20(1): 70-75. |
89 | KAWALEKAR O U, O'CONNER R S, FRAIETTA J A, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells[J]. Immunity, 2016, 44(2): 380-390. |
90 | WEINKOVE R, GEORGE P, DASYAM N, et al. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations[J]. Clinical & Translational Immunology, 2019, 8(5): e1049. |
91 | GROSSER R, CHERKASSKY L, CHINTALAN, et al. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors[J]. Cancer Cell, 2019, 36(5): 471-482. |
92 | HARLIN H, MENG Y R, PETERSON A C, et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment[J]. Cancer Research, 2009, 69(7): 3077-3085. |
93 | IDORN M, SKADBORG S K, KELLERMANN L, et al. Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model[J]. OncoImmunology, 2018, 7(8): e1450715. |
94 | DI STASI A, DE ANGELIS B, ROONEY C M, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model[J]. Blood, 2009, 113(25): 6392-6402. |
95 | CRADDOCK J A, LU A, BEAR A, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b[J]. Journal of Immunotherapy, 2010, 33(8): 780-788. |
96 | MOON E K, CARPENITO C, SUN J, et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor[J]. Clinical Cancer Research, 2011, 17(14): 4719-4730. |
97 | CARUANA I, SAVOLDO B, HOYOS V, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes[J]. Nature Medicine, 2015, 21(5): 524-529. |
98 | SCHUBERTH P C, HAGEDORN C, JENSEN S M, et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells[J]. Journal of Translational Medicine, 2013, 11: 187. |
99 | WANG L C S, LO A, SCHOLLER J, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity[J]. Cancer Immunology Research, 2014, 2(2): 154-166. |
100 | GOVERS C, SEBESTYÉN Z, ROSZIK J, et al. TCRs genetically linked to CD28 and CD3ε do not mispair with endogenous TCR chains and mediate enhanced T cell persistence and anti-melanoma activity[J]. Journal of Immunology, 2014, 193(10): 5315-5326. |
101 | STONE J D, HARRIS D T, SOTO C M, et al. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control[J]. Cancer Immunology, Immunotherapy, 2014, 63(11): 1163-1176. |
102 | KLOSS C C, CONDOMINES M, CARTELLIERI M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells[J]. Nature Biotechnology, 2013, 31(1): 71-75. |
103 | LANITIS E, POUSSIN M, KLATTENHOFF A W, et al. Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo [J]. Cancer Immunology Research, 2013, 1(1): 43-53. |
104 | OMER B, CARDENAS M G, PFEIFFER T, et al. A costimulatory CAR improves TCR-based cancer immunotherapy[J]. Cancer Immunology Research, 2022, 10(4): 512-524. |
105 | DANIEL-MESHULAM I, HOROVITZ-FRIED M, COHEN C J. Enhanced antitumor activity mediated by human 4-1BB-engineered T cells[J]. International Journal of Cancer, 2013, 133(12): 2903-2913. |
106 | NISHIMURA C D, BRENNER D A, MUKHERJEEM, et al. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals[J]. Blood, 2017, 130(25): 2739-2749. |
107 | MÉNDEZ-FERRER S, BONNET D, STEENSMA D P, et al. Bone marrow niches in haematological malignancies[J]. Nature Reviews Cancer, 2020, 20(5): 285-298. |
108 | WAGNER H J, BOLLARD C M, VIGOUROUX S, et al. A strategy for treatment of Epstein-Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells[J]. Cancer Gene Therapy, 2004, 11(2): 81-91. |
