合成生物学 ›› 2022, Vol. 3 ›› Issue (2): 385-398.DOI: 10.12211/2096-8280.2021-059
贾剑红1, 杨玲玲2, 刘安安1, 庞代文1
收稿日期:
2021-05-08
修回日期:
2021-05-29
出版日期:
2022-04-30
发布日期:
2022-05-11
通讯作者:
庞代文
作者简介:
基金资助:
Jianhong JIA1, Lingling YANG2, An’an LIU1, Daiwen PANG1
Received:
2021-05-08
Revised:
2021-05-29
Online:
2022-04-30
Published:
2022-05-11
Contact:
Daiwen PANG
摘要:
细胞是生命活动的基本单位。随着材料学、化学和生物学等多学科交叉日益加深,借助活细胞内代谢途径合成无机纳米材料的研究受到广泛关注,同时也拓展了合成生物学的研究领域。然而,活细胞合成无机纳米材料主要以胞内生物大分子为模板,且依赖单一生化反应途径,产物的尺寸、形貌和性质均难以人为调控。自2009年,本课题组通过人为设计、巧妙耦合活细胞内的硒代谢途径和重金属离子解毒途径,发展出“时-空耦合”活细胞合成策略,在真菌、细菌和哺乳动物细胞内原位合成了不同组成、尺寸和性能的无机半导体荧光纳晶(量子点)。在从物质和能量代谢的角度研究活细胞合成机理的基础上,将活细胞合成体系简化,设计构建了无细胞的准生物体系,成功合成了多种纳米材料,同时也验证了“时-空耦合”策略的正确性。本文将总结评述“时-空耦合”活细胞合成量子点的策略、机理及其在生物标记、生物成像和病原微生物与重金属离子检测等方面的应用,并简要介绍准生物体系。同时,将阐明目前活细胞合成策略面临的挑战。随着合成生物学的发展,通过“时-空耦合”活细胞合成策略可以将无机功能材料“自然地”融入生物体系,赋予生物体系超常的能力,拓展合成生物学。
中图分类号:
贾剑红, 杨玲玲, 刘安安, 庞代文. “时-空耦合”活细胞合成量子点[J]. 合成生物学, 2022, 3(2): 385-398.
Jianhong JIA, Lingling YANG, An’an LIU, Daiwen PANG. Space-time-coupled live-cell synthesis of quantum dots[J]. Synthetic Biology Journal, 2022, 3(2): 385-398.
图3 通过MCF-7胞内合成荧光量子点一步标记微囊泡的示意图[40]
Fig. 3 Schematic illustration for one-step labeling of microvesicles by coupling the intracellular synthesis of fluorescent quantum dots in live MCF-7 cells[40]
1 | ROSS-MACDONALD P, COELHO P S R, ROEMER T, et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption[J]. Nature, 1999, 402(6760): 413-418. |
2 | UETZ P, GIOT L, CAGNEY G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae [J]. Nature, 2000, 403(6770): 623-627. |
3 | GAVIN A C, ALOY P, GRANDI P, et al. Proteome survey reveals modularity of theyeastcell machinery[J]. Nature, 2006, 440(7084): 631-636. |
4 | REITH F, ETSCHMANN B, GROSSE C, et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(42): 17757-17762. |
5 | KLAUS T, JOERGER R, OLSSON E, et al. Silver-based crystalline nanoparticles, microbially fabricated[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13611-13614. |
6 | PAULSEN I T, SAIER M H JR. A novel family of ubiquitous heavy metal ion transport proteins[J]. The Journal of Membrane Biology, 1997, 156(2): 99-103. |
7 | KLAUS-JOERGER T, JOERGER R, OLSSON E, et al. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science[J]. Trends in Biotechnology, 2001, 19(1): 15-20. |
8 | ADAMIS P D B, MANNARINO S C, ELEUTHERIO E C A. Glutathione and gamma-glutamyl transferases are involved in the formation of cadmium-glutathione complex[J]. FEBS Letters, 2009, 583(9): 1489-1492. |
9 | DAMERON C T, REESE R N, MEHRA R K, et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites[J]. Nature, 1989, 338(6216): 596-597. |
10 | KOWSHIK M, VOGEL W, URBAN J, et al. Microbial synthesis of semiconductor PbS nanocrystallites[J]. Advanced Materials, 2002, 14(11): 815-818. |
11 | SWEENEY R Y, MAO C B, GAO X X, et al. Bacterial biosynthesis of cadmium sulfide nanocrystals[J]. Chemistry & Biology, 2004, 11(11): 1553-1559. |
12 | LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5497): 1744-1747. |
13 | AHMAD A, SENAPATI S, KHAN M I, et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species[J]. Nanotechnology, 2003, 14(7): 824-828. |
14 | ALIVISATOS A P. Perspectives on the physical chemistry of semiconductor nanocrystals[J]. Journal of Physical Chemistry, 1996, 100(31): 13226-13239. |
15 | ALIVISATOS A P. Birth of a nanoscience building block[J]. ACS Nano, 2008, 2(8): 1514-1516. |
16 | BRUS L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state[J]. The Journal of Chemical Physics, 1984, 80(9): 4403-4409. |
17 | ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937. |
18 | LEACH A D P, MACDONALD J E. Optoelectronic properties of CuInS2 nanocrystals and their origin[J]. The Journal of Physical Chemistry Letters, 2016, 7(3): 572-583. |
19 | YU X J, LIU X Y, YANG K, et al. Pnictogen semimetal (Sb, Bi)-based nanomaterials for cancer imaging and therapy: a materials perspective[J]. ACS Nano, 2021, 15(2): 2038-2067. |
20 | JING L H, KERSHAW S V, LI Y L, et al. Aqueous based semiconductor nanocrystals[J]. Chemical Reviews, 2016, 116(18): 10623-10730. |
21 | LI C Y, WANG Q B. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window[J]. ACS Nano, 2018, 12(10): 9654-9659. |
22 | WU X Y, LIU H J, LIU J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature Biotechnology, 2003, 21(1): 41-46. |
23 | BRUNS O T, BISCHOF T S, HARRIS D K, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots[J]. Nature Biomedical Engineering, 2017, 1: 56. |
24 | LIU S L, WANG Z G, XIE H Y, et al. Single-virus tracking: from imaging methodologies to virological applications[J]. Chemical Reviews, 2020, 120(3): 1936-1979. |
25 | ZHANG J J, LIN Y, ZHOU H, et al. Cell membrane-camouflaged NIR II fluorescent Ag2Te quantum dots-based nanobioprobes for enhanced in vivo homotypic tumor imaging[J]. Advanced Healthcare Materials, 2019, 8(14): 1900341. |
26 | WANG Z G, WANG L, LAMB D C, et al. Real-time dissecting the dynamics of drug transportation in the live brain[J]. Nano Letters, 2021, 21(1): 642-650. |
27 | CHEN G, ZHU J Y, ZHANG Z L, et al. Transformation of cell-derived microparticles into quantum-dot-labeled nanovectors for antitumor siRNA delivery[J]. Angewandte Chemie International Edition, 2015, 54(3): 1036-1040. |
28 | WANG L, SHI X H, ZHANG Y F, et al. CdZnSeS quantum dots condensed with ordered mesoporous carbon for high-sensitive electrochemiluminescence detection of hydrogen peroxide in live cells[J]. Electrochimica Acta, 2020, 362: 137107. |
29 | WANG J J, LIN Y, JIANG Y Z, et al. Multifunctional cellular beacons with in situ synthesized quantum dots make pathogen detectable with the naked eye[J]. Analytical Chemistry, 2019, 91(11): 7280-7287. |
30 | JIANG P, TIAN Z Q, ZHU C N, et al. Emission-tunable near-infrared Ag2S quantum dots[J]. Chemistry of Materials, 2012, 24(1): 3-5. |
31 | MA J J, YU M X, ZHANG Z, et al. Gd-DTPA-coupled Ag2Se quantum dots for dual-modality magnetic resonance imaging and fluorescence imaging in the second near-infrared window[J]. Nanoscale, 2018, 10(22): 10699-10704. |
32 | CHIN P T K, DE MELLO DONEGÁ C, BAVEL S S VAN, et al. Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color[J]. Journal of the American Chemical Society, 2007, 129(48): 14880-14886. |
33 | YU W W, PENG X G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers[J]. Angewandte Chemie International Edition, 2002, 41(13): 2368-2371. |
34 | JIANG P, ZHU C N, ZHANG Z L, et al. Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo [J]. Biomaterials, 2012, 33(20): 5130-5135. |
35 | LIU P, WANG Q S, LI X. Studies on CdSe/L-cysteine quantum dots synthesized in aqueous solution for biological labeling[J]. The Journal of Physical Chemistry C, 2009, 113(18): 7670-7676. |
36 | MA J, CHEN J Y, ZHANG Y, et al. Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: process and mechanism[J]. The Journal of Physical Chemistry B, 2007, 111(41): 12012-12016. |
37 | MUSSA FARKHANI S, VALIZADEH A. Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots[J]. IET Nanobiotechnology, 2014, 8(2): 59-76. |
38 | CUI R, LIU H H, XIE H Y, et al. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots[J]. Advanced Functional Materials, 2009, 19(15): 2359-2364. |
39 | XIONG L H, CUI R, ZHANG Z L, et al. Uniform fluorescent nanobioprobes for pathogen detection[J]. ACS Nano, 2014, 8(5): 5116-5124. |
40 | XIONG L H, TU J W, ZHANG Y N, et al. Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots[J]. Science China Chemistry, 2020, 63(4): 448-453. |
41 | WU S M, SU Y L, LIANG R R, et al. Crucial factors in biosynthesis of fluorescent CdSe quantum dots in Saccharomyces cerevisiae [J]. RSC Advances, 2015, 5(96): 79184-79191. |
