Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (1): 16-37.DOI: 10.12211/2096-8280.2023-067
• Invited Review • Previous Articles Next Articles
Xiaojie GUO1,2, Xingjin JIAN1,2, Liyan WANG3, Chong ZHANG1,2,4, Xinhui XING1,2,4,5
Received:
2023-09-19
Revised:
2023-11-02
Online:
2024-03-20
Published:
2024-02-29
Contact:
Xinhui XING
郭肖杰1,2, 剪兴金1,2, 王立言3, 张翀1,2,4, 邢新会1,2,4,5
通讯作者:
邢新会
作者简介:
基金资助:
CLC Number:
Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research[J]. Synthetic Biology Journal, 2024, 5(1): 16-37.
郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-067
Fig. 2 Workflow for single cell screening based with microwells[48](a) and (b) single cell seeding, (c) cell culturing in microwells, (d) cell detection using automated imaging system
类型 | 典型装备 | 特点 | 主要不足 | 相关重要文献 | |
---|---|---|---|---|---|
单细胞 | 细胞自体 | FACS、RACS、Namo cell、Single-cell printer | 通量高,装备成熟且种类多 | 无法对细胞进行培养,细胞裂解物或外泌物无法作为检测指标 | Sun et al.[ Gross et al.[ Zhang et al.[ |
皮纳 升级 | 微孔阵列 | 单细胞光导系统 | 通量高,装备类型多,可检测细胞裂解物和外泌物 | 芯片工艺复杂,操作烦琐 | Lindstrom et al.[ Weibel et al.[ |
微液滴 | FADS、RADS、IADS | 存在液滴融合、内容物泄漏等风险 | Jiang et al.[ Sanchez er al.[ Fu et al.[ | ||
微升级 | 微液滴 | MMC、MISS cell、Millidrop | 细胞培养性能好,相关装备自动化和微型化 | 液滴稳定性易受影响,脂溶性物质易逃逸出液滴 | Baraban et al.[ Jian et al.[ Jakiela et al.[ |
96孔板 | 酶标仪、Bioscreen生长曲线测定仪 | 使用方便,适用性广 | 蒸发问题、边缘效应、孔距离小易交叉污染、溶氧受限 | Mansoury et al.[ Duetz et al.[ | |
毫升级 | 深孔板 | Biolector、酶标仪 | 使用方便,适用性广 | 孔间距较小易交叉污染 | Klockner et al.[ Betts et al.[ Running et al.[ |
试管、摇瓶 | Micro-24 bioreactor | 相关自动化装备缺乏 | |||
搅拌釜 生物反应器 | Ambr@15 | 使用范围广,过程参数易精确控制,利于后期放大 | 操作烦琐 | Karimi et al.[ 丁宁,等[ Warr et al.[ | |
微型管式 生物反应器 | EVOL cell | 无气泡渗透供氧,内部流体剪切力低,易集成装备化开发 | 黏度大或含有颗粒的培养基以及易形成生物膜的菌株不适用 | Yang et al.[ Li et al.[ Jian et al.[ | |
升级 | 搅拌釜 生物反应器 | 多联罐、平行反应器以及其配套线检测装备(如BODS) | 使用范围广,过程参数易精确控制,利于后期工艺放大 | 体积增大、搅拌釜反应器内部的物质混合和传递难度增加 | Garcia-ochoa et al.[ Marques et al.[ Betts et al.[ |
Table 1 Characteristics of different instruments for the phenotype testing of cell factories
类型 | 典型装备 | 特点 | 主要不足 | 相关重要文献 | |
---|---|---|---|---|---|
单细胞 | 细胞自体 | FACS、RACS、Namo cell、Single-cell printer | 通量高,装备成熟且种类多 | 无法对细胞进行培养,细胞裂解物或外泌物无法作为检测指标 | Sun et al.[ Gross et al.[ Zhang et al.[ |
皮纳 升级 | 微孔阵列 | 单细胞光导系统 | 通量高,装备类型多,可检测细胞裂解物和外泌物 | 芯片工艺复杂,操作烦琐 | Lindstrom et al.[ Weibel et al.[ |
微液滴 | FADS、RADS、IADS | 存在液滴融合、内容物泄漏等风险 | Jiang et al.[ Sanchez er al.[ Fu et al.[ | ||
微升级 | 微液滴 | MMC、MISS cell、Millidrop | 细胞培养性能好,相关装备自动化和微型化 | 液滴稳定性易受影响,脂溶性物质易逃逸出液滴 | Baraban et al.[ Jian et al.[ Jakiela et al.[ |
96孔板 | 酶标仪、Bioscreen生长曲线测定仪 | 使用方便,适用性广 | 蒸发问题、边缘效应、孔距离小易交叉污染、溶氧受限 | Mansoury et al.[ Duetz et al.[ | |
毫升级 | 深孔板 | Biolector、酶标仪 | 使用方便,适用性广 | 孔间距较小易交叉污染 | Klockner et al.[ Betts et al.[ Running et al.[ |
试管、摇瓶 | Micro-24 bioreactor | 相关自动化装备缺乏 | |||
搅拌釜 生物反应器 | Ambr@15 | 使用范围广,过程参数易精确控制,利于后期放大 | 操作烦琐 | Karimi et al.[ 丁宁,等[ Warr et al.[ | |
微型管式 生物反应器 | EVOL cell | 无气泡渗透供氧,内部流体剪切力低,易集成装备化开发 | 黏度大或含有颗粒的培养基以及易形成生物膜的菌株不适用 | Yang et al.[ Li et al.[ Jian et al.[ | |
升级 | 搅拌釜 生物反应器 | 多联罐、平行反应器以及其配套线检测装备(如BODS) | 使用范围广,过程参数易精确控制,利于后期工艺放大 | 体积增大、搅拌釜反应器内部的物质混合和传递难度增加 | Garcia-ochoa et al.[ Marques et al.[ Betts et al.[ |
1 | CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews Microbiology, 2014, 12(5): 381-390. |
2 | 史硕博, 张翀, 成喜雨, 等. 挑战造物主:合成生物学使能工具[J]. 合成生物学, 2023, 4(1): 1-4. |
SHI S B, ZHANG C, CHENG X Y, et al. Challenging the creator: an enabling tool for synthetic biology[J]. Synthetic Biology Journal, 2023, 4(1): 1-4. | |
3 | LAWSON C E, HARCOMBE W R, HATZENPICHLER R, et al. Common principles and best practices for engineering microbiomes[J]. Nature Reviews Microbiology, 2019, 17(12): 725-741. |
4 | GURDO N, VOLKE D C, MCCLOSKEY D, et al. Automating the design-build-test-learn cycle towards next-generation bacterial cell factories[J]. New Biotechnology, 2023, 74: 1-15. |
5 | 孙梦楚, 陆亮宇, 申晓林, 等. 基于荧光检测的高通量筛选技术和装备助力细胞工厂构建[J]. 合成生物学, 2023, 4(5): 947-965. |
SUN M C, LU L Y, SHEN X L, et al. Fluorescence detection-based high-throughput screening systems and devices facilitate cell factories construction[J]. Synthetic Biology Journal, 2023, 4(5): 947-965. | |
6 | SANDLE T. History and development of microbiological culture media[J/OL]. The Journal (Instituteof Science and Technology), 2011: 10-14[2023-09-01]. . |
7 | MCKINNON K M. Flow cytometry: an overview[J]. Current Protocols in Immunology, 2018, 120(1): 5.1.1-5.1.11. |
