Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (4): 676-689.DOI: 10.12211/2096-8280.2022-020
• Invited Review • Previous Articles Next Articles
Can ZHANG1,2, Liyang SHI1,2, Jianwu DAI2,3
Received:
2022-04-08
Revised:
2022-07-11
Online:
2022-09-08
Published:
2022-08-31
Contact:
Jianwu DAI
张璨1,2, 施李杨1,2, 戴建武2,3
通讯作者:
戴建武
作者简介:
CLC Number:
Can ZHANG, Liyang SHI, Jianwu DAI. Cultured meat from biomaterials: challenges and prospects[J]. Synthetic Biology Journal, 2022, 3(4): 676-689.
张璨, 施李杨, 戴建武. 细胞培养肉用生物材料的设计[J]. 合成生物学, 2022, 3(4): 676-689.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-020
Fig. 2 (a) Myoblasts seeded on three commercial microcarriers; (b) Decellularized spinach leaf scaffold for satellite cell culture[60]; (c) Structure of commercial textured soy protein scaffold and muscle cell adhesion[61]; (d) Fabrication of muscle tissues with highly aligned myotubes using hydrogel fiber together with electrical stimulation method[62]; (e) Hydrogel combining with suspension bioprinting technology successfully assembles artificial steak[18]
1 | RUBIO N R, XIANG N, KAPLAN D L. Plant-based and cell-based approaches to meat production[J]. Nature Communications, 2020, 11(1): 6276. |
2 | BENJAMINSON M A, GILCHRIEST J A, LORENZ M. In vitro edible muscle protein production system (MPPS): stage 1, fish[J]. Acta Astronautica, 2002, 51(12): 879-889. |
3 | CAPPER J L. The environmental impact of beef production in the United States: 1977 compared with 2007[J]. Journal of Animal Science, 2011, 89(12): 4249-4261. |
4 | GODFRAY H C J, AVEYARD P, GARNETT T, et al. Meat consumption, health, and the environment[J]. Science, 2018, 361(6399): eaam5324. |
5 | GERBER P J, STEINFELD H, HENDERSON B. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities[M]. Food and Agriculture Organization of the United Nations (FAO), 2013: 24-36. |
6 | TONSOR G T, OLYNK N J. Impacts of animal well-being and welfare media on meat demand[J]. Journal of Agricultural Economics, 2011, 62(1): 59-72. |
7 | JONES B A, GRACE D, KOCK R, et al. Zoonosis emergence linked to agricultural intensification and environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8399-8404. |
8 | LARSSON S C, WOLK A. Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies[J]. International Journal of Cancer, 2006, 119(11): 2657-2664. |
9 | WOLK A. Potential health hazards of eating red meat[J]. Journal of Internal Medicine, 2017, 281(2): 106-122. |
10 | POST M J. Cultured meat from stem cells: challenges and prospects[J]. Meat Science, 2012, 92(3): 297-301. |
11 | TILMAN D, CLARK M, WILLIAMS D R, et al. Future threats to biodiversity and pathways to their prevention[J]. Nature, 2017, 546(7656): 73-81. |
12 | POST M J. Cultured beef: medical technology to produce food[J]. Journal of the Science of Food and Agriculture, 2014, 94(6): 1039-1041. |
13 | GAYDHANE M K, MAHANTA U, SHARMA C S, et al. Cultured meat: state of the art and future[J]. Biomanufacturing Reviews, 2018, 3(1): 1-10. |
14 | DATAR I, BETTI M. Possibilities for an in vitro meat production system[J]. Innovative Food Science & Emerging Technologies, 2010, 11(1): 13-22. |
15 | 韩亮, 万俊毅. 人造肉对传统肉的可替代性:回顾与展望[J]. 新疆农垦经济, 2021(12): 74-83. |
HAN L, WAN J Y. The substitution of artificial meat for traditional meat: review and prospect[J]. Xinjiang State Farms Economy, 2021(12): 74-83. | |
