Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (1): 184-194.DOI: 10.12211/2096-8280.2021-077
• Invited Review • Previous Articles Next Articles
Ting ZHANG1, Mengtian LENG1, Fan JIN1, Hai YUAN1,2
Received:
2021-07-23
Revised:
2021-12-06
Online:
2022-03-14
Published:
2022-02-28
Contact:
Hai YUAN
张亭1, 冷梦甜1, 金帆1, 袁海1,2
通讯作者:
袁海
作者简介:
基金资助:
CLC Number:
Ting ZHANG, Mengtian LENG, Fan JIN, Hai YUAN. Overview on platform for synthetic biology research at Shenzhen[J]. Synthetic Biology Journal, 2022, 3(1): 184-194.
张亭, 冷梦甜, 金帆, 袁海. 合成生物研究重大科技基础设施概述[J]. 合成生物学, 2022, 3(1): 184-194.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-077
序号 | 成员名称 | 序号 | 成员名称 |
---|---|---|---|
1 | Agile BioFoundry | 16 | iBioFAB-Illinois Biological Foundry for Advanced Biomanufacturing |
2 | Australian Genome Foundry | 17 | K-Biofoundry (KAIST KRIBB) |
3 | BIOFAB, University of Washington | 18 | Kobe Biofoundry |
4 | Biofactorial | 19 | LARA, Laboratory Automation Robotic Assistant Biochemistry Greifswald |
5 | The BioFoundry at UBC | 20 | Living Measurement Systems Foundry, NIST |
6 | BioFoundry India | 21 | London BioFoundry ICL |
7 | Colorado Cyberbiofoundry | 22 | SIAT Biofoundry, Shenzhen |
8 | CompuGene, TU Darmstadt | 23 | SJTU Synbio BioFoundry |
9 | Concordia Genome Foundry | 24 | SKy Biofoundry, Sungkyunkwan University |
10 | CSIRO BioFoundry | 25 | SYNBIOCHEM, Manchester |
11 | DAMP lab, Boston University | 26 | SynCTI, Singapore BioFoundry |
12 | DTU Biosustain BioFoundry | 27 | Tianjin BioFoundry-Tianjin Institute of Industrial Biotechnology |
13 | Earlham DNA Foundry | 28 | Tianjin University BioFoundry |
14 | Edinburgh Genome Foundry | 29 | VTT Technical Research Centre of Finland |
15 | GeneMill, Liverpool | 30 | Zhejiang University |
Tab. 1 Current members of GBA
序号 | 成员名称 | 序号 | 成员名称 |
---|---|---|---|
1 | Agile BioFoundry | 16 | iBioFAB-Illinois Biological Foundry for Advanced Biomanufacturing |
2 | Australian Genome Foundry | 17 | K-Biofoundry (KAIST KRIBB) |
3 | BIOFAB, University of Washington | 18 | Kobe Biofoundry |
4 | Biofactorial | 19 | LARA, Laboratory Automation Robotic Assistant Biochemistry Greifswald |
5 | The BioFoundry at UBC | 20 | Living Measurement Systems Foundry, NIST |
6 | BioFoundry India | 21 | London BioFoundry ICL |
7 | Colorado Cyberbiofoundry | 22 | SIAT Biofoundry, Shenzhen |
8 | CompuGene, TU Darmstadt | 23 | SJTU Synbio BioFoundry |
9 | Concordia Genome Foundry | 24 | SKy Biofoundry, Sungkyunkwan University |
10 | CSIRO BioFoundry | 25 | SYNBIOCHEM, Manchester |
11 | DAMP lab, Boston University | 26 | SynCTI, Singapore BioFoundry |
12 | DTU Biosustain BioFoundry | 27 | Tianjin BioFoundry-Tianjin Institute of Industrial Biotechnology |
13 | Earlham DNA Foundry | 28 | Tianjin University BioFoundry |
14 | Edinburgh Genome Foundry | 29 | VTT Technical Research Centre of Finland |
15 | GeneMill, Liverpool | 30 | Zhejiang University |
([*] 在建)自动化设施 | 所属学术机构 |
---|---|
[*] 深圳合成生物研究重大科技基础设施 | 中国科学院深圳先进技术研究院 |
生物铸造厂 | 中国科学院天津工业生物技术研究所 |
规模化蛋白质制备系统 | 国家蛋白质科学中心(上海) |
生物铸造厂 | 天津大学化工学院 |
高通量筛选平台 | 武汉生物技术研究院 |
[*] 生物铸造厂(面向企业) | 华大生命科学研究院 |
[*] 生物铸造厂 | 日本神户大学 |
[*] 生物铸造厂 | 韩国先进科技学院 |
Synthetic Biology Foundry | 新加坡国立大学 |
Agile BioFoundry | 美国劳伦斯伯克利国家实验室 |
DAMP Lab | 美国波士顿大学 |
Illinois Biological Foundry for Advanced Biomanufacturing (iBioFAB) | 美国伊利诺伊大学厄巴纳-香槟分校 |
MIT-Broad Foundry | 美国麻省理工学院 |
Center for Applied Synthetic Biology | 加拿大康卡迪亚大学 |
London DNA Foundry | 英国帝国理工学院 |
Earlham DNA Foundry | 英国厄尔汉姆研究中心 |
Edinburgh Genome Foundry | 英国爱丁堡大学 |
GeneMill | 英国利物浦大学 |
SYNBIOCHEM | 英国曼彻斯特大学 |
[*] 生物铸造厂(面向企业) | 法国农业科学研究院图卢兹中心 |
CompuGene | 德国达姆施塔特工业大学 |
[*] 生物铸造厂 | 荷兰代尔夫特理工大学 |
Novo Nordisk Foundation Center for Biosustainability (CFB) | 丹麦技术大学 |
[*] Australian Genome Foundry | 澳大利亚麦考瑞大学 |
[*] 生物铸造厂 | 澳大利亚昆士兰大学 |
Tab. 2 Global synthetic biology automation facilities[10]
([*] 在建)自动化设施 | 所属学术机构 |
---|---|
[*] 深圳合成生物研究重大科技基础设施 | 中国科学院深圳先进技术研究院 |
生物铸造厂 | 中国科学院天津工业生物技术研究所 |
规模化蛋白质制备系统 | 国家蛋白质科学中心(上海) |
生物铸造厂 | 天津大学化工学院 |
高通量筛选平台 | 武汉生物技术研究院 |
[*] 生物铸造厂(面向企业) | 华大生命科学研究院 |
[*] 生物铸造厂 | 日本神户大学 |
[*] 生物铸造厂 | 韩国先进科技学院 |
Synthetic Biology Foundry | 新加坡国立大学 |
Agile BioFoundry | 美国劳伦斯伯克利国家实验室 |
DAMP Lab | 美国波士顿大学 |
Illinois Biological Foundry for Advanced Biomanufacturing (iBioFAB) | 美国伊利诺伊大学厄巴纳-香槟分校 |
MIT-Broad Foundry | 美国麻省理工学院 |
Center for Applied Synthetic Biology | 加拿大康卡迪亚大学 |
London DNA Foundry | 英国帝国理工学院 |
Earlham DNA Foundry | 英国厄尔汉姆研究中心 |
Edinburgh Genome Foundry | 英国爱丁堡大学 |
GeneMill | 英国利物浦大学 |
SYNBIOCHEM | 英国曼彻斯特大学 |
[*] 生物铸造厂(面向企业) | 法国农业科学研究院图卢兹中心 |
CompuGene | 德国达姆施塔特工业大学 |
[*] 生物铸造厂 | 荷兰代尔夫特理工大学 |
Novo Nordisk Foundation Center for Biosustainability (CFB) | 丹麦技术大学 |
[*] Australian Genome Foundry | 澳大利亚麦考瑞大学 |
[*] 生物铸造厂 | 澳大利亚昆士兰大学 |
1 | 崔金明, 张炳照, 马迎飞, 等. 合成生物学研究的工程化平台[J]. 中国科学院院刊, 2018, 33(11): 1249-1257. |
CUI J M, ZHANG B Z, MA Y F, et al. Engineering platforms for synthetic biology research[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1249-1257. | |
2 | 唐婷, 付立豪, 郭二鹏, 等. 自动化合成生物技术与工程化设施平台[J]. 科学通报, 2021(3): 300-309. |
TANG T, FU L H, GUO E P, et al. Automation in synthetic biology using biological foundries[J]. Chinese Science Bulletin, 2021(3): 300-309. | |
3 | CLARKE L J, KITNEY R I. Synthetic biology in the UK—an outline of plans and progress[J]. Synthetic and Systems Biotechnology, 2016, 1(4): 243-257. |
4 | 晁然, 原永波, 赵惠民. 构建合成生物学制造厂[J]. 中国科学:生命科学, 2015, 45(10): 976-984. |
CHAO R, YUAN Y B, ZHAO H M. Factory construction of synthetic biology[J]. Scientia Sinica (Vitae), 2015, 45(10): 976-984. | |
5 | 潘勋, 冯倩倩, 王宏伟. 持续建设科研条件平台 助力生命学科跨越式发展[J]. 实验技术与管理, 2021, 38(4): 1-6. |
PAN X, FENG Q Q, WANG H W. Continuous construction of scientific research support platform to promote great-leap forward development of life sciences[J]. Experimental Technology and Management, 2021, 38(4): 1-6. | |