8 | JAKOBSSON O, GRENVALL C, NORDIN M, et al. Acoustic actuated fluorescence activated sorting of microparticles[J]. Lab on a Chip, 2014, 14(11): 1943-1950. |
9 | KINNUNEN M, KARMENYAN A. Overview of single-cell elastic light scattering techniques[J]. Journal of Biomedical Optics, 2015, 20(5): 051040. |
10 | SU X T, SINGH K, ROZMUS W, et al. Light scattering characterization of mitochondrial aggregation in single cells[J]. Optics Express, 2009, 17(16): 13381-13388. |
11 | HUANG W E, WARD A D, WHITELEY A S. Raman tweezers sorting of single microbial cells[J]. Environmental Microbiology Reports, 2009, 1(1): 44-49. |
12 | MCILVENNA D, HUANG W E, DAVISON P, et al. Continuous cell sorting in a flow based on single cell resonance Raman spectra[J]. Lab on a Chip, 2016, 16(8): 1420-1429. |
13 | SONG Y Z, KASTER A K, VOLLMERS J, et al. Single-cell genomics based on Raman sorting reveals novel carotenoid-containing bacteria in the Red Sea[J]. Microbial Biotechnology, 2017, 10(1): 125-137. |
14 | GROSS A, SCHÖNDUBE J, NIEKRAWITZ S, et al. Single-cell printer: automated, on demand, and label free[J]. Journal of Laboratory Automation, 2013, 18(6): 504-518. |
15 | NITTA N, SUGIMURA T, ISOZAKI A, et al. Intelligent image-activated cell sorting[J]. Cell, 2018, 175(1): 266-276.e13. |
16 | KOVAC J R, VOLDMAN J. Intuitive, image-based cell sorting using optofluidic cell sorting[J]. Analytical Chemistry, 2007, 79(24): 9321-9330. |
17 | KIM U, SOH H T. Simultaneous sorting of multiple bacterial targets using integrated dielectrophoretic-magnetic activated cell sorter[J]. Lab on a Chip, 2009, 9(16): 2313-2318. |
18 | ADAMS J D, KIM U, SOH H T. Multitarget magnetic activated cell sorter[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18165-18170. |
19 | SEMPLE J W, ALLEN D, CHANG W, et al. Rapid separation of CD4+ and CD19+ lymphocyte populations from human peripheral blood by a magnetic activated cell sorter (MACS)[J]. Cytometry, 1993, 14(8): 955-960. |
20 | FAENZA A, BOCCHI M, PECORARI N, et al. Impedance measurement technique for high-sensitivity cell detection in microstructures with non-uniform conductivity distribution[J]. Lab on a Chip, 2012, 12(11): 2046-2052. |
21 | SCHOENDUBE J, WRIGHT D, ZENGERLE R, et al. Single-cell printing based on impedance detection[J]. Biomicrofluidics, 2015, 9(1): 014117. |
22 | TANG D Z, JIANG L, TANG W L, et al. Cost-effective portable microfluidic impedance cytometer for broadband impedance cell analysis based on viscoelastic focusing[J]. Talanta, 2022, 242: 123274. |
23 | PRASHER D C. Using GFP to see the light[J]. Trends in Genetics, 1995, 11(8): 320-323. |
24 | POLLOK B A, HEIM R. Using GFP in FRET-based applications[J]. Trends in Cell Biology, 1999, 9(2): 57-60. |
25 | TAJIK M, BAHARFAR M, DONALD W A. Single-cell mass spectrometry[J]. Trends in Biotechnology, 2022, 40(11): 1374-1392. |
26 | SLAVOV N. Single-cell protein analysis by mass spectrometry[J]. Current Opinion in Chemical Biology, 2021, 60: 1-9. |
27 | SPITZER M H, NOLAN G P. Mass cytometry: single cells, many features[J]. Cell, 2016, 165(4): 780-791. |
28 | DE WAGENAAR B, DEKKER S, DE BOER H L, et al. Towards microfluidic sperm refinement: impedance-based analysis and sorting of sperm cells[J]. Lab on a Chip, 2016, 16(8): 1514-1522. |
29 | ZBOROWSKI M, CHALMERS J J. Magnetic cell sorting[M/OL]//Immunochemical protocols. Totowa, NJ: Humana Press, 2005: 291-300 [2023-09-01]. . |
30 | GROVER S C, SKIRTACH A G, GAUTHIER R C, et al. Automated single-cell sorting system based on optical trapping[J]. Journal of Biomedical Optics, 2001, 6(1): 14-22. |
31 | WANG M M, TU E, RAYMOND D E, et al. Microfluidic sorting of mammalian cells by optical force switching[J]. Nature Biotechnology, 2005, 23(1): 83-87. |
32 | JOHANSSON L, NIKOLAJEFF F, JOHANSSON S, et al. On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer[J]. Analytical Chemistry, 2009, 81(13): 5188-5196. |
33 | NITTA N, IINO T, ISOZAKI A, et al. Raman image-activated cell sorting[J]. Nature Communications, 2020, 11: 3452. |
34 | CHEN P, FENG X J, HU R, et al. Hydrodynamic gating valve for microfluidic fluorescence-activated cell sorting[J]. Analytica Chimica Acta, 2010, 663(1): 1-6. |
35 | JIAN X J, GUO X J, CAI Z S, et al. Single-cell microliter-droplet screening system (MISS Cell): an integrated platform for automated high-throughput microbial monoclonal cultivation and picking[J]. Biotechnology and Bioengineering, 2023, 120(3): 778-792. |