16 | 赵鑫锐, 王志新, 邓宇, 等. 人造肉生产技术相关专利分析[J]. 食品与发酵工业, 2020, 46(5): 299-305. |
ZHAO X R, WANG Z X, DENG Y, et al. The analysis of patents related to the production of artificial meat[J]. Food and Fermentation Industries, 2020, 46(5): 299-305. | |
17 | 周光宏, 丁世杰, 徐幸莲. 培养肉的研究进展与挑战[J]. 中国食品学报, 2020, 20(5): 1-11. |
ZHOU G H, DING S J, XU X L. Progress and challenges in cultured meat[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(5): 1-11. | |
18 | KANG D H, LOUIS F, LIU H, et al. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting[J]. Nature Communications, 2021, 12: 5059. |
19 | 李玉娟, 傅雄飞, 杜立. 细胞培养肉商业化的法律规范与监管:外国经验及对我国启示[J]. 合成生物学, 2022, 3(1): 209-223. |
LI Y J, FU X F, DU L. Regulating the commercialization of cell-cultured meat: practices in selected jurisdictions and their implications for China[J]. Synthetic Biology Journal, 2022, 3(1): 209-223. | |
20 | GUAN X, ZHOU J W, DU G C, et al. Bioprocessing technology of muscle stem cells: implications for cultured meat[J]. Trends in Biotechnology, 2022, 40(6): 721-734. |
21 | RAMBOER E, DE CRAENE B, DE KOCK J, et al. Strategies for immortalization of primary hepatocytes[J]. Journal of Hepatology, 2014, 61(4): 925-943. |
22 | GERAGHTY R J, CAPES-DAVIS A, DAVIS J M, et al. Guidelines for the use of cell lines in biomedical research[J]. British Journal of Cancer, 2014, 111(6): 1021-1046. |
23 | CHOI K H, YOON J W, KIM M, et al. Muscle stem cell isolation and in vitro culture for meat production: a methodological review[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(1): 429-457. |
24 | ISHII K, SUZUKI N, MABUCHI Y, et al. Technical advantage of recombinant collagenase for isolation of muscle stem cells[J]. Regenerative Therapy, 2017, 7: 1-7. |
25 | BEKOFF A, BETZ W. Properties of isolated adult rat muscle fibres maintained in tissue culture[J]. The Journal of Physiology, 1977, 271(2): 537-547. |
26 | PASUT A, JONES A E, RUDNICKI M A. Isolation and culture of individual myofibers and their satellite cells from adult skeletal muscle[J]. Journal of Visualized Experiments, 2013(73): e50074. |
27 | DI FOGGIA V, ROBSON L. Isolation of satellite cells from single muscle fibers from young, aged, or dystrophic muscles[J]. Methods in Molecular Biology, 2012, 916: 3-14. |
28 | GHARAIBEH B, LU A P, TEBBETS J, et al. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique[J]. Nature Protocols, 2008, 3(9): 1501-1509. |
29 | DING S J, WANG F, LIU Y, et al. Characterization and isolation of highly purified porcine satellite cells[J]. Cell Death Discovery, 2017, 3: 17003. |
30 | ARSHAD M S, JAVED M, SOHAIB M, et al. Tissue engineering approaches to develop cultured meat from cells: a mini review[J]. Cogent Food & Agriculture, 2017, 3(1): 1320814. |
31 | GARCIA S M, TAMAKI S, LEE S, et al. High-yield purification, preservation, and serial transplantation of human satellite cells[J]. Stem Cell Reports, 2018, 10(3): 1160-1174. |
32 | XU C, TABEBORDBAR M, IOVINO S, et al. A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species[J]. Cell, 2013, 155(4): 909-921. |
33 | DING S J, SWENNEN G N M, MESSMER T, et al. Maintaining bovine satellite cells stemness through p38 pathway[J]. Scientific Reports, 2018, 8: 10808. |
