合成生物学 ›› 2021, Vol. 2 ›› Issue (1): 91-105.DOI: 10.12211/2096-8280.2020-046
储攀1,2, 朱静雯1, 黄文琦1,2, 刘陈立1,2, 傅雄飞1,2
收稿日期:
2020-04-12
修回日期:
2020-11-10
出版日期:
2021-03-22
发布日期:
2021-03-12
通讯作者:
傅雄飞
作者简介:
储攀(1995—),男,硕士研究生,主要研究方向为系统生物学。E-mail:pan.chu@siat.ac.cn基金资助:
Pan CHU1,2, Jingwen ZHU1, Wenqi HUANG1,2, Chenli LIU1,2, Xiongfei FU1,2
Received:
2020-04-12
Revised:
2020-11-10
Online:
2021-03-22
Published:
2021-03-12
Contact:
Xiongfei FU
摘要:
随着合成生物学研究领域的发展以及对人工生命系统设计复杂程度的需求增加,合成基因回路设计呈现复杂化、规模化的发展趋势,导致合成基因回路行为变得难以预测。传统的基因回路设计框架注重回路内部元件作用关系的刻画和元件自身性能的参数调试,通过大量的试错,使回路功能达到次优化。近年来大量的工作表明,基因回路和底盘细胞存在难以避免的耦合:合成回路的基因表达受底盘细胞的资源调配机制调控,而合成基因回路的表达消耗底盘细胞的资源。这种相互作用往往导致底盘细胞生理状态的改变并影响回路功能。因此,将底盘细胞生理参数纳入到基因回路的设计框架中将有望提高基因回路设计的可预测性,提高理性设计能力。面对底盘-回路耦合带来的设计挑战,近年来,涌现出了大量基因回路正交化、模块化的设计思路,成功减弱或规避耦合效应。本文回顾了近年来微生物细胞生理与基因回路的相互作用机制研究的进展;进一步介绍了两类生物物理模型的建立思路,展现物理模型如何帮助我们理解、预测和评估底盘-回路耦合带来的效应;总结了模块化和正交化的设计范式,展现了它们对解决底盘-回路耦合效应的潜力。随着基因“读-改-写”能力提升,以及自动化实验的大规模应用,未来基因线路的设计应当着重于以下几个方面:①高质量元件挖掘;②高质量定量数据刻画;③多维度组学数据的整合,全面评估底盘细胞-基因线路作用程度;④精准的模型预测框架建立。
中图分类号:
储攀, 朱静雯, 黄文琦, 刘陈立, 傅雄飞. 底盘-回路耦合:合成基因回路设计新挑战[J]. 合成生物学, 2021, 2(1): 91-105.
Pan CHU, Jingwen ZHU, Wenqi HUANG, Chenli LIU, Xiongfei FU. Host-circuit coupling: toward a new framework for genetic circuit design[J]. Synthetic Biology Journal, 2021, 2(1): 91-105.
1 | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342. |
2 | ELOWITZ M B, LEIBIER S. A synthetic oscillatory network of transcriptional regulators [J]. Nature, 2000, 403(6767): 335-338. |
3 | LOU Chunbo, STANTON B, CHEN Y J, et al. Ribozyme-based insulator parts buffer synthetic circuits from genetic context [J]. Nature Biotechnology, 2012, 30(11): 1137-1142. |
4 | CHEN Y J, LIU P, NIELSEN A A, et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints [J]. Nature Methods, 2013, 10(7): 659-664. |
5 | RUDGE T J, BROWN J R, FEDERICI F, et al. Characterization of intrinsic properties of promoters [J]. ACS Synthetic Biology, 2016, 5(1): 89-98. |
6 | BONNET J, YIN P, ORTIZ M E, et al. Amplifying genetic logic gates [J]. Science, 2013, 340(6132): 599-603. |
7 | NIELSEN A A K, DER B S, SHIN Jonghyeon, et al. Genetic circuit design automation [J]. Science, 2016, 352(6281): 7341. |
8 | ZHENG Hai, Po-Yi HO, JIANG Meiling, et al. Interrogating the Escherichia coli cell cycle by cell dimension perturbations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 15000-15005. |
9 | YOU Conghui, OKANO H, HUI Sheng, et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling [J]. Nature, 2013, 500(7462): 301-306. |
10 | ZHANG Weimin, ZHAO Guanghou, LUO Guanghou, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome [J]. Science, 2017, 355(6329): 3981. |
11 | HUTCHISON C A, CHUANG R Y, NOSKOV V N, et al. Design and synthesis of a minimal bacterial genome [J]. Science, 2016, 351(6280): 6253-6253. |
12 | LUO Xiaozhou, REITER M A, D'ESPAUX L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast [J]. Nature, 2019, 567(7746): 123-126. |
13 | 赵国屏. 合成生物学: 开启生命科学“会聚”研究新时代[J]. 中国科学院院刊, 2018, 33(11): 1135-1149. |
ZHAO Guoping. Synthetic biology: unsealing the convergence era of life science research [J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(11): 1135-1149. | |
14 | ZONG Yeqing, ZHANG Haoqian M, Cheng LYU, et al. Insulated transcriptional elements enable precise design of genetic circuits [J]. Nature Communications, 2017, 8(1): 52. |
15 | GOROCHOWSKI T E, ESPAH BORUJENI A, PARK Yongjin, et al. Genetic circuit characterization and debugging using RNA-seq [J]. Molecular Systems Biology, 2017, 13(11): 952. |
16 | KOCHANOWSKI K, GEROSA L, BRUNNER S F, et al. Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli [J]. Molecular Systems Biology, 2017, 13(1): 903. |
