Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (4): 626-637.DOI: 10.12211/2096-8280.2021-087
• Invited Review • Previous Articles Next Articles
Runtao ZHU, Chao ZHONG, Zhuojun DAI
Received:
2021-08-27
Revised:
2021-12-22
Online:
2022-09-08
Published:
2022-08-31
Contact:
Chao ZHONG, Zhuojun DAI
朱润涛, 钟超, 戴卓君
通讯作者:
钟超,戴卓君
作者简介:
基金资助:
CLC Number:
Runtao ZHU, Chao ZHONG, Zhuojun DAI. Biofilm matrixes-from soft matters to engineered materials[J]. Synthetic Biology Journal, 2022, 3(4): 626-637.
朱润涛, 钟超, 戴卓君. 细菌生物被膜的软物质特性及其工程化应用[J]. 合成生物学, 2022, 3(4): 626-637.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-087
材料 | 弹性 /GPa | 黏度 /mPa·s | 参考文献 |
---|---|---|---|
钛 | 106~108 | [ | |
铝 | 68~70 | [ | |
透明质酸基地的组织工程化骨架 | 10-4 | 107 | [ |
皮肤 | 0.015~0.15 | [ | |
人皮质骨 | 15~30 | [ | |
牙釉质 | 80 | [ | |
毛发 | 7 | [ | |
水 | — | 1 | |
唾液 | — | 1.3~2.0 | [ |
血液 | 3~4 | [ | |
尿液 | 0.8 | [ | |
Pseudomonas生物外膜(剪切模式) | 10-10 | [ | |
Pseudomonas全生物膜(剪切模式) | 10-5 | [ | |
Miscellaneous生物膜(剪切模式) | 10-10~10-4 | 103~1013 | [ |
环境与工业的生物膜(拉伸模式) | 10-8 | [ | |
口腔生物膜(压缩模式) | 10-8~10-7 | [ |
Tab. 1 Viscoelasticity of different biological and synthetic materials at room temperature
材料 | 弹性 /GPa | 黏度 /mPa·s | 参考文献 |
---|---|---|---|
钛 | 106~108 | [ | |
铝 | 68~70 | [ | |
透明质酸基地的组织工程化骨架 | 10-4 | 107 | [ |
皮肤 | 0.015~0.15 | [ | |
人皮质骨 | 15~30 | [ | |
牙釉质 | 80 | [ | |
毛发 | 7 | [ | |
水 | — | 1 | |
唾液 | — | 1.3~2.0 | [ |
血液 | 3~4 | [ | |
尿液 | 0.8 | [ | |
Pseudomonas生物外膜(剪切模式) | 10-10 | [ | |
Pseudomonas全生物膜(剪切模式) | 10-5 | [ | |
Miscellaneous生物膜(剪切模式) | 10-10~10-4 | 103~1013 | [ |
环境与工业的生物膜(拉伸模式) | 10-8 | [ | |
口腔生物膜(压缩模式) | 10-8~10-7 | [ |
Fig. 1 The molecular mechanism for curli formation[An unfolded CsgA monomer enters the periplasm via the Sec translocon, and CsgB-C and CsgE-F are transported cross the inner membrane(a); A subunit CsgA encapsulated by a chamber of the CsgG: CsgE complex is secreted over outer membrane, which is driven by entropy increase(b); CsgB nucleated polymerization of a soluble subunit CsgA can assemble into a curli system(c); As the major subunit of the curli fiber, the mature CsgA protein is with a β-sheet-turn-β-sheet conformation (d)]
功能单位 | 类型 | 参考文献 |
---|---|---|
His Tag | 标签 | [ |
贻贝足蛋白 | 防水黏合剂 | [ |
HA | 标签 | [ |
Flag | 标签 | [ |
镧系元素结合标签(LBTs) | 金属结合多肽 | [ |
A3 | 金属结合多肽 | [ |
流感病毒结合肽 | 结合病毒衣壳 | [ |
羟基磷灰石结合肽 | 矿化 | [ |
DNA结合结构域 | 结合DNA | [ |
脂酶结合肽 | 结合脂酶 | [ |
SpyTag | 结合SpyCatcher | [ |
金属结合域 | 结合不锈钢 | [ |
材料结合多肽 | 合成纳米材料 | [ |
几丁质结合域 | 结合几丁质 | [ |
Mms | 结合磁颗粒 | [ |
4-叠氮基-L-苯丙氨酸 | 非天然氨基酸 | [ |
人肠三叶因子 | 治疗结肠炎 | [ |
Tab. 2 Domains-fused CsgA functionalizes curli
功能单位 | 类型 | 参考文献 |
---|---|---|
His Tag | 标签 | [ |
贻贝足蛋白 | 防水黏合剂 | [ |
HA | 标签 | [ |
Flag | 标签 | [ |
镧系元素结合标签(LBTs) | 金属结合多肽 | [ |
A3 | 金属结合多肽 | [ |
流感病毒结合肽 | 结合病毒衣壳 | [ |
羟基磷灰石结合肽 | 矿化 | [ |
DNA结合结构域 | 结合DNA | [ |
脂酶结合肽 | 结合脂酶 | [ |
SpyTag | 结合SpyCatcher | [ |
金属结合域 | 结合不锈钢 | [ |
材料结合多肽 | 合成纳米材料 | [ |
几丁质结合域 | 结合几丁质 | [ |
Mms | 结合磁颗粒 | [ |
4-叠氮基-L-苯丙氨酸 | 非天然氨基酸 | [ |
人肠三叶因子 | 治疗结肠炎 | [ |
Fig. 2 Functionalization of curli via fusion with CsgA(a) Gene circuit containing inducible expression of CsgA (with subunits engineered to display various peptide tags) was transformed into a host strain with the endogenous csgA gene deleted;(b) Fusing CsgA with trefoil factors (TFFs) led to the formation of curli nanofibers displaying TTFs. The resultant material was proven to promote intestinal barrier function and epithelial restitution;(c) SpyTag displaying curli was fused with SpyCatcher decorated β-amylase. β-amylase converted the starch into maltose. The maltose was then transported intracellularly and further catalyzed into trehalose through the intracellularly expressed trehalase
