Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (2): 254-266.DOI: 10.12211/2096-8280.2023-060
• Invited Review • Previous Articles Next Articles
Huiyang TU1,2, Weidong HAN1, Bin ZHANG3
Received:
2023-08-25
Revised:
2023-11-12
Online:
2024-04-28
Published:
2024-04-30
Contact:
Bin ZHANG
涂辉阳1,2, 韩为东1, 张斌3
通讯作者:
张斌
作者简介:
CLC Number:
Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines[J]. Synthetic Biology Journal, 2024, 5(2): 254-266.
涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-060
1 | BI K, HE M X, BAKOUNY Z, et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma[J]. Cancer Cell, 2021, 39(5): 649-661. e5. |
2 | ZHANG J E, FAN B A, CAO G L, et al. Direct presentation of tumor-associated antigens to induce adaptive immunity by personalized dendritic cell-mimicking nanovaccines[J]. Advanced Materials, 2022, 34(47): 2205950. |
3 | LINETTE G P, STADTMAUER E A, MAUS M V, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma[J]. Blood, 2013, 122(6): 863-871. |
4 | SNYDER A, MAKAROV V, MERGHOUB T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma[J]. The New England Journal of Medicine, 2014, 371(23): 2189-2199. |
5 | SCHUMACHER T N, SCHREIBER R D. Neoantigens in cancer immunotherapy[J]. Science, 2015, 348(6230): 69-74. |
6 | CARRENO B M, MAGRINI V, BECKER-HAPAK M, et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells[J]. Science, 2015, 348(6236): 803-808. |
7 | DOLGIN E. Personalized cancer vaccines pass first major clinical test[J]. Nature Reviews Drug Discovery, 2023, 22(8): 607-609. |
8 | PENG M, MO Y Z, WANG Y A, et al. Neoantigen vaccine: an emerging tumor immunotherapy[J]. Molecular Cancer, 2019, 18(1): 128. |
9 | XIE N, SHEN G B, GAO W, et al. Neoantigens: promising targets for cancer therapy[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 9. |
10 | YANG W, LEE K W, SRIVASTAVA R M, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses[J]. Nature Medicine, 2019, 25(5): 767-775. |
11 | LEVY R, REGEV T A, PAES W, et al. Large-scale immunopeptidome analysis reveals recurrent posttranslational splicing of cancer- and immune-associated genes[J]. Molecular & Cellular Proteomics, 2023, 22(4): 100519. |
12 | PLATTEN M, BUNSE L, WICK A, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma[J]. Nature, 2021, 592(7854): 463-468. |
13 | TURAJLIC S, LITCHFIELD K, XU H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis[J]. The Lancet Oncology, 2017, 18(8): 1009-1021. |
14 | OKA M, XU L, SUZUKI T, et al. Aberrant splicing isoforms detected by full-length transcriptome sequencing as transcripts of potential neoantigens in non-small cell lung cancer[J]. Genome Biology, 2021, 22(1): 9. |
15 | LINS L, THOMAS A, BRASSEUR R. Analysis of accessible surface of residues in proteins[J]. Protein Science, 2003, 12(7): 1406-1417. |
16 | PELLEQUER J L, WESTHOF E. PREDITOP: a program for antigenicity prediction[J]. Journal of Molecular Graphics, 1993, 11(3): 204-210. |
17 | ALIX A J P. Predictive estimation of protein linear epitopes by using the program PEOPLE[J]. Vaccine, 1999, 18(3/4): 311-314. |
18 | JESPERSEN M C, PETERS B, NIELSEN M, et al. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes[J]. Nucleic Acids Research, 2017, 45(W1): W24-W29. |
19 | SAHA S, RAGHAVA G P S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network[J]. Proteins, 2006, 65(1): 40-48. |
20 | SINGH H, ANSARI H R, RAGHAVA G P S. Improved method for linear B-cell epitope prediction using antigen’s primary sequence[J]. PLoS One, 2013, 8(5): e62216. |
21 | FLERI W, PAUL S, DHANDA S K, et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design[J]. Frontiers in Immunology, 2017, 8: 278. |
22 | CALIS J J A, REININK P, KELLER C, et al. Role of peptide processing predictions in T cell epitope identification: contribution of different prediction programs[J]. Immunogenetics, 2015, 67(2): 85-93. |