36 | GROSS A, SCHOENDUBE J, ZIMMERMANN S, et al. Technologies for single-cell isolation[J]. International Journal of Molecular Sciences, 2015, 16(8): 16897-16919. |
47 | WELZEL G, SEITZ D, SCHUSTER S. Magnetic-activated cell sorting (MACS) can be used as a large-scale method for establishing zebrafish neuronal cell cultures[J]. Scientific Reports, 2015, 5: 7959. |
38 | UOSAKI H, FUKUSHIMA H, TAKEUCHI A, et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression[J]. PLoS One, 2011, 6(8): e23657. |
39 | ZHANG P R, REN L H, ZHANG X, et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release[J]. Analytical Chemistry, 2015, 87(4): 2282-2289. |
40 | REN L Q, YANG S J, ZHANG P R, et al. Fluorescence-activated cell sorters: standing surface acoustic wave (SSAW)-based fluorescence-activated cell sorter[J]. Small, 2018, 14(40): 1801996. |
41 | BEEBE D J, MOORE J S, YU Q, et al. Microfluidic tectonics: a comprehensive construction platform for microfluidic systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25): 13488-13493. |
42 | HUANG L R, COX E C, AUSTIN R H, et al. Continuous particle separation through deterministic lateral displacement[J]. Science, 2004, 304(5673): 987-990. |
43 | LOUTHERBACK K, D'SILVA J, LIU L Y, et al. Deterministic separation of cancer cells from blood at 10 mL/min[J]. AIP Advances, 2012, 2(4): 042107. |
44 | AMINI H, LEE W, DI CARLO D. Inertial microfluidic physics[J]. Lab on a Chip, 2014, 14(15): 2739-2761. |
45 | DI CARLO D. Inertial microfluidic physics[J]. Lab on a Chip, 2009, 9(21): 3038-3046. |
46 | LINDSTRÖM S, ANDERSSON-SVAHN H. Overview of single-cell analyses: microdevices and applications[J]. Lab on a Chip, 2010, 10(24): 3363-3372. |
47 | LINDSTRÖM S, ANDERSSON-SVAHN H. Miniaturization of biological assays—overview on microwell devices for single-cell analyses[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2011, 1810(3): 308-316. |
48 | LINDSTRÖM S, ANDERSSON-SVAHN H. Single-cell culture in microwells[M/OL]// Single-cell analysis. Totowa, NJ: Humana Press, 2012: 41-52 [2023-09-01]. . |
49 | ZENG S J, LIU X, XIE H A, et al. Basic technologies for droplet microfluidics[M/OL]//Microfluidics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 69-90 [2023-09-01]. . |
50 | KHORSHIDI M ALI, RAJESWARI P K P, WÄHLBY C, et al. Automated analysis of dynamic behavior of single cells in picoliter droplets[J]. Lab on a Chip, 2014, 14(5): 931-937. |
51 | BOEDICKER J Q, VINCENT M E, ISMAGILOV R F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability[J]. Angewandte Chemie International Edition, 2009, 48(32): 5908-5911. |
52 | VINCENT M E, LIU W S, HANEY E B, et al. Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals[J]. Chemical Society Reviews, 2010, 39(3): 974-984. |
53 | ZAGNONI M, COOPER J M. Droplet microfluidics for high-throughput analysis of cells and particles[M/OL]//Methods in cell biology. Amsterdam: Elsevier, 2011, 102: 23-48 [2023-09-01]. . |
54 | HENGOJU S, TOVAR M, MAN D K W, et al. Droplet microfluidics for microbial biotechnology[M/OL]//Microfluidics in biotechnology. Cham: Springer International Publishing, 2020: 129-157 [2023-09-01]. . |
55 | TU R, LI L P, YUAN H L, et al. Biosensor-enabled droplet microfluidic system for the rapid screening of 3-dehydroshikimic acid produced in Escherichia coli [J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(12): 1155-1160. |
56 | LI L P, TU R, SONG G T, et al. Development of a synthetic 3-dehydroshikimate biosensor in Escherichia coli for metabolite monitoring and genetic screening[J]. ACS Synthetic Biology, 2019, 8(2): 297-306. |
57 | TERRY S C, JERMAN J H, ANGELL J B. A gas chromatographic air analyzer fabricated on a silicon wafer[J]. IEEE Transactions on Electron Devices, 1979, 26(12): 1880-1886. |
58 | WEIBEL D B, DILUZIO W R, WHITESIDES G M. Microfabrication meets microbiology[J]. Nature Reviews Microbiology, 2007, 5(3): 209-218. |
59 | XIA Y N, WHITESIDES G M. Soft lithography[J]. Angewandte Chemie International Edition, 1998, 37(5): 550-575. |
60 | WHITESIDES G M, OSTUNI E, TAKAYAMA S, et al. Soft lithography in biology and biochemistry[J]. Annual Review of Biomedical Engineering, 2001, 3: 335-373. |
61 | VAN DEN BERG A, LAMMERINK T S J. Micro total analysis systems: microfluidic aspects, integration concept and applications[M/OL]//Topics in current chemistry: microsystem technology in chemistry and life science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998: 21-49 [2023-09-01]. . |
