合成生物学 ›› 2022, Vol. 3 ›› Issue (2): 399-414.DOI: 10.12211/2096-8280.2021-048
胥欣欣1,2, 匡华1,2
收稿日期:
2021-04-21
修回日期:
2021-09-13
出版日期:
2022-04-30
发布日期:
2022-05-11
通讯作者:
匡华
作者简介:
基金资助:
Xinxin XU1,2, Hua KUANG1,2
Received:
2021-04-21
Revised:
2021-09-13
Online:
2022-04-30
Published:
2022-05-11
Contact:
Hua KUANG
摘要:
在细胞生物学中,受体是指在细胞表面或细胞内任何能够与激素、药物、信号分子等配体结合,从而引起细胞功能变化的生物大分子。随着生物学的快速发展,各种天然的、非天然的化合物在细胞中的识别、转运等信号通路及分子作用机制已被逐渐解析。酶、离子通道、转运蛋白等生物靶标都可以归类为广义上的受体。类似于抗体-抗原,受体-配体反应同样具有高亲和力、高特异性和高饱和,在食品安全快速检测领域有一定的发展潜力。受体蛋白的定向进化设计、潜在受体的开发利用以及多学科技术的交叉互融是受体生物传感分析方法发展的巨大推动力。本文简单介绍了受体的分类以及受体-配体的关系,概述了合成生物学中不同底盘生物对受体蛋白量产化的偏好性,回顾了基于受体蛋白的筛查分析方法在食品安全检测相关领域的研究进展,如抗生素残留、农药残留、非法使用添加剂、生物毒素及生物性污染等。最后,探讨了受体结合测定法的优缺点,分析了目前基于受体的分析方法所面临的瓶颈问题和可能的解决方式,展望了合成受体在食品安全检测应用领域中的发展方向。
中图分类号:
胥欣欣, 匡华. 基于合成受体的食品污染物生物检测进展[J]. 合成生物学, 2022, 3(2): 399-414.
Xinxin XU, Hua KUANG. Advances in the biological detection of food contaminants based on synthetic receptors[J]. Synthetic Biology Journal, 2022, 3(2): 399-414.
表达系统 | 优势 | 劣势 |
---|---|---|
原核表达系统 | 操作简单,培养周期短,成本低廉,表达量高 | 无翻译后修饰,易形成包含体 |
酵母表达系统 | 遗传背景清楚,操作简单,培养周期短,成本低廉,表达量高,无内毒素污染,简单的翻译后修饰 | 糖基化修饰与天然蛋白有差异 |
哺乳动物表达系统 | 糖基化修饰完整,蛋白折叠正确、活性高,最接近天然蛋白 | 周期长,产率低,耗费高 |
昆虫表达系统 | 翻译后修饰系统比原核和酵母系统更加完善,生产周期比哺乳动物系统短,重组蛋白产量高 | 病毒侵染导致细胞死亡,可能使得蛋白修饰不完整;糖基化修饰与天然蛋白有差异 |
表1 4种表达系统的比较
Tab. 1 Comparison of 4 expression systems
表达系统 | 优势 | 劣势 |
---|---|---|
原核表达系统 | 操作简单,培养周期短,成本低廉,表达量高 | 无翻译后修饰,易形成包含体 |
酵母表达系统 | 遗传背景清楚,操作简单,培养周期短,成本低廉,表达量高,无内毒素污染,简单的翻译后修饰 | 糖基化修饰与天然蛋白有差异 |
哺乳动物表达系统 | 糖基化修饰完整,蛋白折叠正确、活性高,最接近天然蛋白 | 周期长,产率低,耗费高 |
昆虫表达系统 | 翻译后修饰系统比原核和酵母系统更加完善,生产周期比哺乳动物系统短,重组蛋白产量高 | 病毒侵染导致细胞死亡,可能使得蛋白修饰不完整;糖基化修饰与天然蛋白有差异 |
抗生素类型 | 受体蛋白 | 检测方式 | 检测基质 | 可检测种类数 | LOD/(ng/mL) | IC50/(ng/mL) | 参考文献 |
---|---|---|---|---|---|---|---|
β-内酰胺类 | PBP2x* | ELISA | 牛奶 | 15 | 0.08~27.45 | — | [ |
sPBP3* | ELISA | PBS/牛奶 | 27/13 | 0.26~109.46/0.52~27.40 | 2.13~426.02 | [ | |
PBP2x* | ELISA | 牛奶、肉汁、鸡蛋、蜂蜜 | 6 | — | — | [ | |
BlaR-CTD | ELISA | 牛奶、牛肉、鸡肉 | 11 | — | 0.18~170.81 | [ | |
BlaR-CTD | ELISA | 13种食物 | 40 | — | — | [ | |
BlaR-CTD | GICA | 牛奶、鸡肉 | 21 | 低于限量要求 | — | [ | |
PBP-6 | SERS-LFIA | 牛奶 | 1 | 0.01 | 1.77 | [ | |
磺胺类 | DHPS | ELISA | 牛奶 | 28 | — | 426~50 000 | [ |
DHPS-DHPPP | FPA/ELISA | 牛奶 | 29 | 1.6~59/ 1.15~14.91 | <100 | [ | |
DHPS-DHPPP | ELISA | 鸡肉、猪肉、鸡蛋、蜂蜜 | 1 | 5.57~23.22 | — | [ | |
四环素类 | TetR-tetO | ELISA | 牛奶、牛血清 | 8 | 0.1~7.2 | — | [ |
TetR-tetO | 试纸条法 | 牛奶、肉末、牛血清 | 8 | — | — | [ | |
TetR | CL-ELISA | 牛奶 | 5 | 0.005~0.016 | 0.5~2.2 | [ | |
TetR | ELISA | 鸡蛋 | 9 | 0.3~5.8 | 3.1~17.2 | [ | |
TetR-tetO | 化学发光微流控条 | 自来水 | 1 | 0.1 | — | [ | |
大环内酯类 | MphR(A) | 细胞传感器 | — | 1 | — | — | [ |
MphR(A) | 微生物传感器 | — | 1 | — | — | [ | |
MphR(A) | ELISA | 牛奶、牛血清 | 5 | 1.7~5000 | — | [ | |
MphR(A)、MphR(E) | ELISA | 原奶 | 1 | — | — | [ |
表2 基于受体的抗生素筛查分析方法
Tab. 2 Receptor-based antibiotic screening and analysis method
抗生素类型 | 受体蛋白 | 检测方式 | 检测基质 | 可检测种类数 | LOD/(ng/mL) | IC50/(ng/mL) | 参考文献 |
---|---|---|---|---|---|---|---|
β-内酰胺类 | PBP2x* | ELISA | 牛奶 | 15 | 0.08~27.45 | — | [ |
sPBP3* | ELISA | PBS/牛奶 | 27/13 | 0.26~109.46/0.52~27.40 | 2.13~426.02 | [ | |
PBP2x* | ELISA | 牛奶、肉汁、鸡蛋、蜂蜜 | 6 | — | — | [ | |
BlaR-CTD | ELISA | 牛奶、牛肉、鸡肉 | 11 | — | 0.18~170.81 | [ | |
BlaR-CTD | ELISA | 13种食物 | 40 | — | — | [ | |
BlaR-CTD | GICA | 牛奶、鸡肉 | 21 | 低于限量要求 | — | [ | |
PBP-6 | SERS-LFIA | 牛奶 | 1 | 0.01 | 1.77 | [ | |
磺胺类 | DHPS | ELISA | 牛奶 | 28 | — | 426~50 000 | [ |
DHPS-DHPPP | FPA/ELISA | 牛奶 | 29 | 1.6~59/ 1.15~14.91 | <100 | [ | |
DHPS-DHPPP | ELISA | 鸡肉、猪肉、鸡蛋、蜂蜜 | 1 | 5.57~23.22 | — | [ | |
四环素类 | TetR-tetO | ELISA | 牛奶、牛血清 | 8 | 0.1~7.2 | — | [ |
TetR-tetO | 试纸条法 | 牛奶、肉末、牛血清 | 8 | — | — | [ | |
TetR | CL-ELISA | 牛奶 | 5 | 0.005~0.016 | 0.5~2.2 | [ | |
TetR | ELISA | 鸡蛋 | 9 | 0.3~5.8 | 3.1~17.2 | [ | |
TetR-tetO | 化学发光微流控条 | 自来水 | 1 | 0.1 | — | [ | |
大环内酯类 | MphR(A) | 细胞传感器 | — | 1 | — | — | [ |
MphR(A) | 微生物传感器 | — | 1 | — | — | [ | |
MphR(A) | ELISA | 牛奶、牛血清 | 5 | 1.7~5000 | — | [ | |
MphR(A)、MphR(E) | ELISA | 原奶 | 1 | — | — | [ |
非法添加剂类型 | 受体蛋白 | 检测方式 | 检测基质 | LOD/(ng/mL) | IC50/(ng/mL) | 参考文献 |
---|---|---|---|---|---|---|
β兴奋剂 | β兴奋剂受体 | ELISA | 药片 | — | — | [ |
β2-AR | ELRA | 猪尿 | — | 34~63 | [ | |
β2-AR | ELRA | 猪尿 | — | 45.99~78.02 | [ | |
β2-AR | ELRA | 猪尿 | — | 28.36~59.57 | [ | |
β2-AR | ELRA | — | 5.20 | 30.38 | [ | |
PDE5抑制剂 | 磷酸二酯酶PDE5 | 荧光检测方法 | 膳食补充剂 | — | 0.4~4.0 | [ |
表3 基于受体的非法添加剂筛查分析方法
Tab. 3 Receptor-based screening and analysis method of illegal additives
非法添加剂类型 | 受体蛋白 | 检测方式 | 检测基质 | LOD/(ng/mL) | IC50/(ng/mL) | 参考文献 |
---|---|---|---|---|---|---|
β兴奋剂 | β兴奋剂受体 | ELISA | 药片 | — | — | [ |
β2-AR | ELRA | 猪尿 | — | 34~63 | [ | |
β2-AR | ELRA | 猪尿 | — | 45.99~78.02 | [ | |
β2-AR | ELRA | 猪尿 | — | 28.36~59.57 | [ | |
β2-AR | ELRA | — | 5.20 | 30.38 | [ | |
PDE5抑制剂 | 磷酸二酯酶PDE5 | 荧光检测方法 | 膳食补充剂 | — | 0.4~4.0 | [ |
1 | 郭培源, 刘硕, 杨昆程, 等. 色谱技术、光谱分析法和生物检测技术在食品安全检测方面的应用进展[J]. 食品安全质量检测学报, 2015, 6(8): 3217-3223. |
GUO P Y, LIU S, YANG K C, et al. Progress in food safety detection using chromatographic techniques, spectroscopic techniques, and biological detection technology[J]. Journal of Food Safety & Quality, 2015, 6(8): 3217-3223. | |
2 | HONG E, LEE S Y, JEONG J Y, et al. Modern analytical methods for the detection of food fraud and adulteration by food category[J]. Journal of the Science of Food and Agriculture, 2017, 97(12): 3877-3896. |
3 | ALI S A, MITTAL D, KAUR G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: Recent advances and outlook[J]. World Journal of Microbiology & Biotechnology, 2021, 37(5): 81. |
4 | RAJA I S, VEDHANAYAGAM M, PREETH D R, et al. Development of two-dimensional nanomaterials based electrochemical biosensors on enhancing the analysis of food toxicants[J]. International Journal of Molecular Sciences, 2021, 22(6): 3277. |
5 | ALSAIARI N S, KATUBI K M M, ALZAHRANI F M, et al. The application of nanomaterials for the electrochemical detection of antibiotics: A review[J]. Micromachines, 2021, 12(3): 308. |
6 | WANG Z H, BEIER R C, SHEN J Z. Immunoassays for the detection of macrocyclic lactones in food matrices - a review[J]. TrAC Trends in Analytical Chemistry, 2017, 92: 42-61. |
7 | AHMED S, NING J N, CHENG G Y, et al. Receptor-based screening assays for the detection of antibiotics residues - a review[J]. Talanta, 2017, 166: 176-186. |
8 | SANKARAN S, PANIGRAHI S, MALLIK S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef[J]. Biosensors and Bioelectronics, 2011, 26(7): 3103-3109. |
9 | GAO M K, GAO Y H, CHEN G, et al. Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples[J]. Frontiers in Chemistry, 2020, 8: 616326. |
10 | MA J, YAN M M, FENG G G, et al. An overview on molecular imprinted polymers combined with surface-enhanced Raman spectroscopy chemical sensors toward analytical applications[J]. Talanta, 2021, 225: 122031. |
11 | CAO Y R, FENG T Y, XU J, et al. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors[J]. Biosensors and Bioelectronics, 2019, 141: 111447. |
12 | SANTILLO M F. Trends using biological target-based assays for drug detection in complex sample matrices[J]. Analytical and Bioanalytical Chemistry, 2020, 412(17): 3975-3982. |
13 | SUBRAHMANYAM S, PILETSKY S A, TURNER A P F. Application of natural receptors in sensors and assays[J]. Analytical Chemistry, 2002, 74(16): 3942-3951. |
14 | AHMED S, NING J N, PENG D P, et al. Current advances in immunoassays for the detection of antibiotics residues: a review[J]. Food and Agricultural Immunology, 2020, 31(1): 268-290. |
15 | 吕宝璋. 受体学[M]. 合肥: 安徽科学技术出版社, 2000. |
LYU B Z. Receptor science[M]. LU J, AN M B. Hefei: Anhui Science and Tecnology Press, 2000 | |
16 | AHMED S, NING J N, CHENG G Y, et al. Development and validation of an enzyme-linked receptor assay based on mutant protein I188K/S19C/G24C for 40 beta-lactams antibiotics detection in 13 food samples[J]. Microchemical Journal, 2020, 152: 104354. |
17 | SCHOBORG J A, HODGMAN C E, ANDERSON M J, et al. Substrate replenishment and byproduct removal improve yeast cell-free protein synthesis[J]. Biotechnology Journal, 2014, 9(5): 630-640. |
18 | CARLSON E D, GAN R, HODGMAN C E, et al. Cell-free protein synthesis: applications come of age[J]. Biotechnology Advances, 2012, 30(5): 1185-1194. |
19 | JAROENTOMEECHAI T, TAW M N, LI M J, et al. Cell-free synthetic glycobiology: designing and engineering glycomolecules outside of living cells[J]. Frontiers in Chemistry, 2020, 8: 645. |
20 | LIANG X, WANG Z H, WANG C M, et al. A proof-of-concept receptor-based assay for sulfonamides[J]. Analytical Biochemistry, 2013, 438(2): 110-116. |
21 | ZENG K, ZHANG J, WANG Y, et al. Development of a rapid multi-residue assay for detecting β-lactams using penicillin binding protein 2x[J]. Biomedical and Environmental Sciences, 2013, 26(2): 100-109. |