23 | LARSEN M V, LELIC A, PARSONS R, et al. Identification of CD8+ T cell epitopes in the West Nile virus polyprotein by reverse-immunology using NetCTL[J]. PLoS One, 2010, 5(9): e12697. |
24 | LUNDEGAARD C, LAMBERTH K, HARNDAHL M, et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class Ⅰ affinities for peptides of length 8-11[J]. Nucleic Acids Research, 2008, 36(S2): W509-W512. |
25 | REYNISSON B, ALVAREZ B, PAUL S, et al. NetMHCpan-4. 1 and NetMHCⅡpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data[J]. Nucleic Acids Research, 2020, 48(W1): W449-W454. |
26 | GARCIA-GARIJO A, FAJARDO C A, GROS A. Determinants for neoantigen identification[J]. Frontiers in Immunology, 2019, 10: 1392. |
27 | GOPANENKO A V, KOSOBOKOVA E N, KOSORUKOV V S. Main strategies for the identification of neoantigens[J]. Cancers, 2020, 12(10): 2879. |
28 | RICHARD G, PRINCIOTTA M F, BRIDON D, et al. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy[J]. Expert Review of Vaccines, 2022, 21(2): 173-184. |
29 | RILEY T P, KELLER G L J, SMITH A R, et al. Structure based prediction of neoantigen immunogenicity[J]. Frontiers in Immunology, 2019, 10: 2047. |
30 | LI F G, DENG L G, JACKSON K R, et al. Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations [J]. Journal for ImmunoTherapy of Cancer, 2021: 9(7): e002531. |
31 | OTT P A, HU Z T, KESKIN D B, et al. An immunogenic personal neoantigen vaccine for patients with melanoma[J]. Nature, 2017, 547(7662): 217-221. |
32 | SHUKLA G S, OLSON W C, PERO S C, et al. Vaccine-draining lymph nodes of cancer patients for generating anti-cancer antibodies[J]. Journal of Translational Medicine, 2017, 15(1): 180. |
33 | CHEN X T, YANG J, WANG L F, et al. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives[J]. Theranostics, 2020, 10(13): 6011-6023. |
34 | MALONIS R J, LAI J R, VERGNOLLE O. Peptide-based vaccines: current progress and future challenges[J]. Chemical Reviews, 2020, 120(6): 3210-3229. |
35 | MITTENDORF E A, LU B, MELISKO M, et al. Efficacy and safety analysis of Nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase Ⅲ clinical trial[J]. Clinical Cancer Research, 2019, 25(14): 4248-4254. |
36 | LAI C H, DUAN S L, YE F, et al. The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide[J]. Theranostics, 2018, 8(6): 1723-1739. |
37 | FLORES VEGA Y I, PÁRAMO GONZÁLEZ D L, ALSINA SARMIENTO S C, et al. Survival of NSCLC patients treated with cimavax-EGF as switch maintenance in the real-world scenario[J]. Journal of Cancer, 2023, 14(5): 874-879. |
38 | PANDYA A, SHAH Y, KOTHARI N, et al. The future of cancer immunotherapy: DNA vaccines leading the way[J]. Medical Oncology, 2023, 40(7): 200. |
39 | DUPERRET E K, PERALES-PUCHALT A, STOLTZ R, et al. A synthetic DNA, multi-neoantigen vaccine drives predominately MHC class Ⅰ CD8+ T-cell responses, impacting tumor challenge[J]. Cancer Immunology Research, 2019, 7(2): 174-182. |
40 | YANG X Y, FAN J S, WU Y, et al. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37: 102443. |
41 | BAUMAN J, BURRIS H, CLARKE J, et al. 798 Safety, tolerability, and immunogenicity of mRNA-4157 in combination with pembrolizumab in subjects with unresectable solid tumors (KEYNOTE-603): an update[J]. Journal for ImmunoTherapy of Cancer, 2020: 8(): A477. |
42 | CAFRI G, GARTNER J J, ZAKS T, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer[J]. The Journal of Clinical Investigation, 2020, 130(11): 5976-5988. |
43 | WCULEK S K, CUETO F J, MUJAL A M, et al. Dendritic cells in cancer immunology and immunotherapy[J]. Nature Reviews Immunology, 2020, 20(1): 7-24. |
44 | FU C M, ZHOU L, MI Q S, et al. DC-based vaccines for cancer immunotherapy[J]. Vaccines, 2020, 8(4): 706. |
45 | KANTOFF P W, HIGANO C S, SHORE N D, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer[J]. New England Journal of Medicine, 2010, 363(5): 411-422. |