34 | JUDSON R N, QUARTA M, OUDHOFF M J, et al. Inhibition of methyltransferase Setd7 allows the in vitro expansion of myogenic stem cells with improved therapeutic potential[J]. Cell Stem Cell, 2018, 22(2): 177-190.e7. |
35 | GILBERT P M, HAVENSTRITE K L, MAGNUSSON K E G, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture[J]. Science, 2010, 329(5995): 1078-1081. |
36 | BOONEN K J M, ROSARIA-CHAK K Y, BAAIJENS F P T, et al. Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation[J]. American Journal of Physiology Cell Physiology, 2009, 296(6): C1338-C1345. |
37 | WARNER R D. Review: analysis of the process and drivers for cellular meat production[J]. Animal, 2019, 13(12): 3041-3058. |
38 | BUTLER M. Serum and protein free media[M]// SCHWAMB S, PUSKEILER R, WIEDEMANN P. Animal cell culture. Springer, 2015: 223-236. |
39 | BEERS J, GULBRANSON D R, GEORGE N, et al. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions[J]. Nature Protocols, 2012, 7(11): 2029-2040. |
40 | GOTTIPAMULA S, MUTTIGI M S, KOLKUNDKAR U, et al. Serum-free media for the production of human mesenchymal stromal cells: a review[J]. Cell Proliferation, 2013, 46(6): 608-627. |
41 | VAN DER VALK J, BRUNNER D, DE SMET K, et al. Optimization of chemically defined cell culture media - replacing fetal bovine serum in mammalian in vitro methods[J]. Toxicology in Vitro, 2010, 24(4): 1053-1063. |
42 | LINDA POWERS M, FLORINI J R. A direct effect of testosterone on muscle cells in tissue culture[J]. Endocrinology, 1975, 97(4): 1043-1047. |
43 | MCALEER C W, RUMSEY J W, STANCESCU M, et al. Functional myotube formation from adult rat satellite cells in a defined serum-free system[J]. Biotechnology Progress, 2015, 31(4): 997-1003. |
44 | FLORINI J R, ROBERTS S B. A serum-free medium for the growth of muscle cells in culture[J]. In Vitro, 1979, 15(12): 983-992. |
45 | GODARA P, MCFARLAND C D, NORDON R E. Design of bioreactors for mesenchymal stem cell tissue engineering[J]. Journal of Chemical Technology & Biotechnology, 2008, 83(4): 408-420. |
46 | HIDALGO-BASTIDA L A, THIRUNAVUKKARASU S, GRIFFITHS S, et al. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications[J]. Biotechnology and Bioengineering, 2012, 109(4): 1095-1099. |
47 | 梅建国, 庄金秋, 王金良, 等. 动物细胞大规模培养技术的应用与进展[C]// 中国畜牧兽医学会兽医公共卫生学分会第三次学术研讨会. 中国畜牧兽医学会兽医公共卫生学分会, 2012. |
48 | 唐江伟, 吴振强. 新型生物反应器结构研究进展[J]. 中国生物工程杂志, 2007, 27(5): 146-152. |
TANG J W, WU Z Q. Advances in bioreactor structure innovation and related studies[J]. China Biotechnology, 2007, 27(5): 146-152. | |
49 | HOCQUETTE J F, GONDRET F, BAÉZA E, et al. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers[J]. Animal, 2010, 4(2): 303-319. |
50 | REZA M M, SUBRAMANIYAM N, SIM C M, et al. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy[J]. Nature Communications, 2017, 8(1): 1104. |
51 | VANDENBURGH H, KAUFMAN S. In vitro model for stretch-induced hypertrophy of skeletal muscle[J]. Science, 1979, 203(4377): 265-268. |
52 | DENNIS R G, KOSNIK P E. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro [J]. In Vitro Cellular & Developmental Biology Animal, 2000, 36(5): 327-335. |
53 | BAKER B M, CHEN C S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues[J]. Journal of Cell Science, 2012, 125(Pt 13): 3015-3024. |
54 | SPECHT E A, WELCH D R, REES CLAYTON E M, et al. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry[J]. Biochemical Engineering Journal, 2018, 132: 161-168. |
