Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (3): 298-318.DOI: 10.12211/2096-8280.2020-031
• Invited Review • Previous Articles Next Articles
Wenjing ZHANG1,3, Ming LI1,3, Wei ZHOU1,3, Xian-en ZHANG2,3, Feng LI1,3
Received:
2020-03-21
Revised:
2020-05-07
Online:
2020-09-29
Published:
2020-06-30
Contact:
Feng LI
张文静1,3, 李明1,3, 周维1,3, 张先恩2,3, 李峰1,3
通讯作者:
李峰
作者简介:
张文静(1991—),女,博士研究生。研究方向为病毒-无机杂化纳米材料的组装及肿瘤免疫治疗应用。E-mail:基金资助:
CLC Number:
Wenjing ZHANG, Ming LI, Wei ZHOU, Xian-en ZHANG, Feng LI. Self-assembly, biosynthesis, functionalization and applications of virus-based nanomaterials[J]. Synthetic Biology Journal, 2020, 1(3): 298-318.
张文静, 李明, 周维, 张先恩, 李峰. 基于病毒组件的纳米材料的自组装合成、功能化及应用[J]. 合成生物学, 2020, 1(3): 298-318.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-031
1 | WEN A M, STEINMETZ N F. Design of virus-based nanomaterials for medicine, biotechnology, and energy [J]. Chemical Society Reviews, 2016, 45(15): 4074-4126. |
2 | ATABEKOV J, NIKITIN N, ARKHIPENKO M, et al. Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles [J]. Journal of General Virology, 2011, 92(2): 453-456. |
3 | O'NEIL A, REICHHARDT C, JOHNSON B, et al. Genetically programmed in vivo packaging of protein cargo and its controlled release from bacteriophage P22 [J]. Angewandte Chemie International Edition, 2011, 50(32): 7425-7428. |
4 | RAYMOND D M, NILSSON B L. Multicomponent peptide assemblies [J]. Chemical Society Reviews, 2018, 47(10): 3659-3720. |
5 | EDWARDSON T G, HILVERT D. Virus-inspired function in engineered protein cages [J]. Journal of the American Chemical Society, 2019, 141(24): 9432-9443. |
6 | MATSUURA K. Synthetic approaches to construct viral capsid-like spherical nanomaterials [J]. Chemical Communications, 2018, 54(65): 8944-8959. |
7 | KE Yonggang, ONG L L, SHIH W M, et al. Three-dimensional structures self-assembled from DNA bricks [J]. Science, 2012, 338(6111): 1177-1183. |
8 | ROTHEMUND P W. Folding DNA to create nanoscale shapes and patterns [J]. Nature, 2006, 440(7082): 297-302. |
9 | KHALIL A S, FERRER J M, BRAU R R, et al. Single M13 bacteriophage tethering and stretching [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12): 4892-4897. |
10 | SACHSE C, CHEN J Z, P-D COUREUX, et al. High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus [J]. Journal of Molecular Biology, 2007, 371(3): 812-835. |
11 | PUSHKO P, PUMPENS P, GRENS E. Development of virus-like particle technology from small highly symmetric to large complex virus-like particle structures [J]. Intervirology, 2013, 56(3): 141-165. |
12 | LI Feng, LI Ke, CUI Zongqiang, et al. Viral coat proteins as flexible nano-building-blocks for nanoparticle encapsulation [J]. Small, 2010, 6(20): 2301-2308. |
13 | CHEN Xiaojiang S, GARCEA R L, GOLDBERG I, et al. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16 [J]. Molecular Cell, 2000, 5(3): 557-567. |
14 | Chien-Der LEE, YAN Yaopei, LIANG Shumei, et al. Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli [J]. Journal of Biomedical Science, 2009, 16(1): 69. |
15 | ROBERTS B L, MARKLAND W, LEY A C, et al. Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage [J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(6): 2429-2433. |
16 | WANG Guojing, JIA Tingting, XU Xixia, et al. Novel miR-122 delivery system based on MS2 virus like particle surface displaying cell-penetrating peptide TAT for hepatocellular carcinoma [J]. Oncotarget, 2016, 7(37): 59402. |
17 | WANG Jigang, FANG Ti, LI Ming, et al. Intracellular delivery of peptide drugs using viral nanoparticles of bacteriophage P22: covalent loading and cleavable release [J]. Journal of Materials Chemistry B, 2018, 6(22): 3716-3726. |
18 | SUN Xianxun, LI Wei, ZHANG Xiaowei, et al. In vivo targeting and imaging of atherosclerosis using multifunctional virus-like particles of simian virus 40 [J]. Nano Letters, 2016, 16(10): 6164-6171. |
19 | SHEN Lihua, ZHOU Jun, WANG Yixiao, et al. Efficient encapsulation of Fe3O4 nanoparticles into genetically engineered hepatitis B core virus-like particles through a specific interaction for potential bioapplications [J]. Small, 2015, 11(9/10): 1190-1196. |
20 | SHAN Wenjun, ZHANG Deliang, WU Yunlong, et al. Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin [J]. Nanomedicine, 2018, 14(3): 725-734. |
21 | CHOI Kyung-mi, CHOI Seung-Hye, JEON Hyesung, et al. Chimeric capsid protein as a nanocarrier for siRNA delivery: stability and cellular uptake of encapsulated siRNA [J]. ACS Nano, 2011, 5(11): 8690-8699. |
22 | R-U TAKAHASHI, S-N KANESASHI, INOUE T, et al. Presentation of functional foreign peptides on the surface of SV40 virus-like particles [J]. Journal of Biotechnology, 2008, 135(4): 385-392. |