46 | DING Z Y, LI Q, ZHANG R, et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer[J]. Signal Transduction and Targeted Therapy, 2021, 6: 26. |
47 | KESKIN D B, ANANDAPPA A J, SUN J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ⅰb glioblastoma trial[J]. Nature, 2019, 565(7738): 234-239. |
48 | DROLET M, BÉNARD É, PÉREZ N, et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis[J]. Lancet, 2019, 394(10197): 497-509. |
49 | GUARDO A C, JOE P T, MIRALLES L, et al. Preclinical evaluation of an mRNA HIV vaccine combining rationally selected antigenic sequences and adjuvant signals (HTI-TriMix)[J]. AIDS, 2017, 31(3): 321-332. |
50 | HARRIS R C, CHIANESE-BULLOCK K A, PETRONI G R, et al. The vaccine-site microenvironment induced by injection of incomplete Freund’s adjuvant, with or without melanoma peptides[J]. Journal of Immunotherapy, 2012, 35(1): 78-88. |
51 | WELLS D K, VAN BUUREN M M, DANG K K, et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction[J]. Cell, 2020, 183(3): 818-834. e13. |
52 | ZHOU C, WEI Z T, ZHANG Z B, et al. pTuneos: prioritizing tumor neoantigens from next-generation sequencing data[J]. Genome Medicine, 2019, 11(1): 67. |
53 | HU Y, WANG Z Q, HU H L, et al. ACME: pan-specific peptide-MHC class Ⅰ binding prediction through attention-based deep neural networks[J]. Bioinformatics, 2019, 35(23): 4946-4954. |
54 | LU T S, ZHANG Z, ZHU J, et al. Deep learning-based prediction of the T cell receptor-antigen binding specificity[J]. Nature Machine Intelligence, 2021, 3(10): 864-875. |
55 | ZAMANI P, TEYMOURI M, NIKPOOR A R, et al. Nanoliposomal vaccine containing long multi-epitope peptide E75-AE36 pulsed PADRE-induced effective immune response in mice TUBO model of breast cancer[J]. European Journal of Cancer, 2020, 129: 80-96. |
56 | LI L J, ZHANG X L, WANG X L, et al. Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation[J]. Genome Medicine, 2021, 13(1): 56. |
57 | TRAN T A T, KIM Y H, KIM G E, et al. The long multi-epitope peptide vaccine combined with adjuvants improved the therapeutic effects in a glioblastoma mouse model[J]. Frontiers in Immunology, 2022, 13: 1007285. |
58 | CHEN J J, YE Z F, HUANG C F, et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(34): e2207841119. |
59 | BONEHILL A, HEIRMAN C, TUYAERTS S, et al. Efficient presentation of known HLA class Ⅱ-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class Ⅱ-associated invariant chain peptide[J]. Cancer Research, 2003, 63(17): 5587-5594. |
60 | BONEHILL A, HEIRMAN C, THIELEMANS K. Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy[J]. The Journal of Gene Medicine, 2005, 7(6): 686-695. |
61 | DIEBOLD S S, COTTEN M, KOCH N, et al. MHC class Ⅱ presentation of endogenously expressed antigens by transfected dendritic cells[J]. Gene Therapy, 2001, 8(6): 487-493. |
62 | KREITER S, SELMI A, DIKEN M, et al. Increased antigen presentation efficiency by coupling antigens to MHC class Ⅰ trafficking signals[J]. Journal of Immunology, 2008, 180(1): 309-318. |
63 | WANG Z, ZHANG T T, ANDERSON A, et al. Immortalized B cells transfected with mRNA of antigen fused to MITD (IBMAM): An effective tool for antigen-specific T-cell expansion and TCR validation[J]. Biomedicines, 2023, 11(3): 796. |
64 | ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963): 144-150. |
65 | SAHIN U, DERHOVANESSIAN E, MILLER M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer[J]. Nature, 2017, 547(7662): 222-226. |
66 | KARIKÓ K, BHUYAN P, CAPODICI J, et al. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3[J]. The Journal of Immunology, 2004, 172(11): 6545-6549. |
67 | KARIKÓ K, BUCKSTEIN M, NI H P, et al. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA[J]. Immunity, 2005, 23(2): 165-175. |
68 | MARTÍNEZ-SÁEZ N, SUPEKAR N T, WOLFERT M A, et al. Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment[J]. Chemical Science, 2016, 7(3): 2294-2301. |