42 | YAN Z Y, QIAN J, GU Y Q, et al. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells[J]. Materials Research Express, 2014, 1(1): 015401. |
43 | BURK R F, HILL K E. Regulation of selenium metabolism and transport[J]. Annual Review of Nutrition, 2015, 35: 109-134. |
44 | GANTHER H E J C. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase[J]. Carcinogenesis, 1999, 20(9): 1657-1666. |
45 | WHITE P J. Selenium metabolism in plants[J]. Biochimica et Biophysica Acta, 2018, 1862(11): 2333-2342. |
46 | SEALE L A, HA H Y, HASHIMOTO A C, et al. Relationship between selenoprotein P and selenocysteine lyase: insights into selenium metabolism[J]. Free Radical Biology and Medicine, 2018, 127: 182-189. |
47 | BROOKS J, LEFEBVRE D D. Optimization of conditions for cadmium selenide quantum dot biosynthesis in Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology, 2017, 101(7): 2735-2745. |
48 | SHAO M, ZHANG R, WANG C, et al. Living cell synthesis of CdSe quantum dots: manipulation based on the transformation mechanism of intracellular Se-precursors[J]. Nano Research, 2018, 11(5): 2498-2511. |
49 | WEEKLEY C M, HARRIS H H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease[J]. Chemical Society Reviews, 2013, 42(23): 8870-8894. |
50 | ZANETTI T A, BIAZI B I, BARANOSKI A, et al. Response of HepG2/C3A cells supplemented with sodium selenite to hydrogen peroxide-induced oxidative stress[J]. Journal of Trace Elements in Medicine and Biology, 2018, 50: 209-215. |
51 | GEETHA N, BHAVYA G, ABHIJITH P, et al. Insights into nanomycoremediation: secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification[J]. Journal of Hazardous Materials, 2021, 409: 124541. |
52 | TARZE A, DAUPLAIS M, GRIGORAS I, et al. Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae [J]. Journal of Biological Chemistry, 2007, 282(12): 8759-8767. |
53 | XU P, LIU L, ZENG G M, et al. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium [J]. Applied Microbiology and Biotechnology, 2014, 98(14): 6409-6418. |
54 | LUO Q Y, LIN Y, LI Y, et al. Nanomechanical analysis ofyeastcells in CdSe quantum dot biosynthesis[J]. Small, 2014, 10(4): 699-704. |
55 | ORTIZ D F, RUSCITTI T, MCCUE K F, et al. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein[J]. Journal of Biological Chemistry, 1995, 270(9): 4721-4728. |
56 | LI Y, CUI R, ZHANG P, et al. Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway[J]. ACS Nano, 2013, 7(3): 2240-2248. |
57 | ZHANG R, SHAO M, HAN X, et al. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae [J]. International Journal of Nanomedicine, 2017, 12: 3865-3879. |
58 | TIAN L J, LI W W, ZHU T T, et al. Directed biofabrication of nanoparticles through regulating extracellular electron transfer[J]. Journal of the American Chemical Society, 2017, 139(35): 12149-12152. |
59 | TIAN L J, MIN Y, WANG X M, et al. Biogenic quantum dots for sensitive, label-free detection of mercury ions[J]. ACS Applied Bio Materials, 2019, 2(6): 2661-2667. |
60 | TIAN L J, LI W W, ZHU T T, et al. Acid-stimulated bioassembly of high-performance quantum dots in Escherichia coli [J]. Journal of Materials Chemistry A, 2019, 7(31): 18480-18487. |
61 | SAKIMOTO K K, WONG A B., YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
62 | KORNIENKO N, SAKIMOTO K K, HERLIHY D M, et al. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11750-11755. |
63 | WANG B, ZENG C P, CHU K H, et al. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles[J]. Advanced Energy Materials, 2017, 7(20): 1700611. |
64 | CUI Y H, TIAN L J, LI W W, et al. Solar-energy-facilitated CdS x Se1- x quantum dot bio-assembly in Escherichia coli and Tetrahymena pyriformis [J]. Journal of Materials Chemistry A, 2019, 7(11): 6205-6212. |
65 | CUI R, ZHANG M X, TIAN Z Q, et al. Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system[J]. Nanoscale, 2010, 2(10): 2120-2125. |