23 | SHAN Wenjun, CHEN Ronghe, ZHANG Qiang, et al. Improved stable indocyanine green (ICG)-mediated cancer optotheranostics with naturalized hepatitis B core particles [J]. Advanced Materials, 2018, 30(28): 1707567. |
24 | SUFFIAN I F B M, WANG J Tzu-Wen, HODGINS N O, et al. Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo [J]. Biomaterials, 2017, 120: 126-138. |
25 | SUFFIAN I F M, WANG J Tzu-Wen, FARUQU F N, et al. Engineering human epidermal growth receptor 2-targeting hepatitis B virus core nanoparticles for siRNA delivery in vitro and in vivo [J]. ACS Applied Nano Materials, 2018, 1(7): 3269-3282. |
26 | KIM Seong Eun, Sung Duk JO, KWON Koo Chul, et al. Genetic assembly of double-layered fluorescent protein nanoparticles for cancer targeting and imaging [J]. Advanced Science, 2017, 4(5): 1600471. |
27 | FENG Ruonan, WANG Ruixue, HONG J, et al. Isolation of rabbit single domain antibodies to B7-H3 via protein immunization and phage display [J]. Antibody Therapeutics, 2020, 3(1): 10-17. |
28 | FENG Mingqian, GAO Wei, WANG Ruoqi, et al. Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(12): E1083-E1091. |
29 | PATTERSON D P, PREVELIGE P E, DOUGLAS T. Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage P22 [J]. ACS Nano, 2012, 6(6): 5000-5009. |
30 | PATTERSON D P, SCHWARZ B, EL-BOUBBOU K, et al. Virus-like particle nanoreactors: programmed encapsulation of the thermostable CelB glycosidase inside the P22 capsid [J]. Soft Matter, 2012, 8(39): 10158-10166. |
31 | QAZI S, MIETTINEN H M, WILKINSON R A, et al. Programmed self-assembly of an active P22-Cas9 nanocarrier system [J]. Molecular Pharmaceutics, 2016, 13(3): 1191-1196. |
32 | MCCOY K, SELIVANOVITCH E, LUQUE D, et al. Cargo retention inside P22 virus-like particles [J]. Biomacromolecules, 2018, 19(9): 3738-3746. |
33 | ENOMOTO T, KAWANO M, FUKUDA H, et al. Viral protein-coating of magnetic nanoparticles using simian virus 40 VP1 [J]. Journal of Biotechnology, 2013, 167(1): 8-15. |
34 | GAO Ding, LIN Xiuping, ZHANG Zhiping, et al. Intracellular cargo delivery by virus capsid protein-based vehicles: from nano to micro [J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2016, 12(2): 365-376. |
35 | KITAI Y, FUKUDA H, ENOMOTO T, et al. Cell selective targeting of a simian virus 40 virus-like particle conjugated to epidermal growth factor [J]. Journal of Biotechnology, 2011, 155(2): 251-256. |
36 | AZUMA Y, HERGER M, HILVERT D. Diversification of protein cage structure using circularly permuted subunits [J]. Journal of the American Chemical Society, 2018, 140(2): 558-561. |
37 | TERASAKA N, AZUMA Y, HILVERT D. Laboratory evolution of virus-like nucleocapsids from nonviral protein cages [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(21): 5432-5437. |
38 | BUTTERFIELD G L, LAJOIE M J, GUSTAFSON H H, et al. Evolution of a designed protein assembly encapsulating its own RNA genome [J]. Nature, 2017, 552(7685): 415-420. |
39 | BRAUER D D, HARTMAN E C, BADER D L V, et al. Systematic engineering of a protein nanocage for high-yield, site-specific modification [J]. Journal of the American Chemical Society, 2019, 141(9): 3875-3884. |
40 | CHEN M Yanqing, BUTLER S S, CHEN Weitong, et al. Physical, chemical, and synthetic virology: reprogramming viruses as controllable nanodevices [J]. Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology, 2019, 11(3): e1545. |
41 | HOOKER J M, O'NEIL J P, ROMANINI D W, et al. Genome-free viral capsids as carriers for positron emission tomography radiolabels [J]. Molecular Imaging and Biology, 2008, 10(4): 182-191. |
42 | PRASUHN JR D E, YEH R M, OBENAUS A, et al. Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition [J]. Chemical Communications, 2007, 12: 1269-1271. |
43 | ALJABALI A A, SHUKLA S, LOMONOSSOFF G P, et al. CPMV-dox delivers [J]. Molecular pharmaceutics, 2013, 10(1): 3-10. |
44 | GILLITZER E, WILLITS D, YOUNG M, et al. Chemical modification of a viral cage for multivalent presentation [J]. Chemical Communications, 2002, (20): 2390-2391. |
45 | ROHOVIE M J, NAGASAWA M, SWARTZ J R. Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery [J]. Bioengineering & Translational Medicine, 2017, 2(1): 43-57. |
46 | STEPHANOPOULOS N, TONG G J, HSIAO S C, et al. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells [J]. ACS Nano, 2010, 4(10): 6014-6020. |
47 | ANAND P, O'NEIL A, LIN E, et al. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers [J]. Scientific Reports, 2015, 5(1): 12497. |
48 | POMWISED R, INTAMASO U, TEINTZE M, et al. Coupling peptide antigens to virus-like particles or to protein carriers influences the Th1/Th2 polarity of the resulting immune response [J]. Vaccines, 2016, 4(2): 15. |
49 | GALAWAY F A, STOCKLEY P G. MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform [J]. Molecular Pharmaceutics, 2013, 10(1): 59-68. |
50 | PATEL K G, SWARTZ J R. Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry [J]. Bioconjugate Chemistry, 2011, 22(3): 376-387. |
51 | GILLITZER E, SUCI P, YOUNG M, et al. Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly [J]. Small, 2006, 2(8/9): 962-966. |
52 | BRUNEL F M, LEWIS J D, DESTITO G, et al. Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting [J]. Nano Letters, 2010, 10(3): 1093-1097. |
53 | WU Zhuojun, CHEN K, YILDIZ I, et al. Development of viral nanoparticles for efficient intracellular delivery [J]. Nanoscale, 2012, 4(11): 3567-3576. |
54 | MEDINTZ I L, SAPSFORD K E, KONNERT J H, et al. Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots [J]. Langmuir the ACS Journal of Surfaces & Colloids, 21(12): 5501-5510. |
55 | JIA Qingran, LI Danyang, ZHANG Qiang, et al. Biomineralization synthesis of HBc-CuS nanoparticles for near-infrared light-guided photothermal therapy [J]. Journal of Materials Science, 2019, 54(20): 13255-13264. |
56 | MEUNIER S, STRABLE E, FINN M. Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation [J]. Chemistry & Biology, 2004, 11(3): 319-326. |
57 | HOVLID M L, LAU J L, BREITENKAMP K, et al. Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles [J]. ACS Nano, 2014, 8(8): 8003-8014. |
58 | YIN Zhaojun, NGUYEN Huong Giang, CHOWDHURY S, et al. Tobacco mosaic virus as a new carrier for tumor associated carbohydrate antigens [J]. Bioconjugate Chemistry, 2012, 23(8): 1694-1703. |
59 | WANG Xiaoyu, XIAO Yun, HAO Haibin, et al. Therapeutic potential of biomineralization-based engineering [J]. Advanced Therapeutics, 2018, 1(8): 1800079. |
60 | WANG Guangchuan, CAO Ruiyuan, CHEN Rong, et al. Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7619-7624. |
61 | WANG Guangchuan, LI Xiaofeng, MO Lijuan, et al. Eggshell-inspired biomineralization generates vaccines that do not require refrigeration [J]. Angewandte Chemie International Edition, 2012, 51(42): 10576-10579. |
62 | WANG Xiaoyu, YANG Dong, LI Shihua, et al. Biomineralized vaccine nanohybrid for needle-free intranasal immunization [J]. Biomaterials, 2016, 106: 286-294. |
63 | ALJABALI A A, BARCLAY J E, LOMONOSSOFF G P, et al. Virus templated metallic nanoparticles [J]. Nanoscale, 2010, 2(12): 2596-2600. |
64 | ALJABALI A A, LOMONOSSOFF G P, EVANS D J. CPMV-polyelectrolyte-templated gold nanoparticles [J]. Biomacromolecules, 2011, 12(7): 2723-2728. |
65 | ALJABALI A A, BARCLAY J E, CESPEDES O, et al. Charge modified Cowpea mosaic virus particles for templated mineralization [J]. Advanced Functional Materials, 2011, 21(21): 4137-4142. |
66 | ZHOU Ziyou, BEDWELL G J, LI Rui, et al. P22 virus-like particles constructed Au/CdS plasmonic photocatalytic nanostructures for enhanced photoactivity [J]. Chemical Communications, 2015, 51(6): 1062-1065. |
67 | BEDWELL G J, ZHOU Ziyou, UCHIDA M, et al. Selective biotemplated synthesis of TiO2 inside a protein cage [J]. Biomacromolecules, 2015, 16(1): 214-218. |
68 | REICHHARDT C, UCHIDA M, O'NEIL A, et al. Templated assembly of organic-inorganic materials using the core shell structure of the P22 bacteriophage [J]. Chemical Communications, 2011, 47(22): 6326-6328. |
69 | ZHOU Kun, ZHANG Jianting, WANG Qiangbin. Site-selective nucleation and controlled growth of gold nanostructures in tobacco mosaic virus nanotubulars [J]. Small, 2015, 11(21): 2505-2509. |
70 | BAYRAM S S, ZAHR O K, DEL RE J, et al. Nanoring formation viain situphotoreduction of silver on a virus scaffold [J]. Nanotechnology, 2016, 27(48): 485603. |
71 | ZHANG Wenjing, ZHANG Zhiping, ZHANG Xian'en, et al. Reaction inside a viral protein nanocage: mineralization on a nanoparticle seed after encapsulation via self-assembly [J]. Nano Research, 2017, 10(10): 3285-3294. |
72 | DOUGLAS T, STRABLE E, WILLITS D, et al. Protein engineering of a viral cage for constrained nanomaterials synthesis [J]. Advanced Materials, 2002, 14(6): 415-418. |
73 | DOUGLAS T, YOUNG M. Host-guest encapsulation of materials by assembled virus protein cages [J]. Nature, 1998, 393(6681): 152-155. |
74 | BODE S A, MINTEN I J, NOLTE R J, et al. Reactions inside nanoscale protein cages [J]. Nanoscale, 2011, 3(6): 2376-2389. |
75 | LIU Zhi, QIAO Jing, NIU Zhongwei, et al. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles [J]. Chemical Society Reviews, 2012, 41(18): 6178-6194. |
76 | RIJN P VAN, SCHIRHAGL R. Viruses, artificial viruses and virus-based structures for biomedical applications [J]. Advanced Healthcare Materials, 2016, 5(12): 1386-1400. |