17 | CHUBUKOV V, GEROSA L, KOCHANOWSKI K, et al. Coordination of microbial metabolism [J]. Nature Reviews Microbiology, 2014, 12(5): 327-340. |
18 | BORUJENI A E, ZHANG Jing, DOOSTHOSSEINI H, et al. Genetic circuit characterization by inferring RNA polymerase movement and ribosome usage [J]. Nature Communications, 2020, 11(1): 5001. |
19 | CERONI F, ALGAR R, STAN G B, et al. Quantifying cellular capacity identifies gene expression designs with reduced burden [J]. Nature Methods, 2015, 12(5): 415-418. |
20 | CARDINALE S, ARKIN A P. Contextualizing context for synthetic biology - identifying causes of failure of synthetic biological systems [J]. Biotechnology Journal, 2012, 7(7): 856-866. |
21 | HUI Sheng, SILVERMAN J M, CHEN S S, et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria [J]. Molecular Systems Biology, 2015, 11(2): 784. |
22 | ERICKSON D W, SCHINK S J, PATSALO V, et al. A global resource allocation strategy governs growth transition kinetics of Escherichia coli [J]. Nature, 2017, 551(7678): 119-123. |
23 | BOADA Y, VIGNONI A, OYARZÚN D, et al. Host-circuit interactions explain unexpected behavior of a gene circuit [J]. IFAC-PapersOnline, 2018, 51(19): 86-89. |
24 | GRUNBERG T W, VECCHIO D DEL. Modular analysis and design of biological circuits [J]. Current Opinion in Biotechnology, 2020, 63: 41-47. |
25 | SCOTT M, GUNDERSON C W, MATEESCU E M, et al. Interdependence of cell growth and gene expression: origins and consequences [J]. Science, 2010, 330(6007): 1099-1102. |
26 | ZHENG Hai, BAI Yang, JIANG Meiling, et al. General quantitative relations linking cell growth and the cell cycle in Escherichia coli [J]. Nature Microbiology, 2020, 5(8): 995-1001. |
27 | BORKOWSKI O, CERONI F, STAN G B B, et al. Overloaded and stressed: whole cell considerations for bacterial synthetic biology [J]. Current Opinion in Microbiology, 2016, 33: 123-130. |
28 | TOWBIN B D, KOREM Y, BREN A, et al. Optimality and sub-optimality in a bacterial growth law [J]. Nature Communications, 2017, 8: 1-8. |
29 | BERTHOUMIEUX S, DE JONG H, BAPTIST G, et al. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell [J]. Molecular Systems Biology, 2013, 9(1): 634. |
30 | BLANCHARD A E, LIAO Chen, LU Ting. Circuit-host coupling induces multifaceted behavioral modulations of a gene switch [J]. Biophysical Journal, 2018, 114(3): 737-746. |
31 | SLEIGHT S C, SAURO H M. Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits [J]. ACS Synthetic Biology, 2013, 2(9): 519-528. |
32 | Suhyung CHO, CHOE Donghui, Eunju LEE, et al. High-level dCas9 expression induces abnormal cell morphology in Escherichia coli [J]. ACS Synthetic Biology, 2018, 7(4): 1085-1094. |
33 | CARDINALE S, JOACHIMIAK M P, ARKIN A P. Effects of genetic variation on the E. coli host-circuit interface [J]. Cell Reports, 2013, 4(2): 231-237. |
34 | VILANOVA C, TANNER K, DORADO-MORALES P, et al. Standards not that standard [J]. Journal of Biological Engineering, 2015, 9(1): 17. |
35 | MOSER F, BROERS N J, HARTMANS S, et al. Genetic circuit performance under conditions relevant for industrial bioreactors [J]. ACS Synthetic Biology, 2012, 1(11): 555-564. |
36 | LIU Qijun, SCHUMACHER J, WAN Xinyi, et al. Orthogonality and burdens of heterologous AND gate gene circuits in E. coli [J]. ACS Synthetic Biology, 2018, 7(2): 553-564. |
37 | BASAN M, HONDA T, CHRISTODOULOU D, et al. A universal trade-off between growth and lag in fluctuating environments [J]. Nature, 2020, 584(7821): 470-474. |
38 | HINTSCHE M, KLUMPP S. Dilution and the theoretical description of growth-rate dependent gene expression [J]. Journal of Biological Engineering, 2013, 7(1): 22. |
39 | BINTU L, BUCHLER N E, GARCIA H G, et al. Transcriptional regulation by the numbers: models [J]. Current Opinion in Genetics and Development, 2005, 15(2): 116124. |