22 | PENG J, CHENG G Y, HUANG L L, et al. Development of a direct ELISA based on carboxy-terminal of penicillin-binding protein BlaR for the detection of β-lactam antibiotics in foods[J]. Analytical and Bioanalytical Chemistry, 2013, 405(27): 8925-8933. |
23 | WANG J, SHE Y X, WANG M, et al. Multiresidue method for analysis of β agonists in swine urine by enzyme linked receptor assay based on β2 adrenergic receptor expressed in HEK293 cells[J]. PLoS One, 2015, 10(9): e0139176. |
24 | LIU Y, WANG J, LIU Y, et al. Expression of codon optimized beta2-adrenergic receptor in Sf9 insect cells for multianalyte detection of beta-agonist residues in pork [J]. J Microbiol Biotechnol, 2019, 29(9): 1470-1477. |
LIU Y, WANG J, LIU Y, et al. Expression of codon optimized β2-adrenergic receptor in Sf9 insect cells for multianalyte detection of β-agonist residues in pork[J]. Journal of Microbiology and Biotechnology, 2019, 29(9): 1470-1477. | |
25 | WANG J, LIU Y, ZHANG J H, et al. Cell-free expression, purification, and characterization of the functional β2-adrenergic receptor for multianalyte detection of β-agonists[J]. Biochemistry, 2017, 82(11): 1346-1353. |
26 | DOLAH F M VAN, LEIGHFIELD T A, HAYNES B L, et al. A microplate receptor assay for the amnesic shellfish poisoning toxin, domoic acid, utilizing a cloned glutamate receptor[J]. Analytical Biochemistry, 1997, 245(1): 102-105. |
27 | AHN J H, LIM J H, PARK J, et al. Screening of target-specific olfactory receptor and development of olfactory biosensor for the assessment of fungal contamination in grain[J]. Sensors and Actuators B: Chemical, 2015, 210: 9-16. |
28 | HSIEH P C, VAISVILA R. Protein engineering: single or multiple site-directed mutagenesis[M]//Enzyme Engineering, 2013: 173-186. |
29 | YANG H Q, LI J H, SHIN H D, et al. Molecular engineering of industrial enzymes: recent advances and future prospects[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 23-29. |
30 | NING J N, AHMED S, CHENG G Y, et al. Analysis of the stability and affinity of BlaR-CTD protein to β-lactam antibiotics based on docking and mutagenesis studies[J]. Journal of Biological Engineering, 2019, 13: 27. |
31 | WANG G, XIA W Q, LIU J X, et al. Directional evolution of TetR protein and development of a fluoroimmunoassay for screening of tetracyclines in egg[J]. Microchemical Journal, 2019, 150: 104184. |
32 | LI H, LIU L, NING B A, et al. Selection of an artificial paraquat-specific binding protein from a ribosome display library based on a lipocalin scaffold[J]. Biotechnology and Applied Biochemistry, 2021, 68(6): 1372-1385. |
33 | SMITH G P. Phage display: Simple evolution in a petri dish (Nobel Lecture)[J]. Angewandte Chemie International Edition, 2019, 58(41): 14428-14437. |
34 | ZHANG J, WANG Z H, WEN K, et al. Penicillin-binding protein 3 of Streptococcus pneumoniae and its application in screening of β-lactams in milk[J]. Analytical Biochemistry, 2013, 442(2): 158-165. |
35 | LAMAR J, PETZ M. Development of a receptor-based microplate assay for the detection of beta-lactam antibiotics in different food matrices[J]. Analytica Chimica Acta, 2007, 586(1/2): 296-303. |
36 | LI Y, XU X X, LIU L Q, et al. Rapid detection of 21 β-lactams using an immunochromatographic assay based on the mutant BlaR-CTD protein from Bacillus Licheniformis [J]. The Analyst, 2020, 145(9): 3257-3265. |
37 | FAN R Q, TANG S S, LUO S L, et al. Duplex surface enhanced Raman scattering-based lateral flow immunosensor for the low-level detection of antibiotic residues in milk[J]. Molecules, 2020, 25(22): 5249. |
38 | WANG Z H, LIANG X, WEN K, et al. A highly sensitive and class-specific fluorescence polarisation assay for sulphonamides based on dihydropteroate synthase[J]. Biosensors and Bioelectronics, 2015, 70: 1-4. |
39 | LIANG X, LI C L, ZHU J Y, et al. Dihydropteroate synthase based sensor for screening multi-sulfonamides residue and its comparison with broad-specific antibody based immunoassay by molecular modeling analysis[J]. Analytica Chimica Acta, 2019, 1050: 139-145. |
40 | LIANG X, SONG X L, WANG Z H, et al. Evaluation of different food matrices via a dihydropteroate synthase-based biosensor for the screening of sulfonamide residues[J]. Food and Agricultural Immunology, 2020, 31(1): 352-366. |
41 | WEBER C C, LINK N, FUX C, et al. Broad-spectrum protein biosensors for class-specific detection of antibiotics[J]. Biotechnology and Bioengineering, 2005, 89(1): 9-17. |
42 | LINK N, WEBER W, FUSSENEGGER M. A novel generic dipstick-based technology for rapid and precise detection of tetracycline, streptogramin and macrolide antibiotics in food samples[J]. Journal of Biotechnology, 2007, 128(3): 668-680. |
43 | WANG G, ZHANG H C, LIU J, et al. A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk[J]. Analytical Biochemistry, 2019, 564/565: 40-46. |
44 | MEYER V K, CHATELLE C V, WEBER W, et al. Flow-based regenerable chemiluminescence receptor assay for the detection of tetracyclines[J]. Analytical and Bioanalytical Chemistry, 2020, 412(14): 3467-3476. |
45 | WEBER W, FUX C, DAOUD-EL BABA M, et al. Macrolide-based transgene control in mammalian cells and mice[J]. Nature Biotechnology, 2002, 20(9): 901-907. |
46 | MÖHRLE V, STADLER M, EBERZ G. Biosensor-guided screening for macrolides[J]. Analytical and Bioanalytical Chemistry, 2007, 388(5/6): 1117-1125. |
47 | CHENG Y Y, YANG S M, JIA M, et al. Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system[J]. Analytical and Bioanalytical Chemistry, 2016, 408(6): 1623-1631. |
48 | 程永友. 基于受体蛋白MphR(A和E)的类ELISA构建及在大环内酯类药物残留检测的初步应用[D]. 北京: 中国农业科学院, 2016. |
CHENG Y Y. Construction of ELISA-type systems based on macrolides receptor protein MphR (A and E) and preliminary application in detection of macrolide drugs residue[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
49 | HINRICHS W, KISKER C, DÜVEL M, et al. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance[J]. Science, 1994, 264(5157): 418-420. |
50 | ORTH P, SCHNAPPINGER D, HILLEN W, et al. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system[J]. Nature Structural Biology, 2000, 7(3): 215-219. |
51 | BOVEE T F H, MOL H G J, BIENENMANN-PLOUM M E, et al. Dietary supplement for energy and reduced appetite containing the β-agonist isopropyloctopamine leads to heart problems and hospitalisations[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2016, 33(5): 749-759. |
52 | CHENG G Y, LI F, PENG D P, et al. Development of an enzyme-linked-receptor assay based on Syrian hamster β2-adrenergic receptor for detection of β-agonists[J]. Analytical Biochemistry, 2014, 459: 18-23. |
53 | DORONIN S, LIN F, WANG H Y, et al. The full-length, cytoplasmic C-terminus of the beta 2-adrenergic receptor expressed in E. coli acts as a substrate for phosphorylation by protein kinase A, insulin receptor tyrosine kinase, GRK2, but not protein kinase C and suppresses desensitization when expressed in vivo [J]. Protein Expression and Purification, 2000, 20(3): 451-461. |
54 | DUPORT C, LOEPER J, STROSBERG A D. Comparative expression of the human β2 and β3 adrenergic receptors in Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta, 2003, 1629(1/2/3): 34-43. |
55 | CHELIKANI P, REEVES P J, RAJBHANDARY U L, et al. The synthesis and high-level expression of a β2-adrenergic receptor gene in a tetracycline-inducible stable mammalian cell line[J]. Protein Science, 2006, 15(6): 1433-1440. |
56 | SANTILLO M F, MAPA M S T. Phosphodiesterase (PDE5) inhibition assay for rapid detection of erectile dysfunction drugs and analogs in sexual enhancement products[J]. Drug Testing and Analysis, 2018, 10(8): 1315-1322. |
57 | ZHANG Z Q, NIE D X, FAN K, et al. A systematic review of plant-conjugated masked mycotoxins: occurrence, toxicology, and metabolism[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(9): 1523-1537. |
58 | MARIN S, RAMOS A J, CANO-SANCHO G, et al. Mycotoxins: occurrence, toxicology, and exposure assessment[J]. Food and Chemical Toxicology, 2013, 60: 218-237. |
59 | SOLHAUG A, ERIKSEN G S, HOLME J A. Mechanisms of action and toxicity of the mycotoxin alternariol: A review[J]. Basic & Clinical Pharmacology & Toxicology, 2016, 119(6): 533-539. |
60 | PELTOMAA R, BENITO-PEÑA E, MORENO-BONDI M C. Bioinspired recognition elements for mycotoxin sensors[J]. Analytical and Bioanalytical Chemistry, 2018, 410(3): 747-771. |
61 | ALHAMOUD Y, YANG D T, FIATI KENSTON S S, et al. Advances in biosensors for the detection of ochratoxin A: bio-receptors, nanomaterials, and their applications[J]. Biosensors and Bioelectronics, 2019, 141: 111418. |
62 | BAZIN I, ANDREOTTI N, HASSINE A I H, et al. Peptide binding to ochratoxin A mycotoxin: a new approach in conception of biosensors[J]. Biosensors and Bioelectronics, 2013, 40(1): 240-246. |
63 | SOLERI R, DEMEY H, TRIA S A, et al. Peptide conjugated chitosan foam as a novel approach for capture-purification and rapid detection of hapten - example of ochratoxin A[J]. Biosensors and Bioelectronics, 2015, 67: 634-641. |