77 | ZHANG Wenjing, XU Chengchen, YIN Genquan, et al. Encapsulation of inorganic nanomaterials inside virus-based nanoparticles for bioimaging [J]. Nanotheranostics, 2017, 1(4): 358. |
78 | WILKERSON J W, YANG Seung-Ook, FUNK P J, et al. Nanoreactors: strategies to encapsulate enzyme biocatalysts in virus-like particles [J]. New Biotechnology, 2018, 44: 59-63. |
79 | ZDANOWICZ M, CHROBOCZEK J. Virus-like particles as drug delivery vectors [J]. Acta Biochimica Polonica, 2016, 63(3): 469-473. |
80 | LUO Quan, HOU Chunxi, BAI Yushi, et al. Protein assembly: versatile approaches to construct highly ordered nanostructures [J]. Chemical Reviews, 2016, 116(22): 13571-13632. |
81 | CHEN Chao, DANIEL M C, QUINKERT Z T, et al. Nanoparticle-templated assembly of viral protein cages [J]. Nano Letters, 2006, 6(4): 611-615. |
82 | DIXIT S K, GOICOCHEA N L, DANIEL M C, et al. Quantum dot encapsulation in viral capsids [J]. Nano Letters, 2006, 6(9): 1993-1999. |
83 | LOO L, GUENTHER R H, BASNAYAKE V R, et al. Controlled encapsidation of gold nanoparticles by a viral protein shell [J]. Journal of the American Chemical Society, 2006, 128(14): 4502-4503. |
84 | LOO L, GUENTHER R H, LOMMEL S A, et al. Encapsidation of nanoparticles by red clover necrotic mosaic virus [J]. Journal of the American Chemical Society, 2007, 129(36): 11111-11117. |
85 | ZHANG Yuan, KE Xianliang, ZHENG Zhenhua, et al. Encapsulating quantum dots into enveloped virus in living cells for tracking virus infection [J]. ACS Nano, 2013, 7(5): 3896-3904. |
86 | LI Qin, LI Wei, YIN Wen, et al. Single-particle tracking of human immunodeficiency virus type 1 productive entry into human primary macrophages [J]. ACS Nano, 2017, 11(4): 3890-3903. |
87 | GIESSEN T W, SILVER P A. A catalytic nanoreactor based on in vivo encapsulation of multiple enzymes in an engineered protein nanocompartment [J]. ChemBioChem, 2016, 17(20): 1931-1935. |
88 | LI Lingling, XU Chengchen, ZHANG Wenjing, et al. Cargo-compatible encapsulation in virus-based nanoparticles [J]. Nano Letters, 2019, 19(4): 2700-2706. |
89 | ZHANG Wenjing, ZHANG Xian'en, LI Feng. Virus-based nanoparticles of simian virus 40 in the field of nanobiotechnology [J]. Biotechnology Journal, 2018, 13(6): 1700619. |
90 | LI Feng, CHEN Yanhua, CHEN Huiling, et al. Monofunctionalization of protein nanocages [J]. Journal of the American Chemical Society, 2011, 133(50): 20040-20043. |
91 | KOSTIAINEN M A, HIEKKATAIPALE P, LAIHO A, et al. Electrostatic assembly of binary nanoparticle superlattices using protein cages [J]. Nature Nanotechnology, 2013, 8(1): 52-56. |
92 | LILJESTROM V, MIKKILA J, KOSTIAINEN M A. Self-assembly and modular functionalization of three-dimensional crystals from oppositely charged proteins [J]. Nature Communications, 2014, 5: 4445. |
93 | VELIZ F A, MA Yingfang, MOLUGU S K, et al. Photon management through virus-programmed supramolecular arrays [J]. Advanced Biosystems, 2017, 1(10): 1700088. |
94 | TIU B D B, KERNAN D L, TIU S B, et al. Electrostatic layer-by-layer construction of fibrous TMV biofilms [J]. Nanoscale, 2017, 9(4): 1580-1590. |
95 | GUPTA S, CHATNI M R, RAO A L, et al. Virus-mimicking nano-constructs as a contrast agent for near infrared photoacoustic imaging [J]. Nanoscale, 2013, 5(5): 1772-1776. |
96 | LEWIS J D, DESTITO G, ZIJLSTRA A, et al. Viral nanoparticles as tools for intravital vascular imaging [J]. Nature Medicine, 2006, 12(3): 354-360. |
97 | RESCH-GENGER U, GRABOLLE M, CAVALIERE-JARICOT S, et al. Quantum dots versus organic dyes as fluorescent labels [J]. Nature Methods, 2008, 5(9): 763. |
98 | PINAUD F, MICHALET X, BENTOLILA L A, et al. Advances in fluorescence imaging with quantum dot bio-probes [J]. Biomaterials, 2006, 27(9): 1679-1687. |
99 | LIU Shulin, WANG Zhigang, ZHANG Zhiling, et al. Tracking single viruses infecting their host cells using quantum dots [J]. Chemical Society Reviews, 2016, 45(5): 1211-1224. |
100 | SUN Enze, LIU An'an, ZHANG Zhiling, et al. Real-time dissection of distinct dynamin-dependent endocytic routes of influenza a virus by quantum dot-based single-virus tracking [J]. ACS Nano, 2017, 11(5): 4395-4406. |
101 | KUKURA P, EWERS H, MÜLLER C, et al. High-speed nanoscopic tracking of the position and orientation of a single virus [J]. Nature Methods, 2009, 6(12): 923. |
102 | LI Feng, ZHANG Zhiping, PENG Jun, et al. Imaging viral behavior in mammalian cells with self-assembled capsid-quantum-dot hybrid particles [J]. Small, 2009, 5(6): 718-726. |
103 | LI Chunyan, LI Feng, ZHANG Yejun, et al. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot [J]. ACS Nano, 2015, 9(12): 12255-12263. |
104 | YIN Wen, LI Wei, LI Qin, et al. Real-time imaging of individual virion-triggered cortical actin dynamics for human immunodeficiency virus entry into resting CD4 T cells [J]. Nanoscale, 2020, 12(1): 115-129. |