6 | HILLSON N, CADDICK M, CAI Y Z, et al. Building a global alliance of biofoundries[J]. Nature Communications, 2019, 10: 2040. |
7 | 程晓舫, 唐磊, 夏依林. 大科学装置共建共享及其对区域一体化的影响——以长三角为例[J]. 科技管理研究, 2020, 40(22): 26-31. |
CHENG X F, TANG L, XIA Y L. The co-construction and sharing of large-scale scientific facilities and its impact on regional integration: taking the Yangtze River Delta as an example[J]. Science and Technology Management Research, 2020, 40(22): 26-31. | |
8 | 唐婷, 付立豪, 郭二鹏, 等. 自动化合成生物技术与工程化设施平台[J]. 科学通报, 2021, 66(3): 300-309. |
TANG T, FU L H, GUO E P, et al. Automation in synthetic biology using biological foundries[J]. Chinese Science Bulletin, 2021, 66(3): 300-309. | |
9 | 胡如云, 张嵩亚, 蒙海林, 等. 面向合成生物学的机器学习方法及应用[J]. 科学通报, 2021, 66(3): 284-299. |
HU R Y, ZHANG S Y, MENG H L, et al. Machine learning for synthetic biology: Methods and applications[J]. Chinese Science Bulletin, 2021, 66(3): 284-299. | |
10 | Global BioFoundry Meeting Workshop Report[R]. London, UK: Imperial College, 2018. |
11 | 张建志, 付立豪, 唐婷, 等. 基于合成生物学策略的酶蛋白元件规模化挖掘[J]. 合成生物学, 2020, 1(3): 319-336. |
ZHANG J Z, FU L H, TANG T, et al. Scalable mining of proteins for biocatalysis via synthetic biology[J]. Synthetic Biology Journal, 2020, 1(3): 319-336. | |
12 | 杜全生, 洪伟, 祖岩. 2010—2019年国家自然科学基金资助合成生物学领域情况[J]. 合成生物学, 2020, 1(3): 385-394. |
DU Q S, HONG W, ZU Y. Grant and funding for synthetic biology at NSFC from 2010 to 2019[J]. Synthetic Biology Journal, 2020, 1(3): 385-394. | |
13 | 丁明珠, 李炳志, 王颖, 等. 合成生物学重要研究方向进展[J]. 合成生物学, 2020, 1(1): 7-28. |
DING M Z, LI B Z, WANG Y, et al. Significant research progress in synthetic biology[J]. Synthetic Biology Journal, 2020, 1(1): 7-28. | |
14 | 刘晓, 王跃, 毛开云, 等. 生物技术与信息技术的融合发展[J]. 中国科学院院刊, 2020, 35(1): 34-42. |
LIU X, WANG Y, MAO K Y, et al. Converge development of biotechnology and information technology[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(1): 34-42. | |
15 | MORRELL W C, BIRKEL G W, FORRER M, et al. The experiment data depot: a web-based software tool for biological experimental data storage, sharing, and visualization[J]. ACS Synthetic Biology, 2017, 6(12): 2248-2259. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[3] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[4] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[5] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[7] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[8] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[9] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[10] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[11] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[12] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[13] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[14] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[15] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||