66 | ZHANG M X, CUI R, TIAN Z Q, et al. Kinetics-controlled formation of gold clusters using a quasi-biological system[J]. Advanced Functional Materials, 2010, 20(21): 3673-3677. |
67 | ZHANG M X, CUI R, ZHAO J Y, et al. Synthesis of sub-5 nm Au-Ag alloy nanoparticles using bio-reducing agent in aqueous solution[J]. Journal of Materials Chemistry, 2011, 21(43): 17080-17082. |
68 | XIONG L H, CUI R, ZHANG Z L, et al. Harnessing intracellular biochemical pathways for in vitro synthesis of designer tellurium nanorods[J]. Small, 2015, 11(40): 5416-5422. |
69 | CUI R, GU Y P, ZHANG Z L, et al. Controllable synthesis of PbSe nanocubes in aqueous phase using a quasi-biosystem[J]. Journal of Materials Chemistry, 2012, 22(9): 3713-3716. |
70 | GU Y P, CUI R, ZHANG Z L, et al. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging[J]. Journal of the American Chemical Society, 2012, 134(1): 79-82. |
71 | ZHAO J Y, CUI R, ZHANG Z L, et al. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters[J]. Nanoscale, 2014, 6(21): 13126-13134. |
72 | CUI R, GU Y P, BAO L, et al. Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine[J]. Analytical Chemistry, 2012, 84(21): 8932-8935. |
73 | LÜ C, ZHANG T Y, LIN Y, et al. Transformation of viral light particles into near-infrared fluorescence quantum dot-labeled active tumor-targeting nanovectors for drug delivery[J]. Nano Letters, 2019, 19(10): 7035-7042. |
74 | ZHAO J Y, CHEN G, GU Y P, et al. Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles[J]. Journal of the American Chemical Society, 2016, 138(6): 1893-1903. |
75 | YU Z L, ZHANG W, ZHAO J Y, et al. Development of a dual-modally traceable nanoplatform for cancer theranostics using natural circulating cell-derived microparticles in oral cancer patients[J]. Advanced Functional Materials, 2017, 27(40): 1703482. |
76 | WANG W, YANG Q L, DU Y H, et al. Metabolic labeling of peptidoglycan with NIR-II dye enables in vivo imaging of gut microbiota[J]. Angewandte Chemie International Edition, 2020, 59(7): 2628-2633. |
77 | HUANG J S, JIANG Y Y, LI J C, et al. Molecular chemiluminescent probes with a very long near-infrared emission wavelength for in vivo imaging[J]. Angewandte Chemie International Edition, 2021, 60(8): 3999-4003. |
78 | FANG Y, SHANG J Z, LIU D K, et al. Design, synthesis, and application of a small molecular NIR-II fluorophore with maximal emission beyond 1200 nm[J]. Journal of the American Chemical Society, 2020, 142(36): 15271-15275. |
79 | CHEN D D, LIU Y, ZHANG Z, et al. NIR-II fluorescence imaging reveals bone marrow retention of small polymer nanoparticles[J]. Nano Letters, 2021, 21(1): 798-805. |
80 | HUANG J S, HUANG J G, CHENG P H, et al. Near-infrared chemiluminescent reporters for in vivo imaging of reactive oxygen and nitrogen species in kidneys[J]. Advanced Functional Materials, 2020, 30(39): 2003628. |
81 | FAN Y, WANG P Y, LU Y B, et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging[J]. Nature Nanotechnology, 2018, 13(10): 941-946. |
82 | YU T Y, WEI D M, LI Z, et al. Target-modulated sensitization of upconversion luminescence by NIR-emissive quantum dots: a new strategy to construct upconversion biosensors[J]. Chemical Communications, 2020, 56(13): 1976-1979. |
83 | ZHANG Y J, YANG H C, AN X Y, et al. Controlled synthesis of Ag2Te@Ag2S core-shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window[J]. Small, 2020, 16(14): 2001003. |
84 | PEREIRA C F, VIEGAS I M A, SOUZA SOBRINHA I G, et al. Surface-enhanced infrared absorption spectroscopy using silver selenide quantum dots[J]. Journal of Materials Chemistry C, 2020, 8(30): 10448-10455. |
85 | DONG L L, LI W J, YU L D, et al. Ultrasmall Ag2Te quantum dots with rapid clearance for amplified computed tomography imaging and augmented photonic tumor hyperthermia[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42558-42566. |