40 | TAN Cheemeng, MARGUET P, YOU Lingchong. Emergent bistability by a growth-modulating positive feedback circuit [J]. Nature Chemical Biology, 2009, 5(11): 842-848. |
41 | KURLAND C G, DONG Henjiang H. Bacterial growth inhibition by overproduction of protein [J]. Molecular Microbiology, 1996, 21(1): 1-4. |
42 | CARBONELL-BALLESTERO M, GARCIA-RAMALLO E, MONTAÑEZ R, et al. Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm's law [J]. Nucleic Acids Research, 2016, 44(1): 496-507. |
43 | VIND J, SØRENSEN M A, RASMUSSEN M D, et al. Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes: expression from reporter genes does not always reflect functional mRNA levels [J]. Journal of Molecular Biology, 1993, 231(3): 678-688. |
44 | SHACHRAI I, ZASLAVER A, ALON U, et al. Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth [J]. Molecular Cell, 2010, 38(5): 758-767. |
45 | ZHU Manlu, DAI Xiongfeng. Growth suppression by altered (p)ppGpp levels results from non-optimal resource allocation in Escherichia coli [J]. Nucleic Acids Research, 2019, 47(9): 4684-4693. |
46 | ZHU Manlu, PAN Yige, DAI Xiongfeng. (p)ppGpp: the magic governor of bacterial growth economy [J]. Current Genetics, 2019, 65(5): 1121-1125. |
47 | ZHU Manlu, MORI M, HWA T, et al. Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination [J]. Nature Microbiology, 2019, 4(12): 2347-2356. |
48 | COOKSON N A, MATHER W H, DANINO T, et al. Queueing up for enzymatic processing: correlated signaling through coupled degradation [J]. Molecular Systems Biology, 2011, 7(1): 561. |
49 | GYORGY A, JIMÉNEZ J I, YAZBEK J, et al. Isocost lines describe the cellular economy of genetic circuits [J]. Biophysical Journal, 2015, 109(3): 639-646. |
50 | WEI Lei, YUAN Ye, HU Tao, et al. Regulation by competition: a hidden layer of gene regulatory network [J]. Quantitative Biology, 2019, 7(2): 110-121. |
51 | DAVEY J A, WILSON C J. Engineered signal-coupled inducible promoters: measuring the apparent RNA-polymerase resource budget [J]. Nucleic Acids Research, 2020, 48(17): 734-739. |
52 | QIAN Yili, HUANG Hsin-Ho, JIMÉNEZ J I, et al. Resource competition shapes the response of genetic circuits [J]. ACS Synthetic Biology, 2017, 6(7): 1263-1272. |
53 | GE Hao, QIAN Hong, XIE X S. Stochastic phenotype transition of a single cell in an intermediate region of gene state switching [J]. Physical Review Letters, 2014, 114(7): 078101eprint: 1312. 6776. |
54 | WANG Zhi, ZHANG Jianzhi. Impact of gene expression noise on organismal fitness and the efficacy of natural selection [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): E67-E76 |
55 | IYER S, LE Dai, PARK Bo Ryoung, et al. Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli [J]. Nature Microbiology, 2018, 3(6): 741-748. |
56 | THOMAS P, TERRADOT G, DANOS V, et al. Sources, propagation and consequences of stochasticity in cellular growth [J]. Nature Communications, 2018, 9(1): 4528. |
57 | KIM Juhyun, DARLINGTON A, SALVADOR M, et al. Trade-offs between gene expression, growth and phenotypic diversity in microbial populations [J]. Current Opinion in Biotechnology, 2020, 62: 29-37. |
58 | Jeong Wook LEE, GYORGY A, CAMERON D E, et al. Creating single-copy genetic circuits [J]. Molecular Cell, 2016, 63(2): 329-336. |
59 | KIMELMAN A, LEVY A, SBERRO H, et al. A vast collection of microbial genes that are toxic to bacteria [J]. Genome Research, 2012, 22(4): 802-809. |
60 | LAMBERTE L E, BANIULYTE G, SINGH S S, et al. Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase [J]. Nature Microbiology, 2017, 2(3): 16249. |
61 | STANTON B C, NIELSEN A A K, TAMSIR A, et al. Genomic mining of prokaryotic repressors for orthogonal logic gates [J]. Nature Chemical Biology, 2014, 10(2): 99105. |
