合成生物学 ›› 2021, Vol. 2 ›› Issue (2): 274-286.doi: 10.12211/2096-8280.2020-078
肖晗, 刘宜欣
收稿日期:
2020-10-06
修回日期:
2020-12-22
出版日期:
2021-04-30
发布日期:
2021-04-30
通讯作者:
肖晗
作者简介:
肖晗(1985—),女,博士,副研究员,主要从事合成生物学、基因编辑和代谢工程研究。E-mail:基金资助:
Han XIAO, Yixin LIU
Received:
2020-10-06
Revised:
2020-12-22
Online:
2021-04-30
Published:
2021-04-30
Contact:
Han XIAO
摘要:
丝状真菌是一类在蛋白分泌、活性次级代谢物生产、环境污染治理等方面起着重要作用的微生物,关于它们的各项基础和应用研究均高度依赖基因编辑平台。然而,丝状真菌的顶端生长、异核性、同源重组效率低和遗传标记匮乏等生理特点为构建这类微生物成熟的基因编辑平台带来挑战。近年来,基于RNA介导的CRISPR-Cas (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein)系统在丝状真菌中得到越来越广泛的应用。由于构成简单、靶向特异,CRISPR-Cas系统极大促进了丝状真菌的基因编辑,包括基因插入、缺失、碱基转换和转录激活等。编辑的基因包括标记基因、非筛选标记的其他功能基因、功能未知的基因,甚至多个基因。编辑的尺度包括从1个碱基变化到缺失48 kb的基因簇。此外,借助精妙的同源重组供体设计和中断宿主NHEJ的关键基因,CRISPR-Cas系统能在特定位点引入精准修饰。本文围绕CRISPR-Cas系统的递送、体内表达、同源臂设计和宿主改造几方面重点介绍了该系统编辑丝状真菌近三年的进展。转化效率低和编辑效率低是现阶段CRISPR-Cas系统编辑丝状真菌存在的问题。针对这些问题,本文还讨论了可能的解决办法,为构建丝状真菌成熟的基因编辑平台提供了思路。
中图分类号:
肖晗, 刘宜欣. CRISPR-Cas系统编辑丝状真菌的进展与挑战[J]. 合成生物学, 2021, 2(2): 274-286, doi: 10.12211/2096-8280.2020-078.
Han XIAO, Yixin LIU. Progress and challenge of the CRISPR-Cas system in gene editing for filamentous fungi[J]. Synthetic Biology Journal, 2021, 2(2): 274-286, doi: 10.12211/2096-8280.2020-078.
1 | WARD O P. Production of recombinant proteins by filamentous fungi[J]. Biotechnology Advances, 2012, 30(5): 1119-1139. |
2 | 刘剑飞, 胡留杰, 廖敦秀, 等. 食用菌生物修复重金属污染研究进展[J]. 应用生态学报,2011,22 (2): 543-548. |
LIU J F, HU L J, LIAO D X, et al. Bioremediation of heavy metal pollution by edible fungi: a review[J]. Chinese Journal of Applied Ecology, 2011, 22(2): 543-548. | |
3 | LAICH F, FIERRO F, MARTIN J F. Production of penicillin by fungi growing on food products: identification of a complete penicillin gene cluster in Penicillium griseofulvum and a truncated cluster in Penicillium verrucosum[J]. Applied and Environmental Microbiology, 2002, 68(3): 1211-1219. |
4 | BORUTA T, BIZUKOJC M. Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective[J]. World Journal of Microbiology and Biotechnology, 2017, 33(2): 34. |
5 | XU Y N, ZHONG J J. Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum[J]. Biotechnology Advances, 2012, 30(6): 1301-1308. |
6 | WANG Q, ZHONG C, XIAO H. Genetic engineering of filamentous fungi for efficient protein expression and secretion[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 293. |
7 | BRAKHAGE A A, SCHROECKH V. Fungal secondary metabolites-strategies to activate silent gene clusters[J]. Fungal Genetics and Biology, 2011, 48(1): 15-22. |
8 | KIM S, HA B S, RO H S. Current technologies and related issues for mushroom transformation[J]. Mycobiology, 2015, 43(1): 1-8. |
9 | QIN H, XIAO H, ZOU G, et al. CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species[J]. Process Biochemistry, 2017, 56: 57-61. |
10 | XU J W, XU N, ZHONG J J. Enhancement of ganoderic acid accumulation by overexpression of an N-Terminally truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase gene in the basidiomycete Ganoderma lucidum[J]. Applied and Environmental Microbiology, 2012, 78(22): 7968-7976. |
11 | BAO Z H, XIAO H, LANG J, et al. Homology-Integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2015, 4(5): 585-594. |
12 | JIANG Y, CHEN B, DUAN C L, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 System[J]. Applied and Environmental Microbiology, 2015, 81(7): 2506-2514. |
13 | NISSIM L, PERLI S D, FRIDKIN A, et al. Multiplexed and programmable regulation of gene networks with an Integrated RNA and CRISPR/Cas toolkit in human cells[J]. Molecular Cell, 2014, 54(4): 698-710. |
14 | LIU R, CHEN L, JIANG Y, et al. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system[J]. Cell Discovery, 2015, 1: 15007. |