105 | MA Yingxin, HE Zhike, TAN Tianwei, et al. Real-time imaging of single HIV-1 disassembly with multicolor viral particles [J]. ACS Nano, 2016, 10(6): 6273-6282. |
106 | ZHENG Zhenhua, WANG Hanzhong. Tracking viral infection: will quantum dot encapsulation unveil viral mechanisms? [J]. Nanomedicine, 2013, 8(8): 1225-1227. |
107 | SMITH A M, MANCINI M C, NIE Shuming. Bioimaging: second window for in vivo imaging [J]. Nature Nanotechnology, 2009, 4(11): 710. |
108 | HU He, MASARAPU H, GU Yuning, et al. Physalis mottle virus-like nanoparticles for targeted cancer imaging [J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18213-18223. |
109 | ALLEN M, BULTE J W, LIEPOLD L, et al. Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents [J]. Magnetic Resonance in Medicine, 2005, 54(4): 807-812. |
110 | MIN Junseon, JUNG Hoesu, SHIN Hyun-Hee, et al. Implementation of P22 viral capsids as intravascular magnetic resonance T1 contrast conjugates via site-selective attachment of Gd (Ⅲ)-chelating agents [J]. Biomacromolecules, 2013, 14(7): 2332-2339. |
111 | HUANG Xinlei, STEIN B D, CHENG Hu, et al. Magnetic virus-like nanoparticles in N. benthamiana plants: a new paradigm for environmental and agronomic biotechnological research [J]. ACS Nano, 2011, 5(5): 4037-4045. |
112 | GHOSH D, Youjin LEE, THOMAS S, et al. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer [J]. Nature Nanotechnology, 2012, 7(10): 677-682. |
113 | GARIMELLA P D, DATTA A, ROMANINI D W, et al. Multivalent, high-relaxivity MRI contrast agents using rigid cysteine-reactive gadolinium complexes [J]. Journal of the American Chemical Society, 2011, 133(37): 14704-14709. |
114 | LUCON J, QAZI S, UCHIDA M, et al. Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading [J]. Nature Chemistry, 2012, 4(10): 781-788. |
115 | BRUCKMAN M A, JIANG Kai, SIMPSON E J, et al. Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus [J]. Nano Letters, 2014, 14(3): 1551-1558. |
116 | BRUCKMAN M A, VANMETER A, STEINMETZ N F. Nanomanufacturing of tobacco mosaic virus-based spherical biomaterials using a continuous flow method [J]. ACS Biomaterials Science & Engineering, 2015, 1(1): 13-18. |
117 | BRUCKMAN M A, RANDOLPH L N, GULATI N M, et al. Silica-coated Gd (DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages [J]. Journal of Materials Chemistry B, 2015, 3(38): 7503-7510. |
118 | QAZI S, UCHIDA M, USSELMAN R, et al. Manganese (Ⅲ) porphyrins complexed with P22 virus-like particles as T1-enhanced contrast agents for magnetic resonance imaging [J]. Journal of Biological Inorganic Chemistry, 2014, 19(2): 237-246. |
119 | MELDRUM T, SEIM K L, BAJAJ V S, et al. A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold [J]. Journal of the American Chemical Society, 2010, 132(17): 5936-5937. |
120 | PALANIAPPAN K K, RAMIREZ R M, BAJAJ V S, et al. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor [J]. Angewandte Chemie International Edition, 2013, 52(18): 4849-4853. |
121 | FARKAS M E, AANEI I L, BEHRENS C R, et al. PET imaging and biodistribution of chemically modified bacteriophage MS2 [J]. Molecular Pharmaceutics, 2013, 10(1): 69-76. |
122 | LI Zibo, JIN Qiaoling, HUANG Chiunwei, et al. Trackable and targeted phage as positron emission tomography (PET) agent for cancer imaging [J]. Theranostics, 2011, 1: 371. |
123 | GRÜNWALD G K, VETTER A, KLUTZ K, et al. Systemic image-guided liver cancer radiovirotherapy using dendrimer-coated adenovirus encoding the sodium iodide symporter as theranostic gene [J]. Journal of Nuclear Medicine, 2013, 54(8): 1450-1457. |
124 | 门冬, 张先恩, 张治平. 自组装病毒样纳米结构与超灵敏生物传感 [J]. 东南大学学报 (医学版), 2011(1): 20. |
Dong MEN, ZHANG Xian-en, ZHANG zhiping, et al. Self-assembled virus-like nanostructures and ultrasensitive biosensing [J]. Journal of Southeast University (Medical Science Edition), 2011(1), 20. | |
125 | BRUCKMAN M A, LIU Jie, KOLEY G, et al. Tobacco mosaic virus based thin film sensor for detection of volatile organic compounds [J]. Journal of Materials Chemistry, 2010, 20(27): 5715-5719. |
126 | DULTSEV F, SPEIGHT R, FIORINI M, et al. Direct and quantitative detection of bacteriophage by "hearing" surface detachment using a quartz crystal microbalance [J]. Analytical Chemistry, 2001, 73(16): 3935-3939. |
127 | NEUFELD T, MITTELMAN A S, BUCHNER V, et al. Electrochemical phagemid assay for the specific detection of bacteria using Escherichia coli TG-1 and the M13KO7 phagemid in a model system [J]. Analytical Chemistry, 2005, 77(2): 652-657. |
128 | 李凯, 张金玲, 王倩, 等. 病毒纳米颗粒在医学领域的潜在应用[J]. 生物医学工程学杂志, 2014, 31(3): 718-722. |