64 | TRIA S A, LOPEZ-FERBER D, GONZALEZ C, et al. Microfabricated biosensor for the simultaneous amperometric and luminescence detection and monitoring of Ochratoxin A[J]. Biosensors and Bioelectronics, 2016, 79: 835-842. |
65 | HEURICH M, ALTINTAS Z, TOTHILL I E. Computational design of peptide ligands for ochratoxin A[J]. Toxins, 2013, 5(6): 1202-1218. |
66 | PIDENKO P, ZHANG H Y, LENAIN P, et al. Imprinted proteins as a receptor for detection of Zearalenone[J]. Analytica Chimica Acta, 2018, 1040: 99-104. |
67 | GUTIERREZ R A V, HEDSTRÖM M, MATTIASSON B. Bioimprinting as a tool for the detection of aflatoxin B1 using a capacitive biosensor[J]. Biotechnology Reports, 2016, 11: 12-17. |
68 | REVERTÉ L, SOLIÑO L, CARNICER O, et al. Alternative methods for the detection of emerging marine toxins: Biosensors, biochemical assays and cell-based assays[J]. Marine Drugs, 2014, 12(12): 5719-5763. |
69 | NICOLAS J, HENDRIKSEN P J M, GERSSEN A, et al. Marine neurotoxins: state of the art, bottlenecks, and perspectives for mode of action based methods of detection in seafood[J]. Molecular Nutrition & Food Research, 2014, 58(1): 87-100. |
70 | VILARIÑO N, FONFRÍA E S, MOLGÓ J, et al. Detection of gymnodimine-A and 13-desmethyl C spirolide phycotoxins by fluorescence polarization[J]. Analytical Chemistry, 2009, 81(7): 2708-2714. |
71 | FONFRÍA E S, VILARIÑO N, ESPIÑA B, et al. Feasibility of gymnodimine and 13-desmethyl C spirolide detection by fluorescence polarization using a receptor-based assay in shellfish matrixes[J]. Analytica Chimica Acta, 2010, 657(1): 75-82. |
72 | FONFRÍA E S, VILARIÑO N, MOLGÓ J, et al. Detection of 13,19-didesmethyl C spirolide by fluorescence polarization using Torpedo electrocyte membranes[J]. Analytical Biochemistry, 2010, 403(1/2): 102-107. |
73 | OTERO P, ALFONSO A, ALFONSO C, et al. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples[J]. Analytica Chimica Acta, 2011, 701(2): 200-208. |
74 | RODRÍGUEZ L P, VILARIÑO N, MOLGÓ J, et al. High-throughput receptor-based assay for the detection of spirolides by chemiluminescence[J]. Toxicon, 2013, 75: 35-43. |
75 | ARÁOZ R, RAMOS S, PELISSIER F, et al. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins[J]. Analytical Chemistry, 2012, 84(23): 10445-10453. |
76 | RODRÍGUEZ L P, VILARIÑO N, MOLGÓ J, et al. Development of a solid-phase receptor-based assay for the detection of cyclic imines using a microsphere-flow cytometry system[J]. Analytical Chemistry, 2013, 85(4): 2340-2347. |
77 | RODRÍGUEZ L P, VILARIÑO N, MOLGÓ J, et al. Solid-phase receptor-based assay for the detection of cyclic imines by chemiluminescence, fluorescence, or colorimetry[J]. Analytical Chemistry, 2011, 83(15): 5857-5863. |
78 | DOLAH F M VAN, FIRE S E, LEIGHFIELD T A, et al. Determination of paralytic shellfish toxins in shellfish by receptor binding assay: Collaborative study[J]. Journal of AOAC International, 2019, 95(3): 795-812. |