109 | KERKAR S P, MURANSKI P, KAISER A, et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts[J]. Cancer Research, 2010, 70(17): 6725-6734. |
110 | ZHANG L, MORGAN R A, BEANE J D, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma[J]. Clinical Cancer Research, 2015, 21(10): 2278-2288. |
111 | DRAKES D J, RAFIQ S, PURDON T J, et al. Optimization of T-cell receptor-modified T cells for cancer therapy[J]. Cancer Immunology Research, 2020, 8(6): 743-755. |
112 | BATRA S A, RATHI P, GUO L J, et al. Glypican-3-specific CAR T cells coexpressing IL15 and IL21 have superior expansion and antitumor activity against hepatocellular carcinoma[J]. Cancer Immunology Research, 2020, 8(3): 309-320. |
113 | SHUM T, OMER B, TASHIRO H, et al. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells[J]. Cancer Discovery, 2017, 7(11): 1238-1247. |
114 | BOLLARD C M, RÖSSIG C, CALONGE M J, et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity[J]. Blood, 2002, 99(9): 3179-3187. |
115 | BENDLE G M, LINNEMANN C, BIES L, et al. Blockade of TGF-β signaling greatly enhances the efficacy of TCR gene therapy of cancer[J]. Journal of Immunology, 2013, 191(6): 3232-3239. |
116 | BOLLARD C M, TRIPIC T, CRUZ C R, et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma[J]. Journal of Clinical Oncology, 2018, 36(11): 1128-1139. |
117 | YAMAMOTO T N, LEE P H, VODNALA S K, et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy[J]. The Journal of Clinical Investigation, 2019, 129(4): 1551-1565. |
118 | ARBER C, YOUNG M, BARTH P. Reprogramming cellular functions with engineered membrane proteins[J]. Current Opinion in Biotechnology, 2017, 47: 92-101. |
119 | SHIN J H, PARK H B, OH Y M, et al. Positive conversion of negative signaling of CTLA4 potentiates antitumor efficacy of adoptive T-cell therapy in murine tumor models[J]. Blood, 2012, 119(24): 5678-5687. |
120 | ANKRI C, SHAMALOV K, HOROVITZ-FRIED M, et al. Human T cells engineered to express a programmed death 1/28 costimulatory retargeting molecule display enhanced antitumor activity[J]. Journal of Immunology, 2013, 191(8): 4121-4129. |
121 | SCHLENKER R, OLGUÍN-CONTRERAS L F, LEISEGANG M, et al. Chimeric PD-1: 28 receptor upgrades low-avidity T cells and restores effector function of tumor-infiltrating lymphocytes for adoptive cell therapy[J]. Cancer Research, 2017, 77(13): 3577-3590. |
122 | HOOGI S, EISENBERG V, MAYER S, et al. A TIGIT-based chimeric co-stimulatory switch receptor improves T-cell anti-tumor function[J]. Journal for Immunotherapy of Cancer, 2019, 7(1): 243. |
123 | ODA S K, DAMAN A W, GARCIA N M, et al. A CD200R-CD28 fusion protein appropriates an inhibitory signal to enhance T-cell function and therapy of murine leukemia[J]. Blood, 2017, 130(22): 2410-2419. |
124 | THEODORE L, ROTH, ROTH T L, LI P J, BLAESCHKE F, et al. Pooled knockin targeting for genome engineering of cellular immunotherapies[J]. Cell, 2020, 181(3): 728-744.e21. |
125 | WILKIE S, BURBRIDGE S E, CHIAPERO-STANKE L, et al. Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4[J]. The Journal of Biological Chemistry, 2010, 285(33): 25538-25544. |