62 | FRISAN T, LEVITSKY V, MASUCCI M. Limiting dilution assay[M/OL]//Epstein-Barr virus protocols. Totowa, NJ: Humana Press, 2003: 213-216 [2023-09-01]. . |
63 | SÁNCHEZ BAREA J, LEE J, KANG D K. Recent advances in droplet-based microfluidic technologies for biochemistry and molecular biology[J]. Micromachines, 2019, 10(6): 412. |
64 | KAMINSKI T S, GARSTECKI P. Controlled droplet microfluidic systems for multistep chemical and biological assays[J]. Chemical Society Reviews, 2017, 46(20): 6210-6226. |
65 | JOENSSON H N, ANDERSSON SVAHN H. Droplet microfluidics—a tool for single-cell analysis[J]. Angewandte Chemie International Edition, 2012, 51(49): 12176-12192. |
66 | VOLLENBROEK J C, NIEUWELINK A E, BOMER J G, et al. Droplet microreactor for high-throughput fluorescence-based measurements of single catalyst particle acidity[J]. Microsystems & Nanoengineering, 2023, 9: 39. |
67 | KAMINSKI T S, SCHELER O, GARSTECKI P. Droplet microfluidics for microbiology: techniques, applications and challenges[J]. Lab on a Chip, 2016, 16(12): 2168-2187. |
68 | ZHU P G, WANG L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2017, 17(1): 34-75. |
69 | VÁŇOVÁ B, MALICHEROVÁ B, BURJANIVOVÁ T, et al. Droplet digital PCR as a novel diagnostic tool[J/OL]. Klinicka Onkologie, 2021, 34(1): 33-39[2023-09-01]. . |
70 | LI H Y, BAI R L, ZHAO Z Y, et al. Application of droplet digital PCR to detect the pathogens of infectious diseases[J]. Bioscience Reports, 2018, 38(6): BSR20181170. |
71 | SHEMBEKAR N, CHAIPAN C, UTHARALA R, et al. Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics[J]. Lab on a Chip, 2016, 16(8): 1314-1331. |
72 | WANG X X, XIN Y, REN L H, et al. Positive dielectrophoresis-based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo [J]. Science Advances, 2020, 6(32): eabb3521. |
73 | YANG L, JENSEN K F. Mass transport and reactions in the tube-in-tube reactor[J]. Organic Process Research & Development, 2013, 17(6): 927-933. |
74 | MARTIN K, HENKEL T, BAIER V, et al. Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices[J]. Lab on a Chip, 2003, 3(3): 202-207. |
75 | LI R R, GUO X J, XIONG K, et al. Microbial micro-tube culture system: a miniature bioreactor for controllable bubble-free oxygen supply based on high gas-permeability Teflon tube[J]. Biochemical Engineering Journal, 2023, 191: 108789. |
76 | MAHLER L, TOVAR M, WEBER T, et al. Enhanced and homogeneous oxygen availability during incubation of microfluidic droplets[J]. RSC Advances, 2015, 5(123): 101871-101878. |
77 | BARET J C, MILLER O J, TALY V, et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity[J]. Lab on a Chip, 2009, 9(13): 1850-1858. |
78 | OTA Y, SAITO K, TAKAGI T, et al. Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a high-throughput screening method for environmental bacteria with various growth rates[J]. PLoS One, 2019, 14(4): e0214533. |
79 | WANG X X, REN L H, SU Y T, et al. Raman-activated droplet sorting (RADS) for label-free high-throughput screening of microalgal single-cells[J]. Analytical Chemistry, 2017, 89(22): 12569-12577. |
80 | SAFIR F, VU N, TADESSE L F, et al. Combining acoustic bioprinting with AI-assisted Raman spectroscopy for high-throughput identification of bacteria in blood[J]. Nano Letters, 2023, 23(6): 2065-2073. |
81 | ZANG E, BRANDES S, TOVAR M, et al. Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets[J]. Lab on a Chip, 2013, 13(18): 3707-3713. |
82 | WATTERSON W J, TANYERI M, WATSON A R, et al. Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes[J]. eLife, 2020, 9: e56998. |
83 | GIRAULT M, KIM H, ARAKAWA H, et al. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution[J]. Scientific Reports, 2017, 7: 40072. |
84 | LIU X, PAINTER R E, ENESA K, et al. High-throughput screening of antibiotic-resistant bacteria in picodroplets[J]. Lab on a Chip, 2016, 16(9): 1636-1643. |
85 | FAN W H, CHEN X, GE Y Q, et al. Single-cell impedance analysis of osteogenic differentiation by droplet-based microfluidics[J]. Biosensors & Bioelectronics, 2019, 145: 111730. |
86 | VAN MEERTEN S G J, VAN BENTUM P J M, KENTGENS A P M. Shim-on-chip design for microfluidic NMR detectors[J]. Analytical Chemistry, 2018, 90(17): 10134-10138. |
87 | DAVOODI H, NORDIN N, BORDONALI L, et al. An NMR-compatible microfluidic platform enabling in situ electrochemistry[J]. Lab on a Chip, 2020, 20(17): 3202-3212. |
88 | GOTO H, KANAI Y, YOTSUI A, et al. Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases[J]. Lab on a Chip, 2020, 20(4): 852-861. |