Fig. 3 Purified curli as the materials precursors(a) Curli fiber produced by E. coli were purified using a fast and easily accessible vacuum filtration procedure. The fibers were then disassembled, reassembled into thin films, and recycled for further materials processing[81];(b) Generation of diverse patterns with a generic amyloid monomer inks (consisting of genetically engineered biofilm proteins dissolved in hexafluoroisopropanol), along with methanol-assisted curing[83];(c) Aqua plastic was produced by casting and drying purified curli under ambient conditions[82]. The resultant aqua plastic could withstand strong acid/base and organic solvents. In addition, aqua plastic could be healed and welded to form three-dimensional architectures using water
1 | DONLAN R M. Biofilms: microbial life on surfaces[J]. Emerging Infectious Diseases, 2002, 8(9): 881-890. |
2 | WATNICK P, KOLTER R. Biofilm, city of microbes[J]. Journal of Bacteriology, 2000, 182(10): 2675-2679. |
3 | HALL-STOODLEY L, COSTERTON J W, STOODLEY P. Bacterial biofilms: from the natural environment to infectious diseases[J]. Nature Reviews Microbiology, 2004, 2(2): 95-108. |
4 | WILKING J N, ANGELINI T E, SEMINARA A, et al. Biofilms as complex fluids[J]. MRS Bulletin, 2011, 36(5): 385-391. |
5 | KLAPPER I, RUPP C J, CARGO R, et al. Viscoelastic fluid description of bacterial biofilm material properties[J]. Biotechnology and Bioengineering, 2002, 80(3): 289-296. |
6 | FRANCIUS G, DOMENECH O, MINGEOT-LECLERCQ M P, et al. Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin[J]. Journal of Bacteriology, 2008, 190(24): 7904-7909. |
7 | ARNOLDI M, FRITZ M, BÄUERLEIN E, et al. Bacterial turgor pressure can be measured by atomic force microscopy[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62(1 Pt B): 1034-1044. |
8 | PETERSON B W, HE Y, REN Y J, et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges[J]. FEMS Microbiology Reviews, 2015, 39(2): 234-245. |
9 | BOYER R, WELSCH G, COLLINGS E. Materials properties handbook: Titanium alloys[M]. ASM International, 1994. |
10 | COMMITTEE A H. Properties and selection: nonferrous alloys and special-purpose materials[M]. ASM International, 1990. |
11 | BORZACCHIELLO A, MAYOL L, RAMIRES P A, et al. Structural and rheological characterization of hyaluronic acid-based scaffolds for adipose tissue engineering[J]. Biomaterials, 2007, 28(30): 4399-4408. |
12 | EDWARDS C, MARKS R. Evaluation of biomechanical properties of human skin[J]. Clinics in Dermatology, 1995, 13(4): 375-380. |
13 | RATNER B D, HOFFMAN A S, SCHOEN F J, et al. Biomaterials science: an evolving, multidisciplinary endeavor[M]// Biomaterials Science. 3rd . Amsterdam: Elsevier, 2013: xxv-xxxix. |
14 | MURCKO A C. Patient-centered interviewing: An evidence-based method. 2nd ed[J]. Clinical Nurse Specialist, 2002, 16(6): 326. |
15 | LEE J, KWON H J. Measurement of stress-strain behaviour of human hair fibres using optical techniques[J]. International Journal of Cosmetic Science, 2013, 35(3): 238-243. |
16 | RANTONEN P J, MEURMAN J H. Viscosity of whole saliva[J]. Acta Odontologica Scandinavica, 1998, 56(4): 210-214. |
17 | ELERT G. Viscosity[EB/OL]// The Physics Hypertextbook, 2014. . |