126 | LEEN A M, SUKUMARAN S, WATANABE N, et al. Reversal of tumor immune inhibition using a chimeric cytokine receptor[J]. Molecular Therapy, 2014, 22(6): 1211-1220. |
127 | SUKUMARAN S, WATANABE N, BAJGAIN P, et al. Enhancing the potency and specificity of engineered T cells for cancer treatment[J]. Cancer Discovery, 2018, 8(8): 972-987. |
128 | SINGH N, SHI J W, JUNE C H, et al. Genome-editing technologies in adoptive T cell immunotherapy for cancer[J]. Current Hematologic Malignancy Reports, 2017, 12(6): 522-529. |
129 | PICKAR-OLIVER A, GERSBACH C A. The next generation of CRISPR-Cas technologies and applications[J]. Nature Reviews Molecular Cell Biology, 2019, 20(8): 490-507. |
130 | QASIM W, ZHAN H, SAMARASINGHE S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells[J]. Science Translational Medicine, 2017, 9(374): eaaj2013. |
131 | PROVASI E, GENOVESE P, LOMBARDO A, et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer[J]. Nature Medicine, 2012, 18(5): 807-815. |
132 | RASAIYAAH J, GEORGIADIS C, PREECE R, et al. TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy[J]. JCI Insight, 2018, 3(13): e99442. |
133 | SU S, HU B, SHAO J, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients[J]. Scientific Reports, 2016, 6: 20070. |
134 | MAROTTE L, SIMON S, VIGNARD V, et al. Increased antitumor efficacy of PD-1-deficient melanoma-specific human lymphocytes[J]. Journal for Immunotherapy of Cancer, 2020, 8(1): e000311. |
135 | EYQUEM J, MANSILLA-SOTO J, GIAVRIDIS T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543(7643): 113-117. |
136 | ROTH T L, PUIG-SAUS C, YU R, et al. Reprogramming human T cell function and specificity with non-viral genome targeting[J]. Nature, 2018, 559(7714): 405-409. |
137 | MATTHEW B, DONG, DONG M B, WANG G C, CHOW R D, et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells[J]. Cell, 2019, 178(5): 1189-1204.e23. |
138 | MASTAGLIO S, GENOVESE P, MAGNANI Z, et al. NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease[J]. Blood, 2017, 130(5): 606-618. |
139 | BERDIEN B, MOCK U, ATANACKOVIC D, et al. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer[J]. Gene Therapy, 2014, 21(6): 539-548. |
140 | POIROT L, PHILIP B, SCHIFFER-MANNIOUI C, et al. Multiplex genome-edited T-cell manufacturing platform for "off-the-shelf" adoptive T-cell immunotherapies[J]. Cancer Research, 2015, 75(18): 3853-3864. |
141 | OSBORN M J, WEBBER B R, KNIPPING F, et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases[J]. Molecular Therapy, 2016, 24(3): 570-581. |
142 | LEGUT M, DOLTON G, MAIN A A, et al. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells[J]. Blood, 2018, 131(3): 311-322. |
143 | REN J T, LIU X J, FANG C Y, et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition[J]. Clinical Cancer Research, 2017, 23(9): 2255-2266. |
144 | SHI L, MENG T Y, ZHANG Z L, et al. CRISPR knock out CTLA-4 enhances the anti-tumor activity of cytotoxic T lymphocytes[J]. Gene, 2017, 636: 36-41. |
145 | STADTMAUER E A, FRAIETTA J A, DAVIS M M, et al. CRISPR-engineered T cells in patients with refractory cancer[J]. Science, 2020, 367(6481): eaba7365. |
146 | WANG D, ZHANG F, GAO, G P. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors[J]. Cell, 2020, 181(1): 136-150. |