89 | PAN C W, HORVATH D G, BRAZA S, et al. Sorting by interfacial tension (SIFT): label-free selection of live cells based on single-cell metabolism[J]. Lab on a Chip, 2019, 19(8): 1344-1351. |
90 | SUN S W, KENNEDY R T. Droplet electrospray ionization mass spectrometry for high throughput screening for enzyme inhibitors[J]. Analytical Chemistry, 2014, 86(18): 9309-9314. |
91 | HOLLAND-MORITZ D A, WISMER M K, MANN B F, et al. Mass activated droplet sorting (MADS) enables high-throughput screening of enzymatic reactions at nanoliter scale[J]. Angewandte Chemie International Edition, 2020, 59(11): 4470-4477. |
92 | GIELEN F, HOURS R, EMOND S, et al. Ultrahigh-throughput–directed enzyme evolution by absorbance-activated droplet sorting (AADS)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): E7383-E7389. |
93 | DUNCOMBE T A, PONTI A, SEEBECK F P, et al. UV–vis spectra-activated droplet sorting for label-free chemical identification and collection of droplets[J]. Analytical Chemistry, 2021, 93(38): 13008-13013. |
94 | HASAN S, GEISSLER D, WINK K, et al. Fluorescence lifetime-activated droplet sorting in microfluidic chip systems[J]. Lab on a Chip, 2019, 19(3): 403-409. |
95 | FERRARO D, CHAMP J, TESTE B, et al. Droplet microfluidic and magnetic particles platform for cancer typing[M/OL]// Methods in molecular biology: microchip diagnostics. New York: Humana Press, 2017, 1547: 113-121 [2023-09-01]. . |
96 | ZHU G P, WANG Q Y, MA Z K, et al. Droplet manipulation under a magnetic field: a review[J]. Biosensors, 2022, 12(3): 156. |
97 | SHAH G J, OHTA A T, CHIOU E P Y, et al. EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis[J]. Lab on a Chip, 2009, 9(12): 1732-1739. |
98 | SCHMID L, WEITZ D A, FRANKE T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter[J]. Lab on a Chip, 2014, 14(19): 3710-3718. |
99 | SCIAMBI A, ABATE A R. Accurate microfluidic sorting of droplets at 30 kHz[J]. Lab on a Chip, 2015, 15(1): 47-51. |
100 | QIN Y L, WU L, WANG J G, et al. A fluorescence-activated single-droplet dispenser for high accuracy single-droplet and single-cell sorting and dispensing[J]. Analytical Chemistry, 2019, 91(10): 6815-6819. |
101 | KIM H S, HSU S C, HAN S I, et al. High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library[J]. Plant Direct, 2017, 1(3): e00011. |
102 | FU X Z, ZHANG Y Y, XU Q A, et al. Recent advances on sorting methods of high-throughput droplet-based microfluidics in enzyme directed evolution[J]. Frontiers in Chemistry, 2021, 9: 666867. |
103 | 秦伟彤, 杨广宇. 微液滴高通量筛选方法的研究与应用进展[J]. 合成生物学, 2023, 4(5): 966-979. |
QIN W T, YANG G Y. Research and application progress of microdroplets high throughput screening methods[J]. Synthetic Biology Journal, 2023, 4(5): 966-979. | |
104 | CHIU F W Y, STAVRAKIS S. High-throughput droplet-based microfluidics for directed evolution of enzymes[J]. Electrophoresis, 2019, 40(21): 2860-2872. |
105 | BROWER K K, CARSWELL-CRUMPTON C, KLEMM S, et al. Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery[J]. Lab on a Chip, 2020, 20(12): 2062-2074. |
106 | BROWER K K, KHARITON M, SUZUKI P H, et al. Double emulsion picoreactors for high-throughput single-cell encapsulation and phenotyping via FACS[J]. Analytical Chemistry, 2020, 92(19): 13262-13270. |
107 | COWELL T, HAN H S. Double emulsion flow cytometry for rapid single genome detection[M/OL]// Methods in molecular biology: single-cell assays. New York: Humana, 2023, 2689: 155-167 [2023-09-01]. . |
108 | SCHAERLI Y. Bacterial microcolonies in gel beads for high-throughput screening[J/OL]. Bio-protocol, 2018, 8(13): e2911[2023-09-01]. . |
109 | BARET J C. Surfactants in droplet-based microfluidics[J]. Lab on a Chip, 2012, 12(3): 422-433. |
110 | RIECHERS B, MAES F, AKOURY E, et al. Surfactant adsorption kinetics in microfluidics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): 11465-11470. |
111 | ETIENNE G, VIAN A, BIOČANIN M, et al. Cross-talk between emulsion drops: how are hydrophilic reagents transported across oil phases?[J]. Lab on a Chip, 2018, 18(24): 3903-3912. |
112 | CHOWDHURY M S, ZHENG W S, KUMARI S, et al. Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules[J]. Nature Communications, 2019, 10: 4546. |
113 | COURTOIS F, OLGUIN L F, WHYTE G, et al. Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays[J]. Analytical Chemistry, 2009, 81(8): 3008-3016. |