69 | GRÜNEWALD J, HUNT G S, DONG L Q, et al. Mechanistic studies of the immunochemical termination of self-tolerance with unnatural amino acids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(11): 4337-4342. |
70 | LIU Y, TANG L, GAO N N, et al. Synthetic MUC1 breast cancer vaccine containing a toll-like receptor 7 agonist exerts antitumor effects[J]. Oncology Letters, 2020, 20(3): 2369-2377. |
71 | CHENG F R, SU T, ZHOU S R, et al. Single-dose injectable nanovaccine-in-hydrogel for robust immunotherapy of large tumors with abscopal effect[J]. Science Advances, 2023, 9(28): eade6257. |
72 | CHENG Q A, WEI T, FARBIAK L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing[J]. Nature Nanotechnology, 2020, 15(4): 313-320. |
73 | WEI T, CHENG Q, MIN Y L, et al. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing[J]. Nature Communications, 2020, 11: 3232. |
74 | KISSICK H T, SANDA M G, DUNN L K, et al. Immunization with a peptide containing MHC class Ⅰ and Ⅱ epitopes derived from the tumor antigen SIM2 induces an effective CD4 and CD8 T-cell response[J]. PLoS One, 2014, 9(4): e93231. |
75 | ANDTBACKA R H I, KAUFMAN H L, COLLICHIO F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma[J]. Journal of Clinical Oncology, 2015, 33(25): 2780-2788. |
76 | D’ALISE A M, BRASU N, DE INTINIS C, et al. Adenoviral-based vaccine promotes neoantigen-specific CD8+ T cell stemness and tumor rejection[J]. Science Translational Medicine, 2022, 14(657): eabo7604. |
77 | WEISS A M, HOSSAINY S, ROWAN S J, et al. Immunostimulatory polymers as adjuvants, immunotherapies, and delivery systems[J]. Macromolecules, 2022, 55(16): 6913-6937. |
78 | PALMER D H, VALLE J W, MA Y T, et al. TG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas (CT TG01-01): a single-arm, phase 1/2 trial[J]. British Journal of Cancer, 2020, 122(7): 971-977. |
79 | CLANCY-THOMPSON E, KING L K, NUNNLEY L D, et al. Peptide vaccination in Montanide adjuvant induces and GM-CSF increases CXCR3 and cutaneous lymphocyte antigen expression by tumor antigen-specific CD8 T cells[J]. Cancer Immunology Research, 2013, 1(5): 332-339. |
80 | TSUJI T, SABBATINI P, JUNGBLUTH A A, et al. Effect of Montanide and poly-ICLC adjuvant on human self/tumor antigen-specific CD4+ T cells in phase Ⅰ overlapping long peptide vaccine trial[J]. Cancer Immunology Research, 2013, 1(5): 340-350. |
81 | LIU J Q, ZHANG C X, ZHANG X F, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy[J]. Journal of Controlled Release, 2022, 345: 306-313. |
82 | WENG M T, YANG S F, LIU S Y, et al. In situ vaccination followed by intramuscular poly-ICLC injections for the treatment of hepatocellular carcinoma in mouse models[J]. Pharmacological Research, 2023, 188: 106646. |
83 | PARMIANI G, CASTELLI C, PILLA L, et al. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients[J]. Annals of Oncology, 2007, 18(2): 226-232. |
84 | GONZALEZ G, CROMBET T, TORRES F, et al. Epidermal growth factor-based cancer vaccine for non-small-cell lung cancer therapy[J]. Annals of Oncology, 2003, 14(3): 461-466. |
85 | MENEVEAU MAX O, PANKAJ K, LYNCH KEVIN T, et al. The vaccine-site microenvironment: impacts of antigen, adjuvant, and same-site vaccination on antigen presentation and immune signaling[J]. Journal for Immunotherapy of Cancer, 2022, 10(3): e003533. |
86 | SAHIN U, OEHM P, DERHOVANESSIAN E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma[J]. Nature, 2020, 585(7823): 107-112. |
87 | LIU L N, WANG Y H, MIAO L, et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer[J]. Molecular Therapy, 2018, 26(1): 45-55. |
88 | TOSCH C, BASTIEN B, BARRAUD L, et al. Viral based vaccine TG4010 induces broadening of specific immune response and improves outcome in advanced NSCLC[J]. Journal for Immunotherapy of Cancer, 2017, 5(1): 70. |