55 | DAWSON E, MAPILI G, ERICKSON K, et al. Biomaterials for stem cell differentiation[J]. Advanced Drug Delivery Reviews, 2008, 60(2): 215-228. |
56 | VAN HEMERT P, KILBURN D G, VAN WEZEL A L. Homogeneous cultivation of animal cells for the production of virus and virus products[J]. Biotechnology and Bioengineering, 1969, 11(5): 875-885. |
57 | LI B Y, WANG X, WANG Y, et al. Past, present, and future of microcarrier-based tissue engineering[J]. Journal of Orthopaedic Translation, 2015, 3(2): 51-57. |
58 | BODIOU V, MOUTSATSOU P, POST M J. Microcarriers for upscaling cultured meat production[J]. Frontiers in Nutrition, 2020, 7: 10. |
59 | VERBRUGGEN S, LUINING D, VAN ESSEN A, et al. Bovine myoblast cell production in a microcarriers-based system[J]. Cytotechnology, 2018, 70(2): 503-512. |
60 | JONES J D, REBELLO A S, GAUDETTE G R. Decellularized spinach: an edible scaffold for laboratory-grown meat[J]. Food Bioscience, 2021, 41: 100986. |
61 | BEN-ARYE T, SHANDALOV Y, BEN-SHAUL S, et al. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat[J]. Nature Food, 2020, 1(4): 210-220. |
62 | FURUHASHI M, MORIMOTO Y, AI S M, et al. Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak[J]. Npj Science of Food, 2021, 5: 6. |
63 | MARGA F S, PURCELL B P, FORGACS G, et al. Edible and animal-product-free microcarriers for engineered meat: US9752122[P]. 2017-09-05. |
64 | HOLLISTER S J. Porous scaffold design for tissue engineering[J]. Nature Materials, 2005, 4(7): 518-524. |
65 | WOLF M T, DEARTH C L, SONNENBERG S B, et al. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction[J]. Advanced Drug Delivery Reviews, 2015, 84: 208-221. |
66 | HOLMES J T, JABERANSARI Z, COLLINS W, et al. Homemade bread: repurposing an ancient technology for in vitro tissue engineering[J]. Biomaterials, 2022, 280: 121267. |
67 | SHI L Y, DING P H, WANG Y Z, et al. Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: design, fabrication, and biomedical applications[J]. Macromolecular Rapid Communications, 2019, 40(7): e1800837. |
68 | CALIARI S R, BURDICK J A. A practical guide to hydrogels for cell culture[J]. Nature Methods, 2016, 13(5): 405-414. |
69 | MAITRA J, SHUKLA V K. Cross-linking in hydrogels - a review[J]. American Journal of Polymer Science, 2014, 4(2): 25-31. |
70 | JEON O, SONG S J, LEE K J, et al. Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities[J]. Carbohydrate Polymers, 2007, 70(3): 251-257. |
71 | CAO Y, LEE B H, PELED H B, et al. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation[J]. Journal of Biomedical Materials Research Part A, 2016, 104(10): 2401-2411. |
72 | CHAUDHURI O. Viscoelastic hydrogels for 3D cell culture[J]. Biomaterials Science, 2017, 5(8): 1480-1490. |
73 | LIU X, GAO Y, LONG X, et al. Type I collagen promotes the migration and myogenic differentiation of C2C12 myoblasts via the release of interleukin-6 mediated by FAK/NF-κB p65 activation[J]. Food & Function, 2020, 11(1): 328-338. |
74 | HINDS S, BIAN W N, DENNIS R G, et al. The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle[J]. Biomaterials, 2011, 32(14): 3575-3583. |
75 | VANDENBURGH H, SHANSKY J, BENESCH-LEE F, et al. Drug-screening platform based on the contractility of tissue-engineered muscle[J]. Muscle & Nerve, 2008, 37(4): 438-447. |
