Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (6): 674-684.DOI: 10.12211/2096-8280.2020-049
• Invited Review • Previous Articles Next Articles
Yong YU, Xinna ZHU, Xueli ZHANG
Received:
2020-04-16
Revised:
2020-09-25
Online:
2021-01-19
Published:
2020-12-31
Contact:
Xueli ZHANG
于勇, 朱欣娜, 张学礼
通讯作者:
张学礼
作者简介:
于勇(1992—),男,博士,博士后。研究方向为代谢工程、合成生物学。E-mail:基金资助:
CLC Number:
Yong YU, Xinna ZHU, Xueli ZHANG. Construction and application of microbial cell factories for production of bulk chemicals[J]. Synthetic Biology Journal, 2020, 1(6): 674-684.
于勇, 朱欣娜, 张学礼. 大宗化学品细胞工厂的构建与应用[J]. 合成生物学, 2020, 1(6): 674-684.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-049
Fig. 5 New osmotolerance mechanism of Escherichia coli(a) Under normal conditions (5% glucose), copper exists mostly in the form of less-toxic Cu(Ⅱ), and the CopA and Cus system was not induced; (b) Under high osmotic pressure (12% glucose), increasing free Cu(Ⅰ) in the periplasmic space activates the expression of copA, cusS, cusR and cusCFAB to expel toxic Cu(Ⅰ); (c) Under high osmotic pressure (12% glucose), expression levels of cusS and cusCFAB are increased to expel more Cu(Ⅰ) from the periplasmic space; (d) Osmotic protective substances such as methionine and cysteine can chelate valence copper ions.
1 | 于勇, 朱欣娜, 刘萍萍, 等. 微生物细胞工厂生产大宗化学品及其产业化进展[J]. 生物产业技术, 2019(1): 13-18. |
YU Y, ZHU X N, LIU P P, et al. Production of bulk chemicals through microbial cell factories and its Industrialization[J]. Biotechnology & Business, 2019(1):13-18. | |
2 | MURPHY K C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli[J]. Journal of Bacteriology, 1998, 180(8): 2063-2071. |
3 | ZHANG Y M, BUCHHOLZ F, MUYRERS J P P, et al. A new logic for DNA engineering using recombination in Escherichia coli[J]. Nature Genetics, 1998, 20(2): 123-128. |
4 | URNOV F D, REBAR E J, HOLMES M C, et al. Genome editing with engineered zinc finger nucleases[J]. Nature Reviews Genetics, 2010, 11(9): 636-646. |
5 | MILLER J C, TAN S, QIAO G, et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 2011, 29(2): 143-148. |
6 | 何庆, 王茜, 朱清华, 等. 基因组工程在微生物细胞工厂构建中的应用进展 [J]. 生物产业技术, 2017(1): 31-36. |
HE Q, WANG Q, ZHU Q H, et al. Application progress of genome engineering for construction of microbial cell factories[J]. Biotechnology & Business, 2017(1): 31-36. | |
7 | SHI S, LIANG Y, ZHANG M M, et al. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2016, 33: 19-27. |
8 | HEO M J, JUNG H M, UM J, et al. Controlling citrate synthase expression by CRISPR/Cas9 genome editing for n-butanol production in Escherichia coli[J]. ACS Synthetic Biology, 2017, 6(2): 182-189. |
9 | BASSALO M C, GARST A D, HALWEG-EDWARDS A L, et al. Rapid and efficient one-step metabolic pathway integration in E. coli[J]. ACS Synthetic Biology, 2016, 5(7): 561-568. |
10 | WASELS F, JEAN-MARIE J, COLLAS F, et al. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum[J]. Journal of Microbiol Methods, 2017, 140: 5-11. |
11 | CHO J S, CHOI K R, PRABOWO C P S, et al. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum[J]. Metabolic Engineering, 2017, 42: 157-167. |
12 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. |
13 | WANG H H, ISAACS F J, CARR P A, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257): 894-898. |
14 | PFLEGER B F, PITERA D J, SMOLKE C D, et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J]. Nature Biotechnology, 2006, 24(8): 1027-1032. |
15 | WARNER J R, REEDER P J, KARIMPOUR-FARD A, et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides[J]. Nature Biotechnology, 2010, 28(8): 856-862. |
16 | ISAACS F J, CARR P A, WANG H H, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement[J]. Science, 2011, 333(6040): 348-353. |
17 | ZHU X N, ZHAO D D, QIU H N, et al. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway[J]. Metabolic Engineering, 2017, 43: 37-45. |
18 | LEE M J, MANTELL J, HODGSON L, et al. Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm[J]. Nature Chemical Biology, 2018, 14(2): 142. |