LI Kai, ZHANG Jinling, WANG Qian, et al. Potential application of viral nanoparticles in biomedicine [J]. Journal of Biomedical Engineering, 2014, 31(3): 718-722. | |
129 | WANG Dan, GAO Guangping. State-of-the-art human gene therapy (Ⅱ): Gene therapy strategies and applications [J]. Discovery Medicine, 2014, 18(98): 151. |
130 | KOTTERMAN M A, SCHAFFER D V. Engineering adeno-associated viruses for clinical gene therapy [J]. Nature Reviews Genetics, 2014, 15(7): 445-451. |
131 | JEEVANANDAM J, PAL K, DANQUAH M K. Virus-like nanoparticles as a novel delivery tool in gene therapy [J]. Biochimie, 2019, 157: 38-47. |
132 | TANG Kie Hie, YUSOFF K, TAN Wen Siang. Display of hepatitis B virus PreS1 peptide on bacteriophage T7 and its potential in gene delivery into HepG2 cells [J]. Journal of Virological Methods, 2009, 159(2): 194-199. |
133 | MOCKEY M, BOURSEAU E, CHANDRASHEKHAR V, et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes [J]. Cancer Gene Therapy, 2007, 14(9): 802-814. |
134 | LI Jinming, SUN Yanli, JIA Tingting, et al. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer [J]. International Journal of Cancer, 2014, 134(7): 1683-1694. |
135 | ASHLEY C E, CARNES E C, PHILLIPS G K, et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles [J]. ACS Nano, 2011, 5(7): 5729-5745. |
136 | EDWARDSON T G, MORI T, HILVERT D. Rational engineering of a designed protein cage for siRNA delivery [J]. Journal of the American Chemical Society, 2018, 140(33): 10439-10442. |
137 | SHALEM O, SANJANA N E, ZHANG Feng. High-throughput functional genomics using CRISPR-Cas9 [J]. Nature Reviews Genetics, 2015, 16(5): 299-311. |
138 | THURTLE-SCHMIDT D M, Te‐Wen LO. Molecular biology at the cutting edge: a review on CRISPR/CAS9 gene editing for undergraduates [J]. Biochemistry and Molecular Biology Education, 2018, 46(2): 195-205. |
139 | MAH C, BYRNE B J, FLOTTE T R. Virus-based gene delivery systems [J]. Clinical Pharmacokinetics, 2002, 41(12): 901-911. |
140 | KACZMARCZYK S J, SITARAMAN K, YOUNG H A, et al. Protein delivery using engineered virus-like particles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(41): 16998-17003. |
141 | REN Yupeng, WONG Sek Man, Lee-Yong LIM. Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin [J]. Bioconjugate Chemistry, 2007, 18(3): 836-843. |
142 | CZAPAR A E, ZHENG Yaorong, RIDDELL I A, et al. Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy [J]. ACS Nano, 2016, 10(4): 4119-4126. |
143 | YACOBY I, SHAMIS M, BAR H, et al. Targeting antibacterial agents by using drug-carrying filamentous bacteriophages [J]. Antimicrob Agents Chemother, 2006, 50(6): 2087-2097. |
144 | SUCI P A, VARPNESS Z, GILLITZER E, et al. Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer [J]. Langmuir, 2007, 23(24): 12280-12286. |
145 | EVERTS M, SAINI V, LEDDON J L, et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy [J]. Nano Letters, 2006, 6(4): 587-591. |
146 | ZHANG Qiang, SHAN Wenjun, AI Chaochao, et al. Construction of multifunctional Fe3O4-MTX@HBc nanoparticles for MR imaging and photothermal therapy/chemotherapy [J]. Nanotheranostics, 2018, 2(1): 87-95. |
147 | BLANCO E, SHEN Haifa, FERRARI M. Principles of nanoparticle design for overcoming biological barriers to drug delivery [J]. Nature Biotechnology, 2015, 33(9): 941. |
148 | CZAPAR A E, STEINMETZ N F. Plant viruses and bacteriophages for drug delivery in medicine and biotechnology [J]. Current Opinion in Chemical Biology, 2017, 38: 108-116. |
149 | MOLINO N M, WANG Szu-Wen. Caged protein nanoparticles for drug delivery [J]. Current Opinion in Biotechnology, 2014, 28: 75-82. |
150 | MA Yujie, NOLTE R J, CORNELISSEN J J. Virus-based nanocarriers for drug delivery [J]. Advanced Drug Delivery Reviews, 2012, 64(9): 811-825. |
151 | PLOTKIN S A. Vaccines: past, present and future [J]. Nature Medicine, 2005, 11(4): S5-S11. |
152 | PAAVONEN J, JENKINS D, BOSCH F X, et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase Ⅲ double-blind, randomised controlled trial [J]. The Lancet, 2007, 369(9580): 2161-2170. |
153 | MOHSEN M O, ZHA Lisha, CABRAL-MIRANDA G, et al. Major findings and recent advances in virus-like particle (VLP)-based vaccines [J]. Seminars in Immunology, 2017, 34: 123-132. |
154 | LEE K L, TWYMAN R M, FIERING S, et al. Virus-based nanoparticles as platform technologies for modern vaccines [J]. Nanomedicine and Nanobiotechnology, 2016, 8(4): 554-578. |
155 | ZHANG Lifang. Multi-epitope vaccines: a promising strategy against tumors and viral infections [J]. Cellular & Molecular Immunology, 2018, 15(2): 182-184. |
156 | BACHMANN M F, JENNINGS G T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns [J]. Nature Reviews Immunology, 2010, 10(11): 787-796. |