114 | GRUNER P, RIECHERS B, SEMIN B, et al. Controlling molecular transport in minimal emulsions[J]. Nature Communications, 2016, 7: 10392. |
115 | MAZUTIS L, BARET J C, TREACY P, et al. Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme[J]. Lab on a Chip, 2009, 9(20): 2902-2908. |
116 | SKHIRI Y, GRUNER P, SEMIN B, et al. Dynamics of molecular transport by surfactants in emulsions[J]. Soft Matter, 2012, 8(41): 10618-10627. |
117 | PAN M, ROSENFELD L, KIM M, et al. Fluorinated pickering emulsions impede interfacial transport and form rigid interface for the growth of anchorage-dependent cells[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21446-21453. |
118 | SANDOZ P A, CHUNG A J, WEAVER W M, et al. Sugar additives improve signal fidelity for implementing two-phase resorufin-based enzyme immunoassays[J]. Langmuir, 2014, 30(23): 6637-6643. |
119 | MAYR L M, BOJANIC D. Novel trends in high-throughput screening[J]. Current Opinion in Pharmacology, 2009, 9(5): 580-588. |
120 | JAKIELA S, KAMINSKI T S, CYBULSKI O, et al. Bacterial growth and adaptation in microdroplet chemostats[J]. Angewandte Chemie International Edition, 2013, 52(34): 8908-8911. |
121 | GRODRIAN A, METZE J, HENKEL T, et al. Segmented flow generation by chip reactors for highly parallelized cell cultivation[J]. Biosensors & Bioelectronics, 2004, 19(11): 1421-1428. |
122 | DUETZ W A, CHASE M, BILLS G. Miniaturization of fermentations[M/OL]//Manual of industrial microbiology and biotechnology. Washington, DC, USA: ASM Press, 2010: 99-116 [2023-09-01]. . |
123 | SARNAIK A, LIU A, NIELSEN D, et al. High-throughput screening for efficient microbial biotechnology[J]. Current Opinion in Biotechnology, 2020, 64: 141-150. |
124 | HERMANN R, LEHMANN M, BÜCHS J. Characterization of gas-liquid mass transfer phenomena in microtiter plates[J]. Biotechnology and Bioengineering, 2003, 81(2): 178-186. |
125 | ELIAS C B, DESAI R B, PATOLE M S, et al. Turbulent shear stress—effect on mammalian cell culture and measurement using laser Doppler anemometer[J]. Chemical Engineering Science, 1995, 50(15): 2431-2440. |
126 | AULD D S, COASSIN P A, COUSSENS N P, et al. Microplate selection and recommended practices in high-throughput screening and quantitative biology[M/OL]. Assay guidance manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004. . |
127 | HUBER R, RITTER D, HERING T, et al. Robo-Lector-a novel platform for automated high-throughput cultivations in microtiter plates with high information content[J]. Microbial Cell Factories, 2009, 8(1): 42. |
128 | PILAREK M, GLAZYRINA J, NEUBAUER P. Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures[J]. Microbial Cell Factories, 2011, 10: 50. |
129 | PILAREK M, BRAND E, HILLIG F, et al. Enhanced plasmid production in miniaturized high-cell-density cultures of Escherichia coli supported with perfluorinated oxygen carrier[J]. Bioprocess and Biosystems Engineering, 2013, 36(8): 1079-1086. |
130 | MEYER A, CONDON R G G, KEIL G, et al. Fluorinert, an oxygen carrier, improves cell culture performance in deep square 96-well plates by facilitating oxygen transfer[J]. Biotechnology Progress, 2012, 28(1): 171-178. |
131 | MANSOURY M, HAMED M, KARMUSTAJI R, et al. The edge effect: a global problem. The trouble with culturing cells in 96-well plates[J]. Biochemistry and Biophysics Reports, 2021, 26: 100987. |
132 | BARABAN L, BERTHOLLE F, SALVERDA M L M, et al. Millifluidic droplet analyser for microbiology[J]. Lab on a Chip, 2011, 11(23): 4057-4062. |
133 | BOEDICKER J Q, LI L, KLINE T R, et al. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics[J]. Lab on a Chip, 2008, 8(8): 1265-1272. |
134 | BOITARD L, COTTINET D, BREMOND N, et al. Growing microbes in millifluidic droplets[J]. Engineering in Life Sciences, 2015, 15(3): 318-326. |
135 | JIAN X J, GUO X J, WANG J, et al. Microbial microdroplet culture system (MMC): an integrated platform for automated, high-throughput microbial cultivation and adaptive evolution[J]. Biotechnology and Bioengineering, 2020, 117(6): 1724-1737. |
136 | DONG L B, CHEN D W, LIU S J, et al. Automated chemotactic sorting and single-cell cultivation of microbes using droplet microfluidics[J]. Scientific Reports, 2016, 6: 24192. |
137 | AOI Y, EPSTEIN S. New devices for cultivation[M/OL]//Manual of environmental microbiology. 4th Edition. Washington, DC, USA: ASM Press, 2015: 2.1.3[2023-09-01]. . |