19 | DUEBER J E, WU G C, MALMIRCHEGINI G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nature Biotechnology, 2009, 27(8): 753. |
20 | KANG W, MA T, LIU M, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10(1): 4248. |
21 | ZHANG F Z, CAROTHERS J M, KEASLING J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J]. Nature Biotechnology, 2012, 30(4): 354. |
22 | ZHANG X D. Optimal high-throughput screening: practical experimental design and data analysis for genome-scale RNAi research[M]. New York: Cambridge University Press, 2011. |
23 | SALIS H M, MIRSKY E A, VOIGT C A. Automated design of synthetic ribosome binding sites to control protein expression[J]. Nature Biotechnology, 2009, 27(10): 946-950. |
24 | KAN S B, LEWIS R D, CHEN K, et al. Directed evolution of cytochrome c for carbon-silicon bond formation: bringing silicon to life[J]. Science, 2016, 354(6315): 1048-1051. |
25 | SCHMIDL S R, EKNESS F, SOFJAN K, et al. Rewiring bacterial two-component systems by modular DNA-binding domain swapping[J]. Nature Chemical Biology, 2019, 15(7): 690-698. |
26 | SIKORA A E, TEHAN R, MCPHAIL K. Utilization of Vibrio cholerae as a model organism to screen natural product libraries for identification of new antibiotics[J]. Methods in Molecular Biology, 2018, 1839: 135-146. |
27 | LU J, TANG J L, LIU Y, et al. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization[J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2455-2462. |
28 | ZHANG X L, JANTAMA K, MOORE J C, et al. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20180-20185. |
29 | CHEN J, ZHU X N, TAN Z G, et al. Activating C-4-dicarboxylate transporters DcuB and DcuC for improving succinate production[J]. Applied Microbiology and Biotechnology, 2014, 98(5): 2197-2205. |
30 | ZHU X N, TAN Z G, XU H T, et al. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli[J]. Metabolic Engineering, 2014, 24: 87-96. |
31 | TAN Z G, CHEN J, ZHANG X L. Systematic engineering of pentose phosphate pathway improves Escherichia coli succinate production[J]. Biotechnology for Biofuels, 2016, 9: 13. |
32 | YU Y, ZHU X N, XU H T, et al. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli[J]. Metabolic Engineering, 2019, 56: 181-189. |
33 | XIAO M Y, ZHU X N, FAN F Y, et al. Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur-containing amino acids[J]. Applied and Environmental Microbiology, 2017, 83(7): 11. |
34 | 张学礼, 张冬竹. 一种高产L-丙氨酸的XZ-A26菌株及构建方法与应用: CN102329765A[P]. 2011-08-17. |
ZHANG X L, ZHANG D Z. High-yield L-alanine XZ-A26 and construction method and application thereof: CN102329765A[P]. 2011-08-17. | |
35 | 马桂燕. 2015年蛋氨酸市场回顾及2016年趋势展望[J]. 中国畜牧业, 2016(10): 50-51. |
MA G Y. Review of methionine market in 2015 and prospect of trend in 2016[J]. China Animal Industry, 2016(10): 50-51. | |
36 | 希杰L-蛋氨酸生物利用率高出40%[J]. 中国食品工业, 2015(2): 27. |
The bioavailability of CJ L-methionine was40% higher[J]. China Food, 2015(2): 27. | |
37 | HUANG J F, SHEN Z Y, MAO Q L, et al. Systematic analysis of bottlenecks in a multibranched and multilevel regulated pathway: the molecular fundamentals of L-methionine biosynthesis in Escherichia coli[J]. ACS Synthetic Biology, 2018, 7(11): 2577-2589. |
38 | DIETRICH J A, FORTMAN J L, STEEN E J. Recombinant host cells for the production of malonate: US 10472653[P]. 2019-11-12. |
39 | KNUF C, NOOKAEW I, REMMERS I, et al. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68[J]. Applied Microbiology and Biotechnology, 2014, 98(8): 3517-3527. |
40 | LI W N, MA L, SHEN X L, et al. Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production[J]. Nature Communications, 2019, 10: 8. |
41 | ZHAO M, HUANG D X, ZHANG X J, et al. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway[J]. Metabolic Engineering, 2018, 47: 254-262. |
42 | NAKAMURA C E, WHITED G M. Metabolic engineering for the microbial production of 1,3-propanediol[J]. Current Opinion in Biotechnology, 2003, 14(5): 454-459. |
43 | YIM H, HASELBECK R, NIU W, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol[J]. Nature Chemical Biology, 2011, 7(7): 445-452. |
44 | DIEN S J VAN, BURGARD A P, HASELBECK R, et al. Microorganisms for the production of1,4-butanediol and related methods: US 10273508[P]. 2019-04-30. |
45 | ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89. |
46 | SHELDON R A, PEREIRA P C. Biocatalysis engineering: the big picture[J]. Chemical Society Reviews, 2017, 46(10): 2678-2691. |
47 | 曲戈, 朱彤, 蒋迎迎, 等. 蛋白质工程:从定向进化到计算设计[J]. 生物工程学报, 2019, 35(10): 1843-1856. |
QU G, ZHU T, JIANG Y Y, et al. Protein engineering: from directed evolution to computational design[J]. Chinese Journal of Biotechnology, 2019, 35(10): 1843-1856. | |
48 | YU D, WANG J B, REETZ M T. Exploiting designed oxidase-peroxygenase mutual benefit system for asymmetric cascade reactions[J]. Journal of the American Chemical Society, 2019, 141(14): 5655-5658. |
49 | The runners-up[J]. Science, 2016, 354(6319): 1518-1523. |
50 | LEAVER-FAY A, TYKA M, LEWIS S M, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules[J]. Methods in Enzymology, 2011, 487: 545-574. |
51 | SIEGEL J B, SMITH A L, POUST S, et al. Computational protein design enables a novel one-carbon assimilation pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 3704-3709. |
52 | JIANG L, ALTHOFF E A, CLEMENTE F R, et al. De novo computational design of retro-aldol enzymes[J]. Science, 2008, 319(5868): 1387-1391. |
53 | SIEGEL J B, ZANGHELLINI A, LOVICK H M, et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction[J]. Science, 2010, 329(5989): 309-313. |
54 | LU X Y, LIU Y W, YANG Y Q, et al. Constructing a synthetic pathway for acetylcoenzyme A from one-carbon through enzyme design[J]. Nature Communications, 2019, 10(1): 1-10. |
55 | LI R, WIJMA H J, SONG L, et al. Computational redesign of enzymes for regio- and enantioselective hydroamination[J]. Nature Chemical Biology, 2018, 14(7): 664-670. |
[1] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[2] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
[3] | Zhonghu BAI, He REN, Jianqi NIE, Yang SUN. The recent progresses and applications of in-parallel fermentation technology [J]. Synthetic Biology Journal, 2023, 4(5): 904-915. |
[4] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[5] | Zhehui HU, Juan XU, Guangkai BIAN. Application of automated high-throughput technology in natural product biosynthesis [J]. Synthetic Biology Journal, 2023, 4(5): 932-946. |
[6] | Huan LIU, Qiu CUI. Advances and applications of ambient ionization mass spectrometry in screening of microbial strains [J]. Synthetic Biology Journal, 2023, 4(5): 980-999. |
[7] | Yongcan CHEN, Tong SI, Jianzhi ZHANG. Applications of automated synthetic biotechnology in DNA assembly and microbial chassis manipulation [J]. Synthetic Biology Journal, 2023, 4(5): 857-876. |
[8] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. |
[9] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[10] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[11] | Zhenzhen CHENG, Jian ZHANG, Cong GAO, Liming LIU, Xiulai CHEN. Progress in metabolic engineering of microorganisms for the utilization of formate [J]. Synthetic Biology Journal, 2023, 4(4): 756-778. |
[12] | Zhi SUN, Ning YANG, Chunbo LOU, Chao TANG, Xiaojing YANG. Rational design for functional topology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2023, 4(3): 444-463. |
[13] | Qilong LAI, Shuai YAO, Yuguo ZHA, Hong BAI, Kang NING. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials [J]. Synthetic Biology Journal, 2023, 4(3): 611-627. |
[14] | Qiaozhen MENG, Fei GUO. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example [J]. Synthetic Biology Journal, 2023, 4(3): 571-589. |
[15] | Sheng WANG, Zechen WANG, Weihua CHEN, Ke CHEN, Xiangda PENG, Fafen OU, Liangzhen ZHENG, Jinyuan SUN, Tao SHEN, Guoping ZHAO. Design of synthetic biology components based on artificial intelligence and computational biology [J]. Synthetic Biology Journal, 2023, 4(3): 422-443. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||