18 | INMAN B A, ETIENNE W, RUBIN R, et al. The impact of temperature and urinary constituents on urine viscosity and its relevance to bladder hyperthermia treatment[J]. International Journal of Hyperthermia, 2013, 29(3): 206-210. |
19 | WANG H W, DENG H H, MA L M, et al. Influence of operating conditions on extracellular polymeric substances and surface properties of sludge flocs[J]. Carbohydrate Polymers, 2013, 92(1): 510-515. |
20 | KÖRSTGENS V, FLEMMING H C, WINGENDER J, et al. Uniaxial compression measurement device for investigation of the mechanical stability of biofilms[J]. Journal of Microbiological Methods, 2001, 46(1): 9-17. |
21 | SHAW T, WINSTON M, RUPP C J, et al. Commonality of elastic relaxation times in biofilms[J]. Physical Review Letters, 2004, 93(9): 098102. |
22 | STOODLEY P, LEWANDOWSKI Z, BOYLE J D, et al. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology[J]. Biotechnology and Bioengineering, 1999, 65(1): 83-92. |
23 | PARAMONOVA E, KALMYKOWA O J, VAN DER MEI H C, et al. Impact of hydrodynamics on oral biofilm strength[J]. Journal of Dental Research, 2009, 88(10): 922-926. |
24 | CHEN D T N, WEN Q, JANMEY P A, et al. Rheology of soft materials[J]. Annual Review of Condensed Matter Physics, 2010, 1: 301-322. |
25 | TERAOKA I. Polymer solution : an introduction to physical properties[M]. New York: John Wiley & Sons, Inc, 2002. |
26 | HUNG C, ZHOU Y Z, PINKNER J S, et al. Escherichia coli biofilms have an organized and complex extracellular matrix structure[J]. mBio, 2013, 4(5): e00645-e00613. |
27 | GREENBERG E P. Bacterial communication and group behavior[J]. The Journal of Clinical Investigation, 2003, 112(9): 1288-1290. |
28 | ZOGAJ X, BOKRANZ W, NIMTZ M, et al. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract[J]. Infection and Immunity, 2003, 71(7): 4151-4158. |
29 | TURSI S A, TÜKEL Ç. Curli-containing enteric biofilms inside and out: matrix composition, immune recognition, and disease implications[J]. Microbiology and Molecular Biology Reviews: MMBR, 2018, 82(4): e00028-e00018. |
30 | EVANS M L, CHORELL E, TAYLOR J D, et al. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation[J]. Molecular Cell, 2015, 57(3): 445-455. |
31 | CHAPMAN M R, ROBINSON L S, PINKNER J S, et al. Role of Escherichia coli curli operons in directing amyloid fiber formation[J]. Science, 2002, 295(5556): 851-855. |
32 | NENNINGER A A, ROBINSON L S, HAMMER N D, et al. CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation[J]. Molecular Microbiology, 2011, 81(2): 486-499. |
33 | HAMMER N D, MCGUFFIE B A, ZHOU Y Z, et al. The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation[J]. Journal of Molecular Biology, 2012, 422(3): 376-389. |
34 | SUNDE M, SERPELL L C, BARTLAM M, et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction[J]. Journal of Molecular Biology, 1997, 273(3): 729-739. |
35 | ZHONG C, GURRY T, CHENG A A, et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres[J]. Nature Nanotechnology, 2014, 9: 858-866. |
36 | CHAPMAN M R, ROBINSON L S, PINKNER J S, et al. Role of Escherichia coli curli operons in directing amyloid fiber formation[J]. Science, 2002, 295(5556): 851-855. |
37 | HAMMAR M, BIAN Z, NORMARK S. Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(13): 6562-6566. |
38 | HAMMER N D, SCHMIDT J C, CHAPMAN M R. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(30): 12494-12499. |
39 | EVANS M L, CHAPMAN M R. Curli biogenesis: order out of disorder[J]. Biochimica et Biophysica Acta, 2014, 1843(8): 1551-1558. |