157 | PASTORI C, TUDOR D, DIOMEDE L, et al. Virus like particle based strategy to elicit HIV-protective antibodies to the alpha-helic regions of gp41 [J]. Virology, 2012, 431(1/2): 1-11. |
158 | SANDERS R W, MOORE J P. Native-like Env trimers as a platform for HIV-1 vaccine design [J]. Immunological Reviews, 2017, 275(1): 161-182. |
159 | MARCANDALLI J, FIALA B, OLS S, et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus [J]. Cell, 2019, 176(6): 1420-1431. |
160 | KLAMP T, SCHUMACHER J, HUBER G, et al. Highly specific auto-antibodies against claudin-18 isoform 2 induced by a chimeric HBcAg virus-like particle vaccine kill tumor cells and inhibit the growth of lung metastases [J]. Cancer Research, 2011, 71(2): 516-527. |
161 | LIZOTTE P, WEN A, SHEEN M, et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer [J]. Nature Nanotechnology, 2016, 11(3): 295. |
162 | LEE K L, MURRAY A A, LE D H T, et al. Combination of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response [J]. Nano Letters, 2017, 17(7): 4019-4028. |
163 | M-È LEBEL, CHARTRAND K, TARRAB E, et al. Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles [J]. Nano Letters, 2016, 16(3): 1826-1832. |
164 | MERZLYAK A, INDRAKANTI S, Seung-Wuk LEE. Genetically engineered nanofiber-like viruses for tissue regenerating materials [J]. Nano Letters, 2009, 9(2): 846-852. |
165 | FENG Sheng, LU Lin, ZAN Xingjie, et al. Genetically engineered plant viral nanoparticles direct neural cells differentiation and orientation [J]. Langmuir, 2015, 31(34): 9402-9409. |
166 | So Young YOO, CHUNG Woo-Jae, KIM Tae Hyun, et al. Facile patterning of genetically engineered M13 bacteriophage for directional growth of human fibroblast cells [J]. Soft Matter, 2011, 7(2): 363-368. |
167 | WANG Jianglin, YANG Mingying, ZHU Ye, et al. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds [J]. Advanced Materials, 2014, 26(29): 4961-4966. |
168 | LUCKANAGUL J, LEE L A, NGUYEN Q L, et al. Porous alginate hydrogel functionalized with virus as three-dimensional scaffolds for bone differentiation [J]. Biomacromolecules, 2012, 13(12): 3949-3958. |
169 | LUCKANAGUL J A, LEE L A, YOU Shaojin, et al. Plant virus incorporated hydrogels as scaffolds for tissue engineering possess low immunogenicity in vivo [J]. Journal of biomedical materials research Part A, 2015, 103(3): 887-895. |
170 | 朱劼, 胡加慧, 杨坤, 等. 病毒样颗粒限域纳米催化剂提高催化加氢活性[J]. 精细化工, 2019, 36(11): 2227-2233. |
ZHU Jie, HU Jiahui, YANG Kun, et al. Viral like particle limited nanocatalysts enhance the activity of catalytic hydrogenation [J]. Fine Chemicals, 2019, 36(11): 2227-2233. | |
171 | FIEDLER J D, BROWN S D, LAU J L, et al. RNA-directed packaging of enzymes within virus-like particles [J]. Angewandte Chemie International Edition, 2010, 49(50): 9648-9651. |
172 | O'NEIL A, PREVELIGE P E, DOUGLAS T. Stabilizing viral nano-reactors for nerve-agent degradation [J]. Biomaterials Science, 2013, 1(8): 881-886. |
173 | COMELLAS-ARAGONÈS M, ENGELKAMP H, CLAESSEN V I, et al. A virus-based single-enzyme nanoreactor [J]. Nature Nanotechnology, 2007, 2(10): 635. |
174 | MINTEN I J, CLAESSEN V I, BLANK K, et al. Catalytic capsids: the art of confinement [J]. Chemical Science, 2011, 2(2): 358-362. |
175 | PATTERSON D P, SCHWARZ B, WATERS R S, et al. Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle [J]. ACS Chemical Biology, 2014, 9(2): 359-365. |
176 | GLASGOW J E, ASENSIO M A, JAKOBSON C M, et al. Influence of electrostatics on small molecule flux through a protein nanoreactor [J]. ACS Synthetic Biology, 2015, 4(9): 1011-1019. |
177 | TSENG R J, TSAI C, MA L, et al. Digtal memory device based on tabacco mosaic virus conjugatad with nanoparticles [J]. Nature Nanoteehnology, 2006, 1(1): 72-77. |
178 | PORTNEY N G, MARTINEZMORALES A A, OZKAN M. Nanoscale memory characterization of Virus-templated semicondueting quantum dots [J]. ACS Nano, 2008, 2(2): 191-196. |
179 | STEINMETZ N F, LOMONOSSOFF G P, EVANS D J. Decoration of cowpea mosaic virus with multiple, redox‐active, organometallic complexes [J]. Small, 2006, 2(4): 530-533. |
180 | STEINMETZ N F, LOMONOSSOFF G P, EVANS D J. Cowpea mosaic virus for material fabrication: addressable carboxylate groups on a programmable nanoscaffold [J]. Langmuir, 2006, 22(8): 3488-3490. |
181 | Ki Tae NAM, KIM Dong-Wan, YOO P J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes [J]. Science, 2006, 312(5775): 885-888. |
182 | Ki Tae NAM, WARTENA R, YOO P J, et al. Stamped microbattery electrodes based on self-assembled M13 viruses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17227-17231. |
183 | Dahyun OH, QI Jifa, LU Yichun, et al. Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries [J]. Nature Communications, 2013, 4(1): 2756. |