138 | CAO J L, KÜRSTEN D, SCHNEIDER S, et al. Uncovering toxicological complexity by multi-dimensional screenings in microsegmented flow: modulation of antibiotic interference by nanoparticles[J]. Lab on a Chip, 2012, 12(3): 474-484. |
139 | CHEN D L, LI L, REYES S, et al. Using three-phase flow of immiscible liquids to prevent coalescence of droplets in microfluidic channels: criteria to identify the third liquid and validation with protein crystallization[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2007, 23(4): 2255-2260. |
140 | CHEN D L, ISMAGILOV R F. Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening[J]. Current Opinion in Chemical Biology, 2006, 10(3): 226-231. |
141 | SHUI L L, EIJKEL J C T, VAN DEN BERG A. Multiphase flow in microfluidic systems-control and applications of droplets and interfaces[J]. Advances in Colloid and Interface Science, 2007, 133(1): 35-49. |
142 | BETTS J I, BAGANZ F. Miniature bioreactors: current practices and future opportunities[J]. Microbial Cell Factories, 2006, 5: 21. |
143 | GARCIA-OCHOA F, GOMEZ E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview[J]. Biotechnology Advances, 2009, 27(2): 153-176. |
144 | DUETZ W A. Microtiter plates as mini-bioreactors: miniaturization of fermentation methods[J]. Trends in Microbiology, 2007, 15(10): 469-475. |
145 | ZIMMERMANN H F, JOHN G T, TRAUTHWEIN H, et al. Rapid evaluation of oxygen and water permeation through microplate sealing tapes[J]. Biotechnology Progress, 2003, 19(3): 1061-1063. |
146 | DUETZ W A, RÜEDI L, HERMANN R, et al. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates[J]. Applied and Environmental Microbiology, 2000, 66(6): 2641-2646. |
147 | MARQUES M P C, CABRAL J M S, FERNANDES P. Bioprocess scale-up: quest for the parameters to be used as criterion to move from microreactors to lab-scale[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(9): 1184-1198. |
148 | WEWETZER S J, KUNZE M, LADNER T, et al. Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors[J]. Journal of Biological Engineering, 2015, 9: 9. |
149 | FUNKE M, DIEDERICHS S, KENSY F, et al. The baffled microtiter plate: increased oxygen transfer and improved online monitoring in small scale fermentations[J]. Biotechnology and Bioengineering, 2009, 103(6): 1118-1128. |
150 | KLÖCKNER W, BÜCHS J. Advances in shaking technologies[J]. Trends in Biotechnology, 2012, 30(6): 307-314. |
151 | KUMAR S, WITTMANN C, HEINZLE E. Review: minibioreactors[J]. Biotechnology Letters, 2004, 26(1): 1-10. |
152 | BÜCHS J. Introduction to advantages and problems of shaken cultures[J]. Biochemical Engineering Journal, 2001, 7(2): 91-98. |
153 | WITTMANN C, KIM H M, JOHN G, et al. Characterization and application of an optical sensor for quantification of dissolved O2 in shake-flasks[J]. Biotechnology Letters, 2003, 25(5): 377-380. |
154 | TAKAHASHI M, AOYAGI H. Practices of shake-flask culture and advances in monitoring CO2 and O2 [J]. Applied Microbiology and Biotechnology, 2018, 102(10): 4279-4289. |
155 | WARR S R C. Microbioreactors and scale-down models: growth of CHO cells using the pall micro24 microreactor system[M/OL]// Methods in molecular biology: animal cell biotechnology. Totowa, NJ: Humana Press, 2014, 1104: 149-165 [2023-09-01]. . |
156 | RAMIREZ-VARGAS R, VITAL-JACOME M, CAMACHO-PEREZ E, et al. Characterization of oxygen transfer in a 24-well microbioreactor system and potential respirometric applications[J]. Journal of Biotechnology, 2014, 186: 58-65. |
157 | BETTS J I, DOIG S D, BAGANZ F. Characterization and application of a miniature 10 mL stirred-tank bioreactor, showing scale-down equivalence with a conventional 7 L reactor[J]. Biotechnology Progress, 2006, 22(3): 681-688. |
158 | HORTSCH R, STRATMANN A, WEUSTER-BOTZ D. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms[J]. Biotechnology and Bioengineering, 2010, 106(3): 443-451. |
159 | KARIMI A, GOLBABAEI F, MEHRNIA M R, et al. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes[J]. Iranian Journal of Environmental Health Science & Engineering, 2013, 10(1): 6. |
160 | AMER M, FENG Y, RAMSEY J D. Using CFD simulations and statistical analysis to correlate oxygen mass transfer coefficient to both geometrical parameters and operating conditions in a stirred-tank bioreactor[J]. Biotechnology Progress, 2019, 35(3): e2785. |
161 | 丁宁, 李超, 白力, 等. 机械搅拌式动物细胞反应器不同桨型组合的CFD数值模拟与优化[J]. 生物工程学报, 2020, 36(6): 1209-1215. |
