Synthetic Biology Journal

   

Synthetic biology-driven advances in artificial blood research

HUANG Ruping1, SUN Wenzhao1, JIN Juan1, LV Xueli2, SHENG Jingyi3, HUANG Bin1, GU Ning1,3,4   

  1. 1. Jiangsu Key Laboratory for Biomedical Electromagnetic Precision Theranostics,School of Biomedical Engineering and Informatics,Nanjing Medical University,Nanjing 210029,Jiangsu,China
    2. Jiangsu Key Laboratory for Cardiovascular Information and Health Engineering Medicine,Institute of Clinical Medicine,Affiliated Drum Tower Hospital,Medical School of Nanjing University,Nanjing 210008,Jiangsu,China
    3. Jiangsu Key Laboratory for Biomaterials and Devices,School of Biological Science and Medical Engineering,Southeast University,Nanjing 210096,Jiangsu,China
    4. Engineering Medicine Research Group,and Nanjing Research Center for Biomedical Electron Microscopy,Nanjing University,Nanjing 210093,Jiangsu,China
  • Received:2025-10-11 Revised:2025-11-12 Published:2025-11-17
  • Contact: HUANG Bin, GU Ning

合成生物学策略下的人工血液研究进展

黄如平1, 孙文钊1, 金娟1, 吕雪丽2, 盛静逸3, 黄斌1, 顾宁1,3,4   

  1. 1. 南京医科大学生物医学工程与信息学院,江苏省生物医学电磁精准诊疗重点实验室,江苏 南京 210029
    2. 南京大学医学院附属鼓楼医院临床医学研究院,江苏省血管信息与健康工程医学重点实验室,江苏 南京 210008
    3. 东南大学生物科学与医学工程学院,江苏省生物材料与器件重点实验室,江苏 南京 210096
    4. 南京大学医学院工程医学研究组,南京生物与医学电子显微技术研究中心,江苏 南京 210093
  • 通讯作者: 黄斌,顾宁
  • 作者简介:黄如平(2002—),女,硕士研究生。研究方向为细胞膜仿生材料的制备与应用。E-mail:18260480971@163.com
    黄斌(1980—),男,博士,副教授,硕士生导师,中国化学会会员,研究方向为生物医学材料及诊疗应用。主持国家自然科学基金面上项目、国家重点研发计划项目子课题等纵向科研项目8项。E-mail:huangbinhb31@njmu.edu.cn
    顾宁(1964—),男,博士,博士生导师,中国科学院院士,南京市血管信息与健康工程医学重点实验室主任,现任南京大学医学院教授。研究方向为分子功能材料薄膜、纳米加工以及纳米材料制备、表征及其在生物医(药)学领域中的应用,完成并正在承担多项国家级及部省级科研项目。E-mail:guning@nju.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFF0713600);国家自然科学基金(62375138);江苏省重大科技基础设施预研项目

Abstract:

Artificial blood refers to oxygen-carrying liquid formulations that can partially substitute the functions of natural blood. Its development seeks to lessen reliance on donor supplies, alleviate shortages, and reduce transfusion-related risks. In recent years, advances in synthetic biology have driven notable progress in both the functional reconstruction and the systems-level integration of the principal components of artificial blood—red blood cells, platelets, and plasma. Taking a synthetic-biology perspective, this review summarizes construction strategies and recent advances across these modules.For artificial red blood cells, three complementary strategies have proven highly effective: the rational optimization of hemoglobin structure, the reconstruction of heme-biosynthetic pathways to balance cofactor supply with globin expression, and biomimetic membrane encapsulation. Together, these strategies enhance oxygen-delivery efficiency and improve in vivo stability. In the platelet module, stem-cell programming and gene programming have markedly increased production efficiency, offering a path toward more controllable and scalable sources that are independent of donor availability. For artificial plasma, optimizing the expression of core functional proteins and designing multifunctional fusion proteins provide new possibilities for maintaining circulating volume and supporting immune function.The review also discusses the key challenges that currently limit translation. Present research remains largely focused on single functional modules, and substantial bottlenecks persist in biocompatibility, long-term stability, large-scale manufacturing, and the establishment of robust quality-standards systems. Addressing these gaps will require standardized evaluation criteria spanning safety, potency, and stability, alongside reproducible processes suitable for clinical-grade production. In the future, the field can leverage modular design principles in combination with artificial-intelligence assistance to integrate red-cell, platelet, and plasma functions into coherent, programmable architectures. Such integrative strategies are expected to accelerate the pathway from laboratory concepts to clinical applications and to support the development of safer and more effective next-generation blood substitutes. By integrating synthetic-biology toolkits with rigorous quality control and scalable production, artificial blood research is poised for clinical translation. This progress promises practical solutions for oxygen transport, volume maintenance, and immune support in settings with limited blood supplies or high transfusion risks.

Key words: artificial blood, synthetic biology, artificial red blood cells, artificial platelets, plasma substitutes

摘要:

人工血液是一类具有载氧能力、可替代血液部分功能的液体制剂,其研发旨在缓解对献血供给的依赖,以应对血液供应不足及输血风险隐患。近年来,随着合成生物学技术的突破,人工血液主要成分如红细胞、血小板和血浆等在功能重构与系统集成方面取得了显著进展。本文基于合成生物学视角,系统阐述人工血液主要成分的构建策略与研究进展。在人工红细胞方面,通过血红蛋白结构优化、血红素合成通路重构及仿生膜封装,显著提升携氧效率和体内稳定性;在人工血小板方面,通过干细胞编程与基因编程,血小板生成效率显著提高;在人工血浆方面,通过核心功能蛋白表达优化与多功能融合蛋白设计,为实现稳定的血容量维持以及免疫支持提供可能性。最后,本文探讨了当前人工血液研究面临的挑战与未来发展方向。目前,人工血液的研究仍主要聚焦于单一功能模块的构建,且在生物相容性、长期稳定性、规模化制备及质量标准体系建设等方面存在诸多瓶颈。未来,可借助合成生物学的模块化设计理念与人工智能辅助,整合红细胞、血小板及血浆等关键功能模块,推动人工血液研究的临床转化,从而为开发更安全、高效的新一代血液替代品提供重要支撑。

关键词: 人工血液, 合成生物学, 人工红细胞, 人工血小板, 血浆替代品

CLC Number: