合成生物学 ›› 2022, Vol. 3 ›› Issue (5): 884-900.DOI: 10.12211/2096-8280.2022-005
崔金玉1,2,3, 张爱娣1,4, 栾国栋1,2,3, 吕雪峰1,2,3
收稿日期:
2022-01-19
修回日期:
2022-03-31
出版日期:
2022-10-31
发布日期:
2022-11-16
通讯作者:
吕雪峰
作者简介:
基金资助:
Jinyu CUI1,2,3, Aidi ZHANG1,4, Guodong LUAN1,2,3, Xuefeng LYU1,2,3
Received:
2022-01-19
Revised:
2022-03-31
Online:
2022-10-31
Published:
2022-11-16
Contact:
Xuefeng LYU
摘要:
发展CO2的高效资源化利用技术可同时缓解迫切的环境和能源压力,是实现“双碳”目标的重要途径。微藻是重要的光合固碳微生物,是生物圈初级生产力的主要来源,也是研究光合作用的重要模式体系。近年来,微藻又被视为极具潜力的新型微生物光合平台,具有将太阳能和CO2直接转化为各种生物基产品的潜力,该生产模式被称为光驱固碳合成技术,可以同时起到固碳减排和绿色合成的效果,是有望助力“双碳”战略目标实现的新型生物制造技术路线。微藻光驱固碳合成技术本质上是通过微藻光合代谢网络重塑实现CO2的资源化利用,对该方面本文系统总结了“拆盲盒”“挤海绵”“动刀子”3种基本开发模式的研究进展、重要突破和代表性应用示范。而微藻光合代谢网络的深度重塑,又有效扩展了基于微藻光驱固碳合成过程的技术应用场景,在这一方面,本文着重总结微藻生物技术与生物医学、生物光伏、生物航天技术等新型应用场景和技术领域的交叉融合。最后,还针对微藻光驱固碳合成技术在应用中面临的挑战,提出应该重点从合成生物学工具箱开发、高效光合平台开发、规模化培养防污染和防逃逸策略开发等几个环节进行攻关,以加强微藻光驱固碳合成过程的可控制性和可应用性。
中图分类号:
崔金玉, 张爱娣, 栾国栋, 吕雪峰. 微藻光驱固碳合成技术的发展现状与未来展望[J]. 合成生物学, 2022, 3(5): 884-900.
Jinyu CUI, Aidi ZHANG, Guodong LUAN, Xuefeng LYU. Engineering microalgae for photosynthetic biosynthesis: progress and prospect[J]. Synthetic Biology Journal, 2022, 3(5): 884-900.
图2 微藻光驱固碳合成过程新颖应用场景[(a) The oxygenic photosynthesis and PDT process using CeCyan cells. These photosensitive CeCyan cells serve as the Ce6 carrier,delivering the photosensitizers to the tumor cells for potential photosynthesis-enhanced PDT under laser irradiation[54]; (b) The engineered strain UTEX 2973, equipped with the photosynthetic machinery and a D-lactate synthesis pathway. The engineered strain S.oneidensis, equipped with a D-lactate oxidation pathway and the extracellular electron transport machinery, releases electrons from D-lactate and transfers them to the anode for electricity production[67]; (c) The bioproduction of a Mars-specific rocket propellant, 2,3-BDO, from CO2, sunlight and water on Mars. Photosynthetic cyanobacteria convert Martian CO2 into sugars that are upgraded by engineered Escherichiacoli into 2,3-BDO[72].] PS I—photosystem I; PS II—photosystem II; ATPase—adenosine triphosphate synthases; CBB cycle—Calvin-Benson-Bassham cycle
Fig. 2 Schematic illustration of new application scenarios of microalgae with desired photosynthesis and biosynthesis properties
图3 开发新应用场景和规模化培养中面临问题的策略PQ—plastoquinone; Cytbf—cytochrome b6f complex; A0—special chlorophyll; A1—vitamin K; 4Fe-4S—iron-sulfur centers; Fd—ferredoxin
Fig. 3 Strategies for solving emerging problems rising from new application scenarios and larger application scales
1 | 王永中. 碳达峰、碳中和目标与中国的新能源革命[J]. 人民论坛⋅学术前沿, 2021(14): 88-96. |
WANG Y Z. The targets of carbon peak and carbon neutralization and China's new energy revolution[J]. Frontiers, 2021(14): 88-96. | |
2 | LI Y Q, HORSMAN M, WU N, et al. Biofuels from microalgae[J]. Biotechnology Progress, 2008, 24(4): 815-820. |
3 | DISMUKES G C, CARRIERI D, BENNETTE N, et al. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels[J]. Current Opinion in Biotechnology, 2008, 19(3): 235-240. |
4 | GUPTA R S. Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups[J]. Photosynthesis Research, 2010, 104(2/3): 357-372. |
5 | TORRES-TIJI Y, FIELDS F J, MAYFIELD S P. Microalgae as a future food source[J]. Biotechnology Advances, 2020, 41: 107536. |
6 | KHAN M, SALMAN M, ANSARI J, et al. Joint external evaluation of IHR core capacities of the Islamic Republic of Pakistan, 2016[J]. International Journal of Infectious Diseases, 2018, 73: 36-37. |
7 | GOUVEIA L. Microalgae as a feedstock for biofuels[M]// GOUVEIA L. Microalgae as a Feedstock for Biofuels. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 1-69. |
8 | LEVASSEUR W, PERRÉ P, POZZOBON V. A review of high value-added molecules production by microalgae in light of the classification[J]. Biotechnology Advances, 2020, 41: 107545. |
9 | GROENDAHL S, KAHLERT M, FINK P. The best of both worlds: a combined approach for analyzing microalgal diversity via metabarcoding and morphology-based methods[J]. PLoS One, 2017, 12(2): e0172808. |
10 | FU W Q, NELSON D R, MYSTIKOU A, et al. Advances in microalgal research and engineering development[J]. Current Opinion in Biotechnology, 2019, 59: 157-164. |
11 | KUMAR M, SUN Y Q, RATHOUR R, et al. Algae as potential feedstock for the production of biofuels and value-added products: opportunities and challenges[J]. Science of the Total Environment, 2020, 716: 137116. |
12 | ZHANG J J, WAN L L, XIA S, et al. Morphological and spectrometric analyses of lipids accumulation in a novel oleaginous microalga, Eustigmatos cf. polyphem (Eustigmatophyceae)[J]. Bioprocess and Biosystems Engineering, 2013, 36(8): 1125-1130. |
13 | GAO B Y, XIA S, LEI X Q, et al. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem [J]. Journal of Applied Phycology, 2018, 30(1): 215-229. |
14 | XU J, LI T, LI C L, et al. Lipid accumulation and eicosapentaenoic acid distribution in response to nitrogen limitation in microalga Eustigmatos vischeri JHsu-01 (Eustigmatophyceae)[J]. Algal Research, 2020, 48: 101910. |
15 | RAPOSO M F, DE MORAIS R M, BERNARDO DE MORAIS A M. Bioactivity and applications of sulphated polysaccharides from marine microalgae[J]. Marine Drugs, 2013, 11(1): 233-252. |
16 | GISSIBL A, SUN A, CARE A, et al. Bioproducts from Euglena gracilis: synthesis and applications[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 108. |
17 | SUN A, HASAN M T, HOBBA G, et al. Comparative assessment of the Euglena gracilis var. saccharophila variant strain as a producer of the β-1, 3-glucan paramylon under varying light conditions[J]. Journal of Phycology, 2018, 54(4): 529-538. |
18 | CHOI S A, JEONG Y, LEE J Y, et al. Biocompatible liquid-type carbon nanodots (C-paints) as light delivery materials for cell growth and astaxanthin induction of Haematococcus pluvialis [J]. Materials Science and Engineering: C, 2020, 109: 110500. |
19 | WANG F F, GAO B Y, WU M M, et al. A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35[J]. Algal Research, 2019, 39: 101466. |
20 | YANG Z B, CHENG J, LI K, et al. Optimizing gas transfer to improve growth rate of Haematococcus pluvialis in a raceway pond with chute and oscillating baffles[J]. Bioresource Technology, 2016, 214: 276-283. |
21 | AMBATI R R, PHANG S M, RAVI S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review[J]. Marine Drugs, 2014, 12(1): 128-152. |
22 | YANG J S, CAO J, XING G L, et al. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341[J]. Bioresource Technology, 2015, 175: 537-544. |
23 | CHEN J H, WEI D, LIM P E. Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: selected phytohormones as positive stimulators[J]. Bioresource Technology, 2020, 295: 122242. |
24 | HAGEMANN M. Molecular biology of cyanobacterial salt acclimation[J]. FEMS Microbiology Reviews, 2011, 35(1): 87-123. |
25 | QIAO Y, WANG W H, LU X F. Engineering cyanobacteria as cell factories for direct trehalose production from CO2 [J]. Metabolic Engineering, 2020, 62: 161-171. |
26 | CUI J Y, SUN T, CHEN L, et al. Salt-tolerant Synechococcus elongatus UTEX 2973 obtained via engineering of heterologous synthesis of compatible solute glucosylglycerol[J]. Frontiers in Microbiology, 2021, 12: 650217. |
27 | TAN X M, DU W, LU X F. Photosynthetic and extracellular production of glucosylglycerol by genetically engineered and gel-encapsulated cyanobacteria[J]. Applied Microbiology and Biotechnology, 2015, 99(5): 2147-2154. |
28 | LEVER M, SLOW S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism[J]. Clinical Biochemistry, 2010, 43(9): 732-744. |
29 | DAY C R, KEMPSON S A. Betaine chemistry, roles, and potential use in liver disease[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2016, 1860(6): 1098-1106. |
30 | RAY A, NAYAK M, GHOSH A. A review on co-culturing of microalgae: a greener strategy towards sustainable biofuels production[J]. Science of the Total Environment, 2022, 802: 149765. |
31 | XU L L, LI D Z, WANG Q X, et al. Improved hydrogen production and biomass through the co-cultivation of Chlamydomonas reinhardtii and Bradyrhizobium japonicum [J]. International Journal of Hydrogen Energy, 2016, 41(22): 9276-9283. |
32 | XU L L, CHENG X L, WU S X, et al. Co-cultivation of Chlamydomonas reinhardtii with Azotobacter chroococcum improved H2 production[J]. Biotechnology Letters, 2017, 39(5): 731-738. |
33 | OUYANG Y, CHEN S Y, ZHAO L Q, et al. Global metabolomics reveals that Vibrio natriegens enhances the growth and paramylon synthesis of Euglena gracilis [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 652021. |
34 | 张丽, 宋馨宇, 陈磊, 等. 光合微生物混菌体系的应用和研究进展[J]. 生物工程学报, 2020, 36(4): 652-665. |
ZHANG L, SONG X Y, CHEN L, et al. Recent progress in photosynthetic microbial co-culture systems[J]. Chinese Journal of Biotechnology, 2020, 36(4): 652-665. | |
35 | LI T T, LI C T, BUTLER K, et al. Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform[J]. Biotechnology for Biofuels, 2017, 10: 55. |
36 | STANIER R Y, COHEN-BAZIRE G. Phototrophic prokaryotes: the cyanobacteria[J]. Annual Review of Microbiology, 1977, 31: 225-274. |
37 | SUN T, LI S B, SONG X Y, et al. Toolboxes for cyanobacteria: recent advances and future direction[J]. Biotechnology Advances, 2018, 36(4): 1293-1307. |
38 | SANTOS-MERINO M, SINGH A K, DUCAT D C. New applications of synthetic biology tools for cyanobacterial metabolic engineering[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 33. |
39 | GAO X Y, SUN T, PEI G S, et al. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3401-3413. |
40 | DENG M D, COLEMAN J R. Ethanol synthesis by genetic engineering in cyanobacteria[J]. Applied and Environmental Microbiology, 1999, 65(2): 523-528. |
41 | GAO Z X, ZHAO H, LI Z M, et al. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria[J]. Energy & Environmental Science, 2012, 5(12): 9857-9865. |
42 | GAO X, GAO F, LIU D, et al. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2 [J]. Energy & Environmental Science, 2016, 9(4): 1400-1411. |
43 | DUNAHAY T G, JARVIS E E, DAIS S S, et al. Manipulation of microalgal lipid production using genetic engineering[J]. Applied Biochemistry and Biotechnology, 1996, 57/58(1): 223-231. |
44 | HAMILTON M L, HASLAM R P, NAPIER J A, et al. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of ω-3 long chain polyunsaturated fatty acids[J]. Metabolic Engineering, 2014, 22: 3-9. |
45 | XIN Y, LU Y D, LEE Y Y, et al. Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases[J]. Molecular Plant, 2017, 10(12): 1523-1539. |
46 | JEON S, KOH H G, CHO J M, et al. Enhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme[J]. Algal Research, 2021, 54: 102218. |
47 | DAVIES F K, WORK V H, BELIAEV A S, et al. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 21. |
48 | LIU Y M, CUI Y L, CHEN J, et al. Metabolic engineering of Synechocystis sp. PCC6803 to produce astaxanthin[J]. Algal Research, 2019, 44: 101679. |
49 | MUZ B, DE LA PUENTE P, AZAB F, et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy[J]. Hypoxia, 2015, 3: 83-92. |
50 | DOLMANS D E J G J, FUKUMURA D, JAIN R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 2003, 3(5): 380-387. |
51 | HU T T, WANG Z D, SHEN W C, et al. Recent advances in innovative strategies for enhanced cancer photodynamic therapy[J]. Theranostics, 2021, 11(7): 3278-3300. |
52 | CHEN Q, FENG L Z, LIU J J, et al. Intelligent albumin-MnO2 nanoparticles as pH-/ H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy[J]. Advanced Materials, 2016, 28(33): 7129-7136. |
53 | LIU L L, HE H M, LUO Z Y, et al. In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer[J]. Advanced Functional Materials, 2020, 30(10): 1910176. |
54 | HUO M F, WANG L Y, ZHANG L L, et al. Photosynthetic tumor oxygenation by photosensitizer-containing cyanobacteria for enhanced photodynamic therapy[J]. Angewandte Chemie (International Ed in English), 2020, 59(5): 1906-1913. |
55 | SUN T, ZHANG Y Y, ZHANG C N, et al. Cyanobacteria-based bio-oxygen pump promoting hypoxia-resistant photodynamic therapy[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 237. |
56 | ZHANG Y H, LIU H F, DAI X Y, et al. Cyanobacteria-based near-infrared light-excited self-supplying oxygen system for enhanced photodynamic therapy of hypoxic tumors[J]. Nano Research, 2021, 14(3): 667-673. |
57 | GUO M M, WANG S C, GUO Q L, et al. NIR-responsive spatiotemporally controlled cyanobacteria micro-nanodevice for intensity-modulated chemotherapeutics in rheumatoid arthritis[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18423-18431. |
58 | LEE C, LIM K, KIM S S, et al. Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer[J]. Journal of Controlled Release, 2019, 294: 77-90. |
59 | 孙晨凯, 陈鑫, 程皓, 等. 增氧型纳米递送系统用于光动力治疗的研究进展[J]. 中国药科大学学报, 2021, 52(4): 387-397. |
SUN C K, CHEN X, CHENG H, et al. Advances of research on oxygen-enhancing nano-delivery system for photodynamic therapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 387-397. | |
60 | HU H, QIAN X Q, CHEN Y. Microalgae-enabled photosynthetic alleviation of tumor hypoxia for enhanced nanotherapies[J]. Science Bulletin, 2020, 65(22): 1869-1871. |
61 | WANG H R, GUO Y F, WANG C, et al. Light-controlled oxygen production and collection for sustainable photodynamic therapy in tumor hypoxia[J]. Biomaterials, 2021, 269: 120621. |
62 | COHEN J E, GOLDSTONE A B, PAULSEN M J, et al. An innovative biologic system for photon-powered myocardium in the ischemic heart[J]. Science Advances, 2017, 3(6): e1603078. |
63 | ÖZUGUR S, CHÁVEZ M N, SANCHEZ-GONZALEZ R, et al. Green oxygen power plants in the brain rescue neuronal activity[J]. iScience, 2021, 24(10): 103158. |
64 | POLMAN A, KNIGHT M, GARNETT E C, et al. Photovoltaic materials: present efficiencies and future challenges[J]. Science, 2016, 352(6283): aad4424. |
65 | GREENMAN J, GAJDA I, IEROPOULOS I. Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines[J]. Sustainable Energy & Fuels, 2019, 3(10): 2546-2560. |
66 | MCCORMICK A J, BOMBELLI P, BRADLEY R W, et al. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems[J]. Energy & Environmental Science, 2015, 8(4): 1092-1109. |
67 | LEA-SMITH D J, BOMBELLI P, VASUDEVAN R, et al. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016, 1857(3): 247-255. |
68 | ZHU H W, MENG H K, ZHANG W, et al. Development of a longevous two-species biophotovoltaics with constrained electron flow[J]. Nature Communications, 2019, 10: 4282. |
69 | FIROOZABADI H, MARDANPOUR M M, MOTAMEDIAN E. A system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights[J]. Scientific Reports, 2021, 11: 12294. |
70 | 赵贞尧, 张保财, 李锋, 等. 产电细胞的合成生物学设计构建[J]. 化工学报, 2021, 72(1): 468-482. |
ZHAO Z Y, ZHANG B C, LI F, et al. Design and construction of exoelectrogens by synthetic biology[J]. CIESC Journal, 2021, 72(1): 468-482. | |
71 | SEKAR N, JAIN R, YAN Y J, et al. Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria[J]. Biotechnology and Bioengineering, 2016, 113(3): 675-679. |
72 | KRUYER N S, REALFF M J, SUN W T, et al. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy[J]. Nature Communications, 2021, 12: 6166. |
73 | WENDT K E, UNGERER J, COBB R E, et al. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973[J]. Microbial Cell Factories, 2016, 15(1): 115. |
74 | UNGERER J, PAKRASI H B. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria[J]. Scientific Reports, 2016, 6: 39681. |
75 | LIU D, JOHNSON V M, PAKRASI H B. A reversibly induced CRISPRi system targeting photosystem II in the cyanobacterium Synechocystis sp. PCC 6803[J]. ACS Synthetic Biology, 2020, 9(6): 1441-1449. |
76 | CHOI S Y, WOO H M. CRISPRi-dCas12a: a dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria[J]. ACS Synthetic Biology, 2020, 9(9): 2351-2361. |
77 | BADIS Y, SCORNET D, HARADA M, et al. Targeted CRISPR-Cas9-based gene knockouts in the model brown alga Ectocarpus [J]. The New Phytologist, 2021, 231(5): 2077-2091. |
78 | ZHANG M Y, LUO Q, SUN H L, et al. Engineering a controllable targeted protein degradation system and a derived OR-GATE-type inducible gene expression system in Synechococcus elongatus PCC 7942[J]. ACS Synthetic Biology, 2022, 11(1): 125-134. |
79 | CUI J Y, SUN T, CHEN L, et al. Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization[J]. Biotechnology Advances, 2020, 43: 107578. |
80 | JAISWAL D, SENGUPTA A, SOHONI S, et al. Genome features and biochemical characteristics of a robust, fast growing and naturally transformable cyanobacterium Synechococcus elongatus PCC 11801 isolated from India[J]. Scientific Reports, 2018, 8: 16632. |
81 | PRASANNAN C B, JAISWAL D, DAVIS R, et al. An improved method for extraction of polar and charged metabolites from cyanobacteria[J]. PLoS One, 2018, 13(10): e0204273. |
82 | WŁODARCZYK A, SELÃO T T, NORLING B, et al. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production[J]. Communications Biology, 2020, 3: 215. |
83 | DE ALVARENGA L V, LUCIUS S, VAZ M G M V, et al. The novel strain Desmonostoc salinum CCM-UFV059 shows higher salt and desiccation resistance compared to the model strain Nostoc sp. PCC7120[J]. Journal of Phycology, 2020, 56(2): 496-506. |
84 | DU W, BURBANO P C, HELLINGWERF K J, et al. Challenges in the application of synthetic biology toward synthesis of commodity products by cyanobacteria via “direct conversion”[J]. Advances in Experimental Medicine and Biology, 2018, 1080: 3-26. |
85 | LUAN G D, LU X F. Tailoring cyanobacterial cell factory for improved industrial properties[J]. Biotechnology Advances, 2018, 36(2): 430-442. |
86 | LUAN G D, ZHANG S S, LU X F. Engineering cyanobacteria chassis cells toward more efficient photosynthesis[J]. Current Opinion in Biotechnology, 2020, 62: 1-6. |
87 | PATHANIA R, SRIVASTAVA A, SRIVASTAVA S, et al. Metabolic systems biology and multi-omics of cyanobacteria: perspectives and future directions[J]. Bioresource Technology, 2022, 343: 126007. |
88 | LI Z D, WU C, GAO X, et al. Exogenous electricity flowing through cyanobacterial photosystem I drives CO2 valorization with high energy efficiency[J]. Energy & Environmental Science, 2021, 14(10): 5480-5490. |
89 | MARY LEEMA J T, KIRUBAGARAN R, VINITHKUMAR N V, et al. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater[J]. Bioresource Technology, 2010, 101(23): 9221-9227. |
90 | TOULOUPAKIS E, CICCHI B, BENAVIDES A M S, et al. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.)[J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1333-1341. |
91 | ZHU Z, LUAN G D, TAN X M, et al. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy[J]. Biotechnology for Biofuels, 2017, 10: 93. |
92 | SHAW A J, LAM F H, HAMILTON M, et al. Metabolic engineering of microbial competitive advantage for industrial fermentation processes[J]. Science, 2016, 353(6299): 583-586. |
93 | SELÃO T T, WŁODARCZYK A, NIXON P J, et al. Growth and selection of the cyanobacterium Synechococcus sp. PCC 7002 using alternative nitrogen and phosphorus sources[J]. Metabolic Engineering, 2019, 54: 255-263. |
94 | LÉVESQUE B, GERVAIS M C, CHEVALIER P, et al. Prospective study of acute health effects in relation to exposure to cyanobacteria[J]. Science of the Total Environment, 2014, 466/467: 397-403. |
95 | PORTER R D. Transformation in cyanobacteria[J]. CRC Critical Reviews in Microbiology, 1986, 13(2): 111-132. |
96 | JIA B, QI H, LI B Z, et al. Orthogonal ribosome biofirewall[J]. ACS Synthetic Biology, 2017, 6(11): 2108-2117. |
97 | LOERA-QUEZADA M M, LEYVA-GONZÁLEZ M A, VELÁZQUEZ-JUÁREZ G, et al. A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae[J]. Plant Biotechnology Journal, 2016, 14(10): 2066-2076. |
98 | MOTOMURA K, SANO K, WATANABE S, et al. Synthetic phosphorus metabolic pathway for biosafety and contamination management of cyanobacterial cultivation[J]. ACS Synthetic Biology, 2018, 7(9): 2189-2198. |
99 | ZHOU Y Q, SUN T, CHEN Z X, et al. Development of a new biocontainment strategy in model cyanobacterium Synechococcus strains[J]. ACS Synthetic Biology, 2019, 8(11): 2576-2584. |
100 | 孟凡康, 娄春波. 人工遗传改造生命体的防逃逸技术研究进展[J]. 有机化学, 2018, 38(9): 2231-2242. |
MENG F K, LOU C B. Research progress in biocontainment of genetically modified organisms[J]. Chinese Journal of Organic Chemistry, 2018, 38(9): 2231-2242. |
[1] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[2] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[3] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[4] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[5] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[6] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[7] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[8] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[9] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[10] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[11] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
[12] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
[13] | 孙翰, 刘进. 真核微藻脂质代谢工程的研究进展和展望[J]. 合成生物学, 2023, 4(6): 1140-1160. |
[14] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
[15] | 晏雄鹰, 王振, 娄吉芸, 张皓瑜, 黄星宇, 王霞, 杨世辉. 生物燃料高效生产微生物细胞工厂构建研究进展[J]. 合成生物学, 2023, 4(6): 1082-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||