40 | ISHIHAMA A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks[J]. FEMS Microbiology Reviews, 2010, 34(5): 628-645. |
41 | HAMMAR M, ARNQVIST A, BIAN Z, et al. Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12[J]. Molecular Microbiology, 1995, 18(4): 661-670. |
42 | ZAKIKHANY K, HARRINGTON C R, NIMTZ M, et al. Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium[J]. Molecular Microbiology, 2010, 77(3): 771-786. |
43 | NENNINGER A A, ROBINSON L S, HULTGREN S J. Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(3): 900-905. |
44 | GOYAL P, KRASTEVA P V, VAN GERVEN N, et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG[J]. Nature, 2014, 516(7530): 250-253. |
45 | ROBINSON L S, ASHMAN E M, HULTGREN S J, et al. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein[J]. Molecular Microbiology, 2006, 59(3): 870-881. |
46 | LOFERER H, HAMMAR M, NORMARK S. Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG[J]. Molecular Microbiology, 1997, 26(1): 11-23. |
47 | JIANG J S, PENTELUTE B L, COLLIER R J, et al. Atomic structure of anthrax protective antigen pore elucidates toxin translocation[J]. Nature, 2015, 521(7553): 545-549. |
48 | YAN Z F, YIN M, CHEN J N, et al. Assembly and substrate recognition of curli biogenesis system[J]. Nature Communications, 2020, 11: 241. |
49 | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342. |
50 | ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338. |
51 | WU F L, BETHKE J H, WANG M D, et al. Quantitative and synthetic biology approaches to combat bacterial pathogens[J]. Current Opinion in Biomedical Engineering, 2017, 4: 116-126. |
52 | AUSLÄNDER S, WIELAND M, FUSSENEGGER M. Smart medication through combination of synthetic biology and cell microencapsulation[J]. Metabolic Engineering, 2012, 14(3): 252-260. |
53 | YE H F, DAOUD-EL BABA M, PENG R W, et al. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice[J]. Science, 2011, 332(6037): 1565-1568. |
54 | SEGALL-SHAPIRO T H, SONTAG E D, VOIGT C A. Engineered promoters enable constant gene expression at any copy number in bacteria[J]. Nature Biotechnology, 2018, 36(4): 352-358. |
55 | KYLILIS N, TUZA Z A, STAN G B, et al. Tools for engineering coordinated system behaviour in synthetic microbial consortia[J]. Nature Communications, 2018, 9(1): 2677. |
56 | VILABOA N, FENNA M, MUNSON J, et al. Novel gene switches for targeted and timed expression of proteins of interest[J]. Molecular Therapy, 2005, 12(2): 290-298. |
57 | GAO C, HOU J S, XU P, et al. Programmable biomolecular switches for rewiring flux in Escherichia coli [J]. Nature Communications, 2019, 10(1): 3751. |
58 | NOVÁK B, TYSON J J. Design principles of biochemical oscillators[J]. Nature Reviews Molecular Cell Biology, 2008, 9(12): 981-991. |
59 | POTVIN-TROTTIER L, LORD N D, VINNICOMBE G, et al. Synchronous long-term oscillations in a synthetic gene circuit[J]. Nature, 2016, 538(7626): 514-517. |
60 | CHEN A Y, DENG Z T, BILLINGS A N, et al. Synthesis and patterning of tunable multiscale materials with engineered cells[J]. Nature Materials, 2014, 13(5): 515-523. |
61 | MOSER F, THAM E, GONZÁLEZ L M, et al. Light-controlled, high-resolution patterning of living engineered bacteria onto textiles, ceramics, and plastic[J]. Advanced Functional Materials, 2019, 29(30): 1901788. |
62 | WANG X Y, PU J H, LIU Y, et al. Immobilization of functional nano-objects in living engineered bacterial biofilms for catalytic applications[J]. National Science Review, 2019, 6(5): 929-943. |