147 | SATHER B D, ROMANO IBARRA G S, SOMMER K, et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template[J]. Science Translational Medicine, 2015, 7(307): 307ra156. |
148 | HALE M, LEE B, HONAKER Y, et al. Homology-directed recombination for enhanced engineering of chimeric antigen receptor T cells[J]. Molecular Therapy Methods & Clinical Development, 2017, 4: 192-203. |
149 | SACHDEVA M, BUSSER B W, TEMBURNI S, et al. Repurposing endogenous immune pathways to tailor and control chimeric antigen receptor T cell functionality[J]. Nature Communications, 2019, 10: 5100. |
150 | YANG L F, YIN J L, WU J L, et al. Engineering genetic devices for in vivo control of therapeutic T cell activity triggered by the dietary molecule resveratrol[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(34): e2106612118. |
151 | KOBAYASHI A, NOBILI A, NEIER S C, et al. Light-controllable binary switch activation of CAR T cells[J]. ChemMedChem, 2022, 17(12): e202100722. |
152 | NOBLES C L, SHERRILL-MIX S, EVERETT J K, et al. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration[J]. The Journal of Clinical Investigation, 2020, 130(2): 673-685. |
153 | FRAIETTA J A, NOBLES C L, SAMMONS M A, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells[J]. Nature, 2018, 558(7709): 307-312. |
154 | SHIFRUT E, CARNEVALE J, TOBIN V, et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function[J]. Cell, 2018, 175(7): 1958-1971.e15. |
155 | GRUPP S A, PRAK E L, BOYER J, et al. Adoptive transfer of autologous T cells improves T-cell repertoire diversity and long-term B-cell function in pediatric patients with neuroblastoma[J]. Clinical Cancer Research, 2012, 18(24): 6732-6741. |
156 | KALOS M, LEVINE B L, PORTER D L, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia[J]. Science Translational Medicine, 2011, 3(95): 95ra73. |
[1] | 刁志钿, 王喜先, 孙晴, 徐健, 马波. 单细胞拉曼光谱测试分选装备研制及应用进展[J]. 合成生物学, 2023, 4(5): 1020-1035. |
[2] | 卢挥, 张芳丽, 黄磊. 合成生物学自动化装置iBioFoundry的构建与应用[J]. 合成生物学, 2023, 4(5): 877-891. |
[3] | 白仲虎, 任和, 聂简琪, 孙杨. 高通量平行发酵技术的发展与应用[J]. 合成生物学, 2023, 4(5): 904-915. |
[4] | 吴玉洁, 刘欣欣, 刘健慧, 杨开广, 随志刚, 张丽华, 张玉奎. 基于高通量液相色谱质谱技术的菌株筛选与关键分子定量分析研究进展[J]. 合成生物学, 2023, 4(5): 1000-1019. |
[5] | 胡哲辉, 徐娟, 卞光凯. 自动化高通量技术在天然产物生物合成中的应用[J]. 合成生物学, 2023, 4(5): 932-946. |
[6] | 刘欢, 崔球. 原位电离质谱技术在微生物菌株筛选中的应用进展[J]. 合成生物学, 2023, 4(5): 980-999. |
[7] | 王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023, 4(4): 720-737. |
[8] | 刘晚秋, 季向阳, 许慧玲, 卢屹聪, 李健. 限制性内切酶的无细胞快速制备研究[J]. 合成生物学, 2023, 4(4): 840-851. |
[9] | 孙美莉, 王凯峰, 陆然, 纪晓俊. 解脂耶氏酵母底盘细胞的工程改造及应用[J]. 合成生物学, 2023, 4(4): 779-807. |
[10] | 孙智, 杨宁, 娄春波, 汤超, 杨晓静. 功能拓扑的理性设计及其在合成生物学中的应用[J]. 合成生物学, 2023, 4(3): 444-463. |
[11] | 赖奇龙, 姚帅, 查毓国, 白虹, 宁康. 微生物组生物合成基因簇发掘方法及应用前景[J]. 合成生物学, 2023, 4(3): 611-627. |
[12] | 孟巧珍, 郭菲. “可折叠性”在酶智能设计改造中的应用研究——以AlphaFold2为例[J]. 合成生物学, 2023, 4(3): 571-589. |
[13] | 王晟, 王泽琛, 陈威华, 陈珂, 彭向达, 欧发芬, 郑良振, 孙瑨原, 沈涛, 赵国屏. 基于人工智能和计算生物学的合成生物学元件设计[J]. 合成生物学, 2023, 4(3): 422-443. |
[14] | 吕海龙, 王建, 吕浩, 王金, 徐勇, 顾大勇. 合成生物学在下一代基因诊断技术中的应用进展[J]. 合成生物学, 2023, 4(2): 318-332. |
[15] | 申赵铃, 吴艳玲, 应天雷. 合成生物学与病毒疫苗研发[J]. 合成生物学, 2023, 4(2): 333-346. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||