89 | AWAD M M, GOVINDAN R, BALOGH K N, et al. Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer[J]. Cancer Cell, 2022, 40(9): 1010-1026. e11. |
90 | LIAU L M, ASHKAN K, BREM S, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial[J]. JAMA Oncology, 2023, 9(1): 112-121. |
91 | DHATCHINAMOORTHY K, COLBERT J D, ROCK K L. Cancer immune evasion through loss of MHC class Ⅰ antigen presentation[J]. Frontiers in Immunology, 2021, 12: 636568. |
92 | HU-LIESKOVAN S, MOK S, HOMET MORENO B, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma[J]. Science Translational Medicine, 2015, 7(279): 279ra41. |
93 | GABRILOVICH D I, NAGARAJ S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nature Reviews Immunology, 2009, 9(3): 162-174. |
94 | SCHUMACHER T, BUNSE L, PUSCH S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity[J]. Nature, 2014, 512(7514): 324-327. |
95 | BUNSE L, RUPP A K, POSCHKE I, et al. AMPLIFY-NEOVAC: a randomized, 3-arm multicenter phase I trial to assess safety, tolerability and immunogenicity of IDH1-vac combined with an immune checkpoint inhibitor targeting programmed death-ligand 1 in isocitrate dehydrogenase 1 mutant gliomas[J]. Neurological Research and Practice, 2022, 4(1): 20. |
96 | HSIUE E H C, WRIGHT K M, DOUGLASS J, et al. Targeting a neoantigen derived from a common TP53 mutation[J]. Science, 2021, 371(6533): eabc8697. |
97 | CHAFT J E, LITVAK A, ARCILA M E, et al. Phase Ⅱ study of the GI-4000 KRAS vaccine after curative therapy in patients with stage Ⅰ-Ⅲ lung adenocarcinoma harboring a KRAS G12C, G12D, or G12V mutation[J]. Clinical Lung Cancer, 2014, 15(6): 405-410. |
98 | GJERTSEN M K, BUANES T, ROSSELAND A R, et al. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma[J]. International Journal of Cancer, 2001, 92(3): 441-450. |
[1] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[2] | Jun ZHANG, Shixue JIN, Qian YUN, Xudong QU. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[3] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[4] | Jin FENG, Haixue PAN, Gongli TANG. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[5] | Mengyu XI, Yiling HU, Yucheng GU, Huiming GE. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
[6] | Xinjie SHI, Yiling DU. Research advances in the biosynthesis of nonribosomal peptides within the bisintercalator family as anticancer drugs [J]. Synthetic Biology Journal, 2024, 5(3): 593-611. |
[7] | Yongxiang SONG, Xiufeng ZHANG, Yanqin LI, Hua XIAO, Yan YAN. Resistance-gene directed discovery of bioactive natural products [J]. Synthetic Biology Journal, 2024, 5(3): 474-491. |
[8] | Zibin TAN, Kang LIANG, Youhai CHEN. Applications of synthetic biology in developing microbial-vectored cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 221-238. |
[9] | Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 239-253. |
[10] | Qiang ZHOU, Dawei ZHOU, Jingxiang SUN, Jingnan WANG, Wankui JIANG, Wenming ZHANG, Yujia JIANG, Fengxue XIN, Min JIANG. Research progress in synthesis of astaxanthin by microbial fermentation [J]. Synthetic Biology Journal, 2024, 5(1): 126-143. |
[11] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[12] | Junhong XIE, Jingjing HE, Penghui ZHOU. Synthetic biology and engineered T cell therapy [J]. Synthetic Biology Journal, 2023, 4(2): 373-393. |
[13] | Jiayu DONG, Min LI, Zonghua XIAO, Ming HU, Yudai MATSUDA, Weiguang WANG. Recent advances in heterologous production of natural products using Aspergillus oryzae [J]. Synthetic Biology Journal, 2022, 3(6): 1126-1149. |
[14] | Shiming TANG, Jiyuan HU, Suiping ZHENG, Shuangyan HAN, Ying LIN. Designing, building and rapid prototyping of biosynthesis module based on cell-free system [J]. Synthetic Biology Journal, 2022, 3(6): 1250-1261. |
[15] | Lu YANG, Xudong QU. Application of imine reductase in the synthesis of chiral amines [J]. Synthetic Biology Journal, 2022, 3(3): 516-529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||