184 | Yoon Sung NAM, PARK Heechul, MAGYAR A P, et al. Virus-templated iridium oxide-gold hybrid nanowires for electrochromic application [J]. Nanoscale, 2012, 4(11): 3405-3409. |
185 | Byung Yang LEE, ZHANG Jinxing, ZUEGER C, et al. Virus-based piezoelectric energy generation [J]. Nature Nanotechnology, 2012, 7(6): 351. |
186 | BARNHILL H N, CLAUDEL-GILLET S, ZIESSEL R, et al. Prototype protein assembly as scaffold for time-resolved fluoroimmuno assays [J]. Journal of the American Chemical Society, 2007, 129(25): 7799-7806. |
187 | LI Feng, GAO Ding, ZHAI Xiaomin, et al. Tunable, discrete, three-dimensional hybrid nanoarchitectures [J]. Angewandte Chemie International Edition, 2011, 50(18): 4202-4205. |
188 | CAPEHART S L, COYLE M P, GLASGOW J E, et al. Controlled integration of gold nanoparticles and organic fluorophores using synthetically modified MS2 viral capsids [J]. Journal of the American Chemical Society, 2013, 135(8): 3011-3016. |
189 | MILLER R A, PRESLEY A D, FRANCIS M B. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins [J]. Journal of the American Chemical Society, 2007, 129(11): 3104-3109. |
190 | MA Yingzhong, MILLER R A, FLEMING G R, et al. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein [J]. The Journal of Physical Chemistry B, 2008, 112(22): 6887-6892. |
191 | DEDEO M T, DUDERSTADT K E, BERGER J M, et al. Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus [J]. Nano Letters, 2010, 10(1): 181-186. |
192 | MILLER R A, STEPHANOPOULOS N, MCFARLAND J M, et al. Impact of assembly state on the defect tolerance of TMV-based light harvesting arrays [J]. Journal of the American Chemical Society, 2010, 132(17): 6068-6074. |
193 | ENDO M, FUJITSUKA M, MAJIMA T. Porphyrin light-harvesting arrays constructed in the recombinant tobacco mosaic virus scaffold [J]. Chemistry-A European Journal, 2007, 13(31): 8660-8666. |
[1] | Yongcan CHEN, Tong SI, Jianzhi ZHANG. Applications of automated synthetic biotechnology in DNA assembly and microbial chassis manipulation [J]. Synthetic Biology Journal, 2023, 4(5): 857-876. |
[2] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[3] | Yi YANG, Yufeng MAO, Chunhe YANG, Meng WANG, Xiaoping LIAO, Hongwu MA. Recent progress in computational tools for designing editing sequences used in microbial genetic manipulations [J]. Synthetic Biology Journal, 2023, 4(1): 30-46. |
[4] | Jiayu DONG, Min LI, Zonghua XIAO, Ming HU, Yudai MATSUDA, Weiguang WANG. Recent advances in heterologous production of natural products using Aspergillus oryzae [J]. Synthetic Biology Journal, 2022, 3(6): 1126-1149. |
[5] | Shiming TANG, Jiyuan HU, Suiping ZHENG, Shuangyan HAN, Ying LIN. Designing, building and rapid prototyping of biosynthesis module based on cell-free system [J]. Synthetic Biology Journal, 2022, 3(6): 1250-1261. |
[6] | Sisi LIN, Chao PAN, Yifan ZHANG, Jinyao LIU. Coated probiotic-based drug carriers for oral delivery of tumor antigens [J]. Synthetic Biology Journal, 2022, 3(4): 810-820. |
[7] | Lu YANG, Xudong QU. Application of imine reductase in the synthesis of chiral amines [J]. Synthetic Biology Journal, 2022, 3(3): 516-529. |
[8] | Huibin WANG, Changli CHE, Song YOU. Recent advances of enzymatic synthesis of organohalogens catalyzed by Fe/αKG-dependent halogenases [J]. Synthetic Biology Journal, 2022, 3(3): 545-566. |
[9] | Lili HUANG, Han ZHANG, Weiwei WANG, Haiyan XIE. Bioorthogonal functionalization of viruses for biomedical applications [J]. Synthetic Biology Journal, 2022, 3(2): 335-351. |
[10] | Qian SHI, Yuanyuan WU, yang YANG. DNA nanotechnology and synthetic biology [J]. Synthetic Biology Journal, 2022, 3(2): 302-319. |
[11] | Tingting ZHAI, Hongzhou GU, Chunhai FAN. Enzyme immobilization assisted by protein assemblies for highly efficient biocatalysis in organic systems [J]. Synthetic Biology Journal, 2022, 3(2): 256-259. |
[12] | Jiaoyu JIN, Jiahai ZHOU. The mystery of Z-genome biosynthesis has been elucidated [J]. Synthetic Biology Journal, 2022, 3(1): 1-5. |
[13] | Yingang FENG, Yajun LIU, Qiu CUI. Research progress in cellulosomes and their applications in synthetic biology [J]. Synthetic Biology Journal, 2022, 3(1): 138-154. |
[14] | Chanjuan JIANG, Tianqi CUI, Hongluan SUN, Nianzhi JIAO, Jun FU, Youming ZHANG, Hailong WANG. Efficient capture and assembly of AT-rich genomic fragments using ExoCET-BAC strategy [J]. Synthetic Biology Journal, 2022, 3(1): 238-251. |
[15] | Jiuzhou CHEN, Yu WANG, Wei PU, Ping ZHENG, Jibin SUN. Advances and perspective on bioproduction of 5-aminolevulinic acid [J]. Synthetic Biology Journal, 2021, 2(6): 1000-1016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||