62 | HASNAIN A, BECKER D, SIBA A, et al. A data-driven method for quantifying the impact of a genetic circuit on its host [C]// 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS): IEEE, 2019: 4245-4251. |
63 | CUI Lun, VIGOUROUX A, ROUSSET F, et al. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9 [J]. Nature Communications, 2018, 9(1): 1-10. |
64 | SHULER M L, LEUNG S, DICK C C. A mathematical model for the growth of a single bacterial cell [J]. Annals of the New York Academy of Sciences, 1979, 326(1): 35-52. |
65 | TOMITA M, HASHIMOTO K, TAKAHASHI K, et al. E-CELL: Software environment for whole-cell simulation [J]. Bioinformatics, 1999, 15(1): 72-84. |
66 | CARRERA J, COVERT M W. Why build whole-cell models? [J]. Trends in Cell Biology, 2015, 25(12): 719-722. |
67 | KARR J R, SANGHVI J C, MACKLIN D N, et al. A whole-cell computational model predicts phenotype from genotype [J]. Cell, 2012, 150(2): 389-401. |
68 | WEIßE A Y, OYARZÚN D A, DANOS V, et al. Mechanistic links between cellular trade-offs, gene expression, and growth [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(9): E1038-E1047. |
69 | LIAO Chen, BLANCHARD A E, LU Ting. An integrative circuit-host modelling framework for predicting synthetic gene network behaviours [J]. Nature Microbiology, 2017, 2(12): 1658-1666. |
70 | CARRERA J, ESTRELA R, LUO Jing, et al. An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli [J]. Molecular Systems Biology, 2014, 10(7): 735. |
71 | ATLAS J C, NIKOLAEV E V, BROWNING S T, et al. Incorporating genome-wide DNA sequence information into a dynamic whole-cell model of Escherichia coli: application to DNA replication [J]. IET Systems Biology, 2008, 2(5): 369-382. |
72 | ROBERTS E, MAGIS A, ORTIZ J O, et al. Noise contributions in an inducible genetic switch: a whole-cell simulation study [J]. PLoS Computational Biology, 2011, 7(3): e1002010. |
73 | PURCELL O, JAIN B, KARR J R, et al. Towards a whole-cell modeling approach for synthetic biology [J]. Chaos, 2013, 23(2): 025112. |
74 | BABTIE A C, STUMPF M P. How to deal with parameters for whole-cell modelling [J]. Journal of the Royal Society Interface, 2017, 14(133): 20170237. |
75 | MARR A G. Growth rate of Escherichia coli [J]. Microbiological Reviews, 1991, 55(2): 316-333. |
76 | MATHER W H, HASTY J, TSIMRING L S, et al. Translational cross talk in gene networks [J]. Biophysical Journal, 2013, 104(11): 2564-2572. |
77 | 崔金明, 张炳照, 马迎飞, 等. 合成生物学研究的工程化平台[J]. 中国科学院院刊, 2018, 3(11): 1249-1257. |
CUI Jinming, ZHANG Bingzhao, MAYingfei, et al. Engineering platforms for synthetic biology research [J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(11): 1249-1257. | |
78 | RACKHAM O, CHIN J W. A network of orthogonal ribosome-mRNA pairs [J]. Nature Chemical Biology, 2005, 1(3): 159-166. |
79 | VECCHIO D DEL. Modularity, context-dependence, and insulation in engineered biological circuits [J]. Trends in Biotechnology, 2015, 33(2): 111-119. |
80 | ISAACS F J, DWYER D J, DING Chunming, et al. Engineered ribo-regulators enable posttranscriptional control of gene expression [J]. Nature Biotechnology, 2004, 22(7): 841847. |
81 | MARTIN V J J, PITERA D J, WITHERS S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids [J]. Nature Biotechnology, 2003, 21(7): 796-802. |
82 | ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J]. Nature, 2008, 451(7174): 86-89. |
83 | LIU C C, JEWETT M C, CHIN J W, et al. Toward an orthogonal central dogma [J]. Nature Chemical Biology, 2018, 14(2): 103-106. |
84 | HAN Tiyun, CHEN Quan, LIU Haiyan. Engineered photoactivatable genetic switches based on the bacterium phage T7 RNA polymerase [J]. ACS Synthetic Biology, 2017, 6(2): 357366. |