15 | WANG P A, XIAO H, ZHONG J J. CRISPR-Cas9 assisted functional gene editing in the mushroom Ganoderma lucidum[J]. Applied and Environmental Microbiology, 2020, 104(4): 1661-1671. |
16 | SONG R, ZHAI Q, SUN L, et al. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective[J]. Appled Microbiology and Biotechnology, 2019, 103(17): 6919-6932. |
17 | YU X, JI S L, HE Y L, et al. Development of an expression plasmid and its use in genetic manipulation of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes)[J]. International Journal of Medicinal Mushrooms, 2014, 16(2): 161-168. |
18 | SAYARI M, Nest M A VAN DER, STEENKAMP E T, et al. Agrobacterium-mediated transformation of Ceratocystis albifundus[J]. Microbiological Research, 2019, 226: 55-64. |
19 | KWON M J, SCHÜTZE T, SPOHNER S, et al. Practical guidance for the implementation of the CRISPR genome editing tool in filamentous fungi[J]. Fungal Biology and Biotechnology, 2019, 6(1):15. |
20 | POHL C, KIEL J A K W, DRIESSEN A J M, et al. CRISPR/Cas9 based genome editing of Penicillium chrysogenum[J]. ACS Synthetic Biology, 2016, 5(7): 754-764. |
21 | HAO Z, SU X. Fast gene disruption in Trichoderma reesei using in vitro assembled Cas9/gRNA complex[J]. BMC Biotechnol, 2019, 19(1): 2. |
22 | WANG Q, COBINE P A, COLEMAN J J. Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes[J]. Fungal Genetics and Biology, 2018, 117: 21-29. |
23 | LI S, SONG Z, LIU C, et al. Biomimetic mineralization-based CRISPR/Cas9 ribonucleoprotein nanoparticles for gene editing[J]. ACS Applied Materials and Interfaces, 2019, 11(51): 47762-47770. |
24 | LU S, SHEN X, CHEN B. Development of an efficient vector system for gene knock-out and near in-cis gene complementation in the Sugarcane smut fungus[J]. Scientific Reports, 2017, 7(1): 3113. |
25 | SARKARI P, MARX H, BLUMHOFF M L, et al. An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger[J]. Bioresource Technology, 2017, 245: 1327-1333. |
26 | ARAZOE T, MIYOSHI K, YAMATO T, et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus[J]. Biotechnology and Bioengineering, 2015, 112(12): 2543-2549. |
27 | MATSU-URA T, BAEK M, KWON J, et al. Efficient gene editing in Neurospora crassa with CRISPR technology[J]. Fungal Biology and Biotechnology, 2015, 2(1): 4. |
28 | LIU K, SUN B, YOU H, et al. Dual sgRNA-directed gene deletion in basidiomycete Ganoderma lucidum using the CRISPR/Cas9 system[J]. Microbial Biotechnology, 2020, 13(2): 386-396. |
29 | KATAYAMA T, NAKAMURA H, ZHANG Y, et al. Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae[J]. Applied and Environmental Microbiology, 2019, 85(3): |
30 | WEBER J, VALIANTE V, NØDVIG C S, et al. Functional reconstitution of a fungal natural product gene cluster by advanced genome editing[J]. ACS Synthetic Biology, 2017, 6(1): 62-68. |
31 | HUANG L, DONG H, ZHENG J, et al. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion[J]. Microbiological Research, 2019, 223/224/225: 44-50. |
32 | ROUX I, WOODCRAFT C, HU J, et al. CRISPR-mediated activation of biosynthetic gene clusters for bioactive molecule discovery in filamentous fungi[J]. ACS Synthetic Biology, 2020, 9(7): 1843-1854. |
33 | JIMÉNEZ A, HOFF B, REVUELTA J L. Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1[J]. New Biotechnology, 2020, 57: 29-33. |
34 | VANEGAS K G, JARCZYNSKA Z D, STRUCKO T, et al. Cpf1 enables fast and efficient genome editing in Aspergilli[J]. Fungal Biology and Biotechnology, 2019, 6(1): 6. |
35 | LIU Q, ZHANG Y, LI F, et al. Upgrading of efficient and scalable CRISPR-Cas-mediated technology for genetic engineering in thermophilic fungus Myceliophthora thermophila[J]. Biotechnology for Biofuels, 2019, 12: 293. |