76 | SNYMAN C, GOETSCH K P, MYBURGH K H, et al. Simple silicone chamber system for in vitro three-dimensional skeletal muscle tissue formation[J]. Frontiers in Physiology, 2013, 4: 349. |
77 | BIAN W N, BURSAC N. Engineered skeletal muscle tissue networks with controllable architecture[J]. Biomaterials, 2009, 30(7): 1401-1412. |
78 | MACQUEEN L A, ALVER C G, CHANTRE C O, et al. Muscle tissue engineering in fibrous gelatin: implications for meat analogs[J]. Npj Science of Food, 2019, 3: 20. |
79 | JIANG Q R, REDDY N, ZHANG S M, et al. Water-stable electrospun collagen fibers from a non-toxic solvent and crosslinking system[J]. Journal of Biomedical Materials Research Part A, 2013, 101(5): 1237-1247. |
80 | QU Z H, WANG H J, TANG T T, et al. Evaluation of the zein/inorganics composite on biocompatibility and osteoblastic differentiation[J]. Acta Biomaterialia, 2008, 4(5): 1360-1368. |
81 | SEAH J S H, SINGH S, TAN L P, et al. Scaffolds for the manufacture of cultured meat[J]. Critical Reviews in Biotechnology, 2022, 42(2): 311-323. |
82 | GALLO N, NASSER H, SALVATORE L, et al. Hyaluronic acid for advanced therapies: promises and challenges[J]. European Polymer Journal, 2019, 117: 134-147. |
83 | ZERNOV A, BARUCH L, MACHLUF M. Chitosan-collagen hydrogel microparticles as edible cell microcarriers for cultured meat[J]. Food Hydrocolloids, 2022, 129: 107632. |
84 | PARK S, JUNG S, HEO J, et al. Chitosan/cellulose-based porous nanofilm delivering C-phycocyanin: a novel platform for the production of cost-effective cultured meat[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 32193-32204. |
85 | NG S, KURISAWA M. Integrating biomaterials and food biopolymers for cultured meat production[J]. Acta Biomaterialia, 2021, 124: 108-129. |
86 | SCHUSTER E, WALLIN P, KLOSE F P, et al. Correlating network structure with functional properties of capillary alginate gels for muscle fiber formation[J]. Food Hydrocolloids, 2017, 72: 210-218. |
87 | TRACHE D, HUSSIN M H, HAAFIZ M K M, et al. Recent progress in cellulose nanocrystals: sources and production[J]. Nanoscale, 2017, 9(5): 1763-1786. |
88 | COURTENAY J C, JOHNS M A, GALEMBECK F, et al. Surface modified cellulose scaffolds for tissue engineering[J]. Cellulose, 2017, 24(1): 253-267. |
89 | DUGAN J M, COLLINS R F, GOUGH J E, et al. Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis[J]. Acta Biomaterialia, 2013, 9(1): 4707-4715. |
90 | ROWLEY J A, MOONEY D J. Alginate type and RGD density control myoblast phenotype[J]. Journal of Biomedical Materials Research, 2002, 60(2): 217-223. |
91 | CHANDLER E M, BERGLUND C M, LEE J S, et al. Stiffness of photocrosslinked RGD-alginate gels regulates adipose progenitor cell behavior[J]. Biotechnology and Bioengineering, 2011, 108(7): 1683-1692. |
92 | ANDRADE F K, COSTA R, DOMINGUES L, et al. Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide[J]. Acta Biomaterialia, 2010, 6(10): 4034-4041. |
93 | DAYEM A A, WON J, GOO H G, et al. The immobilization of fibronectin- and fibroblast growth factor 2-derived peptides on a culture plate supports the attachment and proliferation of human pluripotent stem cells[J]. Stem Cell Research, 2020, 43: 101700. |
94 | SILVA GARCIA J M, PANITCH A, CALVE S. Functionalization of hyaluronic acid hydrogels with ECM-derived peptides to control myoblast behavior[J]. Acta Biomaterialia, 2019, 84: 169-179. |