63 | CAO Y, FENG Y Y, RYSER M D, et al. Programmable assembly of pressure sensors using pattern-forming bacteria[J]. Nature Biotechnology, 2017, 35(11): 1087-1093. |
64 | LI Y F, LI K, WANG X Y, et al. Conformable self-assembling amyloid protein coatings with genetically programmable functionality[J]. Science Advances, 2020, 6(21): eaba1425. |
65 | CUI M K, QI Q, GURRY T, et al. Modular genetic design of multi-domain functional amyloids: insights into self-assembly and functional properties[J]. Chemical Science, 2019, 10(14): 4004-4014. |
66 | WANG Y Y, AN B L, XUE B, et al. Living materials fabricated via gradient mineralization of light-inducible biofilms[J]. Nature Chemical Biology, 2021, 17(3): 351-359. |
67 | AN B L, WANG Y Y, JIANG X Y, et al. Programming living glue systems to perform autonomous mechanical repairs[J]. Matter, 2020, 3(6): 2080-2092. |
68 | NGUYEN P Q, BOTYANSZKI Z, TAY P K R, et al. Programmable biofilm-based materials from engineered curli nanofibres[J]. Nature Communications, 2014, 5: 4945. |
69 | TAY P K R, MANJULA-BASAVANNA A, JOSHI N S. Repurposing bacterial extracellular matrix for selective and differential abstraction of rare earth elements[J]. Green Chemistry, 2018, 20(15): 3512-3520. |
70 | PU J H, LIU Y, ZHANG J C, et al. Virus disinfection: virus disinfection from environmental water sources using living engineered biofilm materials[J]. Advanced Science, 2020, 7(14): 1903558. |
71 | ABDALI Z, AMINZARE M, ZHU X D, et al. Curli-mediated self-assembly of a fibrous protein scaffold for hydroxyapatite mineralization[J]. ACS Synthetic Biology, 2020, 9(12): 3334-3343. |
72 | DONG H, ZHANG W X, XUAN Q Z, et al. Binding peptide-guided immobilization of lipases with significantly improved catalytic performance using Escherichia coli BL21(DE3) biofilms as a platform[J]. ACS Applied Materials & Interfaces, 2021, 13(5): 6168-6179. |
73 | BOTYANSZKI Z, TAY P K R, NGUYEN P Q, et al. Engineered catalytic biofilms: site-specific enzyme immobilization onto E. coli curli nanofibers[J]. Biotechnology and Bioengineering, 2015, 112(10): 2016-2024. |
74 | BAO J J, LIU N, ZHU L Y, et al. Programming a biofilm-mediated multienzyme-assembly-cascade system for the biocatalytic production of glucosamine from chitin[J]. Journal of Agricultural and Food Chemistry, 2018, 66(30): 8061-8068. |
75 | OLMEZ T T, SAHIN KEHRIBAR E, ISILAK M E, et al. Synthetic genetic circuits for self-actuated cellular nanomaterial fabrication devices[J]. ACS Synthetic Biology, 2019, 8(9): 2152-2162. |
76 | PRAVESCHOTINUNT P, DORVAL COURCHESNE N M, DEN HARTOG I, et al. Tracking of engineered bacteria in vivo using nonstandard amino acid incorporation[J]. ACS Synthetic Biology, 2018, 7(6): 1640-1650. |
77 | PRAVESCHOTINUNT P, DURAJ-THATTE A M, GELFAT I, et al. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut[J]. Nature Communications, 2019, 10: 5580. |
78 | DURAJ-THATTE A M, PRAVESCHOTINUNT P, NASH T R, et al. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins[J]. Scientific Reports, 2018, 8: 3475. |
79 | AXPE E, DURAJ-THATTE A, CHANG Y, et al. Fabrication of amyloid curli fibers-alginate nanocomposite hydrogels with enhanced stiffness[J]. ACS Biomaterials Science & Engineering, 2018, 4(6): 2100-2105. |
80 | JIANG L, SONG X G, LI Y F, et al. Programming integrative extracellular and intracellular biocatalysis for rapid, robust, and recyclable synthesis of trehalose[J]. ACS Catalysis, 2018, 8(3): 1837-1842. |