86 | YU M X, MA J J, WANG J M, et al. Ag2Te quantum dots as contrast agents for near-infrared fluorescence and computed tomography imaging[J]. ACS Applied Nano Materials, 2020, 3(6): 6071-6077. |
87 | KARGOZAR S, HOSEINI S J, MILAN P B, et al. Quantum dots: A review from concept to clinic[J]. Biotechnology Journal, 2020, 15(12): 2000117. |
88 | BAHY R M. Autofocus microscope system based on blur measurement approach[J]. Journal of Physics: Conference Series, 2021, 1721(1): 012058. |
89 | ZHANG L Q, YANG T T, DU C N, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98. |
90 | HAGE F S, RADTKE G, KEPAPTSOGLOU D M, et al. Single-atom vibrational spectroscopy in the scanning transmission electron microscope[J]. Science, 2020, 367(6482): 1124-1127. |
91 | WANG D Q, HE P S, WANG Z J, et al. Advances in single cell Raman spectroscopy technologies for biological and environmental applications[J]. Current Opinion in Biotechnology, 2020, 64: 218-229. |
92 | YUAN Y, RAJ P, ZHANG J, et al. Furin-mediated self-assembly of olsalazine nanoparticles for targeted Raman imaging of tumors[J]. Angewandte Chemie International Edition, 2021, 60(8): 3923-3927. |
93 | DE MOLINER F, KNOX K, GORDON D, et al. A palette of minimally tagged sucrose analogues for real-time Raman imaging of intracellular plant metabolism[J]. Angewandte Chemie International Edition, 2021, 60(14): 7637-7642. |
94 | GU Y Q, BI X Y, YE J. Gap-enhanced resonance Raman tags for live-cell imaging[J]. Journal of Materials Chemistry B, 2020, 8(31): 6944-6955. |
95 | HE Q, ZABOTINA O A, YU C X. Principal component analysis facilitated fast and noninvasive Raman spectroscopic imaging of plant cell wall pectin distribution and interaction with enzymatic hydrolysis[J]. Journal of Raman Spectroscopy, 2020, 51(12): 2458-2467. |
96 | TIAN S D, LI H Z, LI Z, et al. Polydiacetylene-based ultrastrong bioorthogonal Raman probes for targeted live-cell Raman imaging[J]. Nature Communications, 2020, 11(1): 6223. |
97 | PARK T J, LEE S Y, HEO N S, et al. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli [J]. Angewandte Chemie International Edition, 2010, 49(39): 7019-7024. |
98 | ZHOU X, LI H D, SHI C, et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging[J]. Biomaterials, 2020, 253: 120089. |
99 | WANG X N, NIU M T, FAN J X, et al. Photoelectric bacteria enhance the in situ production of tetrodotoxin for antitumor therapy[J]. Nano Letters, 2021, 21(10): 4270-4279. |
100 | ZHANG Z W, CHEN J, YANG Q L, et al. Eco-friendly intracellular microalgae synthesis of fluorescent CdSe QDs as a sensitive nanoprobe for determination of imatinib[J]. Sensors and Actuators B: Chemical, 2018, 263: 625-633. |
101 | ÓRDENES-AENISHANSLINS N, ANZIANI-OSTUNI G, QUEZADA C P, et al. Biological synthesis of CdS/CdSe core/shell nanoparticles and its application in quantum dot sensitized solar cells[J]. Frontiers in Microbiology, 2019, 10: 1587. |
[1] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[2] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[3] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[4] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[5] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[6] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[7] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[8] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[9] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[10] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[11] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
[12] | 周强, 周大伟, 孙敬翔, 王靖楠, 姜万奎, 章文明, 蒋羽佳, 信丰学, 姜岷. 微生物发酵法合成虾青素的研究进展[J]. 合成生物学, 2024, 5(1): 126-143. |
[13] | 高春辉, 杨宁, 王创, 侯时季, 严建兵, 郑金水, 李锦, 吴尘聊, 蔡鹏. 有涌现性功能的合成菌群在作物育种上的应用前景[J]. 合成生物学, 2024, 5(1): 144-153. |
[14] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
[15] | 郑庆祥. 希瓦氏菌Shewanella sp. MR-4在不同末端电子受体条件下的代谢通量分析[J]. 合成生物学, 2023, 4(6): 1300-1320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||