36 | KUIVANEN J, WANG Y M J, RICHARD P. Engineering Aspergillus niger for galactaric acid production: Elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9[J]. Microbial Cell Factories, 2016, 15(1): 210. |
37 | ZHENG Y M, LIN F L, GAO H, et al. Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology[J]. Scientific Reports, 2017, 7(1):9250. |
38 | SHI T Q, GAO J, WANG W J, et al. CRISPR/Cas9-Based genome editing in the filamentous fungus Fusarium fujikuroi and its application in strain engineering for gibberellic acid production[J]. ACS Synthetic Biology, 2019, 8(2): 445-454. |
39 | NøDVIG C S, NIELSEN J B, KOGLE M E, et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi[J]. PLoS One, 2015, 10(7): e0133085. |
40 | WENDEROTH M, PINECKER C, VOß B, et al. Establishment of CRISPR/Cas9 in Alternaria alternata[J]. Fungal Genetics and Biology, 2017, 101: 55-60. |
41 | KUJOTH G C, SULLIVAN T D, MERKHOFER R, et al. CRISPR/Cas9-mediated gene disruption reveals the importance of zinc metabolism for fitness of the dimorphic fungal pathogen Blastomyces dermatitidis [J]. mBio, 2018, 9(2): e00412-18. |
42 | ZHANG Y, OUYANG L, NAN Y, et al. Efficient gene deletion and replacement in Aspergillus niger by modified in vivo CRISPR/Cas9 systems[J]. Bioresources and Bioprocessing, 2019, 6(1): 4. |
43 | WANG Y, WEi D, ZHU X, et al. A 'suicide' CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans[J]. Scientific Reports, 2016, 6: 31145. |
44 | SCHUSTER M, SCHWEIZER G, KAHMANN R. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes[J]. Fungal Genetics and Biology, 2018, 112: 21-30. |
45 | CHUTRAKUL C, PANCHANAWAPORN S, JEENNOR S, et al. Functional characterization of novel U6 RNA polymerase III promoters: Their implication for CRISPR-Cas9-mediated gene editing in Aspergillus oryzae[J]. Current Microbiology, 2019, 76(12): 1443-1451. |
46 | WU C, CHEN Y, QIU Y, et al. A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription[J]. Biotechnology Letters, 2020, 42(7): 1203-1210. |
47 | ZHENG X, ZHENG P, ZHANG K, et al. 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger[J]. ACS Synthetic Biology, 2018, 8(7): 1568-1574. |
48 | SONG L, OUEDRAOGO J P, KOLBUSZ M, et al. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger[J]. PLoS One, 2018, 13(8): e0202868. |
49 | LEYNAUD-KIEFFER L M C, CURRAN S C, KIM I, et al. A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable[J]. PLoS One, 2019, 14(1): e0210243. |
50 | DONG L, YU D, LIN X, et al. Improving expression of thermostable trehalase from Myceliophthora sepedonium in Aspergillus niger mediated by the CRISPR/Cas9 tool and its purification, characterization[J]. Protein Expression and Purification, 2020, 165: 105482. |
51 | XIE S, WANG Y, WEI W, et al. The Bax inhibitor UvBI-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus Ustilaginoidea virens[J]. Current Genetics, 2019, 65(5): 1185-1197. |
52 | YAMATO T, HANDA A, ARAZOE T, et al. Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus[J]. Scientific Reports, 2019, 9(1): 7427. |
53 | ZHANG C, MENG X, WEI X, et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus[J]. Fungal Genetics and Biology, 2016, 86: 47-57. |
54 | DONG H, ZHENG J, YU D, et al. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes[J]. Journal of Microbiological Methods, 2019, 163: 105655. |
55 | NøDVIG C S, HOOF J B, KOGLE M E, et al. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli[J]. Fungal Genetics and Biology, 2018, 115: 78-89. |