81 | DORVAL COURCHESNE N M, DURAJ-THATTE A, TAY P K R, et al. Scalable production of genetically engineered nanofibrous macroscopic materials via filtration[J]. ACS Biomaterials Science & Engineering, 2017, 3(5): 733-741. |
82 | DURAJ-THATTE A M, MANJULA-BASAVANNA A, COURCHESNE N M D, et al. Water-processable, biodegradable and coatable aquaplastic from engineered biofilms[J]. Nature Chemical Biology, 2021, 17(6): 732-738. |
83 | LI Y F, LI K, WANG X Y, et al. Patterned amyloid materials integrating robustness and genetically programmable functionality[J]. Nano Letters, 2019, 19(12): 8399-8408. |
84 | GALATSIS K, WANG K L, OZKAN M, et al. Patterning and templating for nanoelectronics[J]. Advanced Materials, 2010, 22(6): 769-778. |
85 | CAO Y, RYSER M D, PAYNE S, et al. Collective space-sensing coordinates pattern scaling in engineered bacteria[J]. Cell, 2016, 165(3): 620-630. |
86 | FERNANDEZ-RODRIGUEZ J, MOSER F, SONG M, et al. Engineering RGB color vision into Escherichia coli [J]. Nature Chemical Biology, 2017, 13(7): 706-708. |
87 | NGUYEN P Q, COURCHESNE N M D, DURAJ-THATTE A, et al. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials[J]. Advanced Materials, 2018, 30(19): e1704847. |
88 | GILBERT C, TANG T C, OTT W, et al. Living materials with programmable functionalities grown from engineered microbial co-cultures[J]. Nature Materials, 2021, 20(5): 691-700. |
89 | LIU X Y, YUK H, LIN S T, et al. 3D printing of living responsive materials and devices[J]. Advanced Materials, 2018, 30(4): 1704821. |
90 | GILBERT C, ELLIS T. Biological engineered living materials: Growing functional materials with genetically programmable properties[J]. ACS Synthetic Biology, 2019, 8(1): 1-15. |
91 | CHEN A Y, ZHONG C, LU T K. Engineering living functional materials[J]. ACS Synthetic Biology, 2015, 4(1): 8-11. |
92 | YANG P D. Liquid sunlight: the evolution of photosynthetic biohybrids[J]. Nano Letters, 2021, 21(13): 5453-5456. |
93 | LE FEUVRE R A, SCRUTTON N S. A living foundry for synthetic biological materials: a synthetic biology roadmap to new advanced materials[J]. Synthetic and Systems Biotechnology, 2018, 3(2): 105-112. |
94 | TANG T C, AN B L, HUANG Y Y, et al. Materials design by synthetic biology[J]. Nature Reviews Materials, 2021, 6(4): 332-350. |
95 | DAI Z J, LEE A J, ROBERTS S, et al. Versatile biomanufacturing through stimulus-responsive cell-material feedback[J]. Nature Chemical Biology, 2019, 15(10): 1017-1024. |
96 | DAI Z J, YANG X Y, WU F L, et al. Living fabrication of functional semi-interpenetrating polymeric materials[J]. Nature Communications, 2021, 12: 3422. |
97 | MOLINARI S, TESORIERO R F JR, AJO-FRANKLIN C M. Bottom-up approaches to engineered living materials: Challenges and future directions[J]. Matter, 2021, 4(10): 3095-3120. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[3] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[4] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[5] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[7] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[8] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[9] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[10] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[11] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[12] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[13] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[14] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[15] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||