95 | BOMKAMP C, SKAALURE S C, FERNANDO G F, et al. Scaffolding biomaterials for 3D cultivated meat: prospects and challenges[J]. Advanced Science, 2022, 9(3): e2102908. |
96 | LUO B W, TIAN L L, CHEN N, et al. Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an in vitro model of the neuromuscular junction (NMJ)[J]. Biomaterials Science, 2018, 6(12): 3262-3272. |
97 | CHOI J S, LEE S J, CHRIST G J, et al. The influence of electrospun aligned poly(ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes[J]. Biomaterials, 2008, 29(19): 2899-2906. |
98 | RUBIO N R, FISH K D, TRIMMER B A, et al. In vitro insect muscle for tissue engineering applications[J]. ACS Biomaterials Science & Engineering, 2019, 5(2): 1071-1082. |
[1] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[2] | Zhonghu BAI, He REN, Jianqi NIE, Yang SUN. The recent progresses and applications of in-parallel fermentation technology [J]. Synthetic Biology Journal, 2023, 4(5): 904-915. |
[3] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[4] | Liyu ZHU, Yulong ZHAO, Wei LI, Libin WANG. Progress in mammalian chromosome engineering [J]. Synthetic Biology Journal, 2023, 4(2): 394-406. |
[5] | Jinyu CUI, Aidi ZHANG, Guodong LUAN, Xuefeng LYU. Engineering microalgae for photosynthetic biosynthesis: progress and prospect [J]. Synthetic Biology Journal, 2022, 3(5): 884-900. |
[6] | Jingjing LI, Chao MA, Fan WANG, Hongjie ZHANG, Kai LIU. Biosynthesis of high-performance protein materials and their applications [J]. Synthetic Biology Journal, 2022, 3(4): 638-657. |
[7] | Botao JI, Zhigang QIAN, Xiaoxia XIA. Application of cell-free synthesis strategy in biomaterial research [J]. Synthetic Biology Journal, 2022, 3(4): 658-675. |
[8] | Zhaoying YANG, Fan ZHANG, Jianwen GUO, Weiping GAO. Biosynthesis of elastin-like polypeptides and their applications in drug delivery [J]. Synthetic Biology Journal, 2022, 3(4): 728-747. |
[9] | Chengzhi SONG, Yang SUN, Yi CAO. Effects of mechanical signals on stem cell fate determination [J]. Synthetic Biology Journal, 2022, 3(4): 781-794. |
[10] | Yujuan LI, Xiongfei FU, Li DU. Regulating the commercialization of cell-cultured meat: practices in selected jurisdictions and their implications for China [J]. Synthetic Biology Journal, 2022, 3(1): 209-223. |
[11] | Jie REN, Anping ZENG. CO2 based biomanufacturing: from basic research to industrial application [J]. Synthetic Biology Journal, 2021, 2(6): 854-862. |
[12] | Liangbin XIONG, Lu SONG, Yunqiu ZHAO, Kun LIU, Yongjun LIU, Fengqing WANG, Dongzhi WEI. Green biomanufacturing of steroids: from biotransformation to de novo synthesis by microorganisms [J]. Synthetic Biology Journal, 2021, 2(6): 942-963. |
[13] | Xiaolong ZHANG, Chenyun WANG, Yanfeng LIU, Jianghua LI, Long LIU, Guocheng DU. Research progress of constructing efficient biomanufacturing system based on synthetic biotechnology [J]. Synthetic Biology Journal, 2021, 2(6): 863-875. |
[14] | Liangzhi XIE. Contributions to the booming biologics industrialization —a dedicated pioneer: Professor. Daniel I. C. Wang [J]. Synthetic Biology Journal, 2021, 2(4): 482-496. |
[15] | Yi-Heng ZHANG. Remembering Professor Daniel I.C. Wang’s contribution to biorefining and my perspective on the progress [J]. Synthetic Biology Journal, 2021, 2(4): 497-508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||