56 | KUN R S, MENG J, SALAZAR-CEREZO S, et al. CRISPR/Cas9 facilitates rapid generation of constitutive forms of transcription factors in Aspergillus niger through specific on-site genomic mutations resulting in increased saccharification of plant biomass[J]. Enzyme and Microbial Technology, 2020, 136: 109508. |
57 | ZHANG L, ZHENG X, CAIRNS T C, et al. Disruption or reduced expression of the orotidine-5'-decarboxylase gene pyrG increases citric acid production: A new discovery during recyclable genome editing in Aspergillus niger[J]. Microbial Cell Factories, 2020, 19(1): 76. |
58 | JIANG D W, ZHU W, WANG Y C, et al. Molecular tools for functional genomics in filamentous fungi: Recent advances and new strategies[J]. Biotechnology Advances, 2013, 31(8): 1562-1574. |
59 | HAN X, LIU Z B, JO M C, et al. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation[J]. Science Advances, 2015, 1(7): e1500454. |
60 | EASTWOOD D, GREEN J, GROGAN H, et al. Viral agents causing brown cap mushroom disease of Agaricus bisporus[J]. Applied and Environmental Microbiology, 2015, 81(20): 7125-7134. |
61 | VERDOES J C, PUNT P J, BERG P VAN DER, et al. Characterization of an efficient gene cloning strategy for Aspergillus niger based on an autonomously replicating plasmid: cloning of the nicB gene of A. niger[J]. Gene, 1994, 146(2): 159-165. |
62 | SU X, SCHMITZ G, ZHANG M, et al. Heterologous gene expression in filamentous fungi[J]. Advances in Applied Microbiology, 2012, 81: 1-61. |
63 | CAIRNS T C, FEURSTEIN C, ZHENG X, et al. A quantitative image analysis pipeline for the characterization of filamentous fungal morphologies as a tool to uncover targets for morphology engineering: A case study using aplD in Aspergillus niger[J]. Biotechnology for Biofuels, 2019, 12(1): 149. |
64 | WEYDA I, YANG L, VANG J, et al. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius[J]. Journal of Microbiological Methods, 2017, 135: 26-34. |
65 | KUIVANEN J, KORJA V, HOLMSTRÖM S, et al. Development of microtiter plate scale CRISPR/Cas9 transformation method for Aspergillus niger based on in vitro assembled ribonucleoprotein complexes[J]. Fungal Biology and Biotechnology, 2019, 6(1): 3. |
66 | COLOT H V, PARK G, TURNER G E, et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (27): 10352-10357. |
[1] | 郑涵奇, 吴晴, 李洪军, 顾臻. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301. |
[2] | 姜婵娟, 崔天琦, 孙洪娈, 焦念志, 符军, 张友明, 王海龙. ExoCET-BAC策略高效抓取和组装高AT含量基因组大片段[J]. 合成生物学, 2022, 3(1): 238-251. |
[3] | 毕嘉成, 田志刚. 合成免疫学与未来NK细胞免疫治疗[J]. 合成生物学, 2022, 3(1): 22-34. |
[4] | 汪庆卓, 宋萍, 黄和. 合成生物技术驱动天然的真核油脂细胞工厂开发[J]. 合成生物学, 2021, 2(6): 920-941. |
[5] | 周海波, 申琪瑶, 陈汉娜, 王宗杰, 李越中, 张友明, 卞小莹. 利用异源表达挖掘纤维堆囊菌So0157-2的新型天然产物[J]. 合成生物学, 2021, 2(5): 837-849. |
[6] | 周正富, 庞雨, 张维, 王劲, 燕永亮, 郑迎迎, 陈敏, 廖志华, 林敏. 乳蛋白重组表达与人造奶生物合成:全球专利分析与技术发展趋势[J]. 合成生物学, 2021, 2(5): 764-777. |
[7] | 王凤姣, 徐海洋, 闫建斌, 李伟. 植物天然农药除虫菊酯的生物合成和应用研究进展[J]. 合成生物学, 2021, 2(5): 751-763. |
[8] | 曾丹, 储建林, 陈燕茹, 范代娣. 人造蛋白功能材料的生物合成及应用[J]. 合成生物学, 2021, 2(4): 528-542. |
[9] | 刘倩, 李金根, 张晨阳, 李芳雅, 田朝光. 工业丝状真菌基因组编辑技术研究进展[J]. 合成生物学, 2021, 2(2): 256-273. |
[10] | 李洋, 申晓林, 孙新晓, 袁其朋, 闫亚军, 王佳. CRISPR基因编辑技术在微生物合成生物学领域的研究进展[J]. 合成生物学, 2021, 2(1): 106-120. |
[11] | 杨永富, 耿碧男, 宋皓月, 何桥宁, 何明雄, 鲍杰, 白凤武, 杨世辉. 运动发酵单胞菌底盘细胞研究现状及展望[J]. 合成生物学, 2021, 2(1): 59-90. |
[12] | 曹中正, 张心怡, 徐艺源, 周卓, 魏文胜. 基因组编辑技术及其在合成生物学中的应用[J]. 合成生物学, 2020, 1(4): 413-426. |
[13] | 田荣臻, 刘延峰, 李江华, 刘龙, 堵国成. 典型模式微生物基因表达精细调控工具的研究进展[J]. 合成生物学, 2020, 1(4): 454-469. |
[14] | 张建志, 付立豪, 唐婷, 张嵩亚, 朱静, 李拓, 王子宁, 司同. 基于合成生物学策略的酶蛋白元件规模化挖掘[J]. 合成生物学, 2020, 1(3): 319-336. |
[15] | 张博, 马永硕, 尚轶, 黄三文. 植物合成生物学研究进展[J]. 合成生物学, 2020, 1(2): 121-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||