85 | BAUMSCHLAGER A, AOKI S K, KHAMMASH M. Dynamic blue light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise spatiotemporal gene expression control [J]. ACS Synthetic Biology, 2017, 6(11): 2157-2167. |
86 | MCCUTCHEON S R, CHIU Kwan Lun, LEWIS D D, et al. CRISPR-Cas expands dynamic range of gene expression from T7RNAP promoters [J]. Biotechnology Journal, 2018, 13(5): 1700167. |
87 | RHODIUS V A, SEGALL-SHAPIRO T H, SHARON B D, et al. Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters [J]. Molecular Systems Biology, 2013, 9(1): 702. |
88 | FREDENS J, WANG Kaihang, DE LA TORRE D, et al. Total synthesis of Escherichia coli with a recoded genome [J]. Nature, 2019, 569(7757): 514-518. |
89 | AN Wenlin, CHIN J W. Synthesis of orthogonal transcription translation networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21): 8477-8482. |
90 | MEYER A J, SEGALL-SHAPIRO T H, GLASSEY E, et al. Escherichia coli "Marionette" strains with 12 highly optimized small-molecule sensors [J]. Nature Chemical Biology, 2019, 15(2): 196-204. |
91 | ZHANG Shuyi, VOIGT C A. Engineered dCas9 with reduced toxicity in bacteria:implications for genetic circuit design [J]. Nucleic Acids Research, 2018, 46(20): 11115-11125. |
92 | ENDY D. Foundations for engineering biology [J]. Nature, 2005, 438(7067): 449-453. |
93 | MANGAN S, ALON U. Structure and function of the feed-forward loop network motif [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 11980-11985. |
94 | SHOPERA T, HE Lian, OYETUNDE T, et al. Decoupling resource-coupled gene expression in living cells [J]. ACS Synthetic Biology, 2017, 6(8): 1596-1604. |
95 | HUANG Hsin-Ho, QIAN Yili, VECCHIO D DEL. Aquasi-integral controller for adaptation of genetic modules to variable ribosome demand [J]. Nature Communications, 2018, 9(1): 5415. |
96 | AOKI S K, LILLACCI G, GUPTA A, et al. A universal biomolecular integral feedback controller for robust perfect adaptation [J]. Nature, 2019, 570(7762): 533-537. |
97 | DARLINGTON A P S, KIM Juhyun, JIMÉNEZ J I, et al. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes [J]. Nature Communications, 2018, 9(1): 695. |
98 | CERONI F, BOO A, FURINI S, et al. Burden-driven feedback control of gene expression [J]. Nature Methods, 2018, 15(5): 387-393. |
99 | RUGBJERG P, SARUP-LYTZEN K, NAGY M, et al. Synthetic addiction extends the productive life time of engineered Escherichia coli populations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 23472352. |
100 | XIAO Yi, BOWEN C H, LIU Di, et al. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis [J]. Nature Chemical Biology, 2016, 12(5): 339-344. |
101 | SEGALL-SHAPIRO T H, SONTAG E D, VOIGT C A. Engineered promoters enable constant gene expression at any copy number in bacteria [J]. Nature Biotechnology, 2018, 36(4): 352-358. |
[1] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[2] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[3] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[4] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[5] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[6] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[7] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[8] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[9] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[10] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[11] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
[12] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
[13] | 孙翰, 刘进. 真核微藻脂质代谢工程的研究进展和展望[J]. 合成生物学, 2023, 4(6): 1140-1160. |
[14] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
[15] | 晏雄鹰, 王振, 娄吉芸, 张皓瑜, 黄星宇, 王霞, 杨世辉. 生物燃料高效生产微生物细胞工厂构建研究进展[J]. 合成生物学, 2023, 4(6): 1082-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||