DING N, LI C, BAI L, et al. Numerical simulation and optimization of impeller combination used in stirred bioreactor[J]. Chinese journal of biotechnology, 2020, 36(6): 1209-1215. | |
162 | LATTERMANN C, BÜCHS J. Microscale and miniscale fermentation and screening[J]. Current Opinion in Biotechnology, 2015, 35: 1-6. |
163 | RIEDLBERGER P, WEUSTER-BOTZ D. New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis[J]. Bioresource Technology, 2012, 106: 138-146. |
164 | WARR S. Ambr®15 microbioreactors for CHO cell cultivation[M/OL]// Methods in molecular biology: animal cell biotechnology. New York: Humana Press, 2020, 2095: 43-67 [2023-09-01]. . |
165 | ZHOU C J, XIE B Q, LI S W, et al. Rapid measurement of gas diffusivity in liquids using a tube-in-tube reactor with an unsteady-state strategy[J]. AIChE Journal, 2020, 66(11): e17015. |
166 | ZWEIGERDT R, ANDRÉE B, KROPP C, et al. Bioreactors for expansion of pluripotent stem cells and their differentiation to cardiac cells[M/OL]//Bioreactors: design, operation and novel applications. New York:John Wiley & Sons, 2016: 175-200 [2023-09-01]. . |
167 | ASK M, STOCKS S M. Aerobic bioreactors: condensers, evaporation rates, scale-up and scale-down[J]. Biotechnology Letters, 2022, 44(7): 813-822. |
168 | NEUBAUER P, JUNNE S. Scale-up and scale-down methodologies for bioreactors[M/OL]// Bioreactors: design, operation and novel applications, New York:John Wiley & Sons, 2016: 323-354 [2023-09-01]. . |
169 | HEYMAN B, TULKE H, PUTRI S P, et al. Online monitoring of the respiratory quotient reveals metabolic phases during microaerobic 2,3-butanediol production with Bacillus licheniformis [J]. Engineering in Life Sciences, 2020, 20(3/4): 133-144. |
170 | LI X Y, YU C, YAO J M, et al. An online respiratory quotient-feedback strategy of feeding yeast extract for efficient arachidonic acid production by Mortierella alpina [J]. Frontiers in Bioengineering and Biotechnology, 2018, 5: 83. |
171 | 庄英萍, 田锡炜, 张嗣良. 基于多尺度参数相关分析的细胞培养过程优化与放大[J]. 生物产业技术, 2018(1): 49-55. |
ZHUANG Y P, TIAN X W, ZHANG S L. Cell culture process optimization and scale-up based on multi-scale parameter related analysis[J]. Biotechnology & Business, 2018(1): 49-55. | |
172 | 储炬, 杭海峰, 庄英萍. 工业微生物发酵过程放大策略[J]. 生物产业技术, 2009(4): 68-72. |
CHU J, HANG H F, ZHUANG Y P. Scale-up strategy of industrial microbial fermentation process[J]. Biotechnology & Business, 2009(4): 68-72. | |
173 | KUNERT R, REINHART D. Advances in recombinant antibody manufacturing[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3451-3461. |
174 | SCARFF M, ARNOLD S A, HARVEY L M, et al. Near infrared spectroscopy for bioprocess monitoring and control: current status and future trends[J]. Critical Reviews in Biotechnology, 2006, 26(1): 17-39. |
175 | BUCKLEY K, RYDER A G. Applications of Raman spectroscopy in biopharmaceutical manufacturing: a short review[J]. Applied Spectroscopy, 2017, 71(6): 1085-1116. |
176 | DE BEER T R M, BODSON C, DEJAEGHER B, et al. Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48(3): 772-779. |
177 | DE BEER T, BURGGRAEVE A, FONTEYNE M, et al. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes[J]. International Journal of Pharmaceutics, 2011, 417(1/2): 32-47. |
178 | JIANG J J, YANG G Y, MA F Q. Fluorescence coupling strategies in fluorescence-activated droplet sorting (FADS) for ultrahigh-throughput screening of enzymes, metabolites, and antibodies[J]. Biotechnology Advances, 2023, 66: 108173. |
179 | RUNNING J A, BANSAL K. Oxygen transfer rates in shaken culture vessels from Fernbach flasks to microtiter plates[J]. Biotechnology and Bioengineering, 2016, 113(8): 1729-1735. |
[1] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[2] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[3] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[4] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[5] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[6] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[7] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[8] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[9] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[10] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[11] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[12] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[13] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[14] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[15] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||