79 | ALFONSO A, FERNÁNDEZ-ARAUJO A, ALFONSO C, et al. Palytoxin detection and quantification using the fluorescence polarization technique[J]. Analytical Biochemistry, 2012, 424(1): 64-70. |
80 | ALFONSO A, PAZOS M J, FERNÁNDEZ-ARAUJO A, et al. Surface plasmon resonance biosensor method for palytoxin detection based on Na+, K+-ATPase affinity[J]. Toxins, 2013, 6(1): 96-107. |
81 | SON M, PARK T H. The bioelectronic nose and tongue using olfactory and taste receptors: analytical tools for food quality and safety assessment[J]. Biotechnology Advances, 2018, 36(2): 371-379. |
82 | SON M, CHO D G, LIM J H, et al. Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronic nose with human-like performance[J]. Biosensors and Bioelectronics, 2015, 74: 199-206. |
83 | SEO S M, JEON J W, KIM T Y, et al. An innate immune system-mimicking, real-time biosensing of infectious bacteria[J]. The Analyst, 2015, 140(17): 6061-6070. |
84 | ARODOLA O A, KANCHI S, HLOMA P, et al. An in-silico layer-by-layer adsorption study of the interaction between Rebaudioside A and the T1R2 human sweet taste receptor: modelling and biosensing perspectives[J]. Scientific Reports, 2020, 10: 18391. |
85 | BATHINAPATLA A, KANCHI S, SINGH P, et al. An ultrasensitive performance enhanced novel cytochrome c biosensor for the detection of rebaudioside A[J]. Biosensors and Bioelectronics, 2016, 77: 116-123. |
86 | LI N Q, CHOU H, XU Y. Improved cadaverine production from mutant Klebsiella oxytoca lysine decarboxylase[J]. Engineering in Life Sciences, 2016, 16(3): 299-305. |
87 | 徐鉴. 定向进化调控酶的选择性及催化多功能性[D]. 杭州: 浙江大学, 2019. |
XU J. Directed evolution of enzymes for the regulation of selectivity and catalytic promiscuity[D]. Hangzhou: Zhejiang University, 2019. | |
88 | COELHO P S, BRUSTAD E M, KANNAN A, et al. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes[J]. Science, 2013, 339(6117): 307-310. |
[1] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[2] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[3] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[4] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[5] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[6] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[7] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[8] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[9] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[10] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[11] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
[12] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
[13] | 孙翰, 刘进. 真核微藻脂质代谢工程的研究进展和展望[J]. 合成生物学, 2023, 4(6): 1140-1160. |
[14] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
[15] | 晏雄鹰, 王振, 娄吉芸, 张皓瑜, 黄星宇, 王霞, 杨世辉. 生物燃料高效生产微生物细胞工厂构建研究进展[J]. 合成生物学, 2023, 4(6): 1082-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||