Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (2): 399-414.DOI: 10.12211/2096-8280.2021-048
• Invited Review • Previous Articles Next Articles
Xinxin XU1,2, Hua KUANG1,2
Received:
2021-04-21
Revised:
2021-09-13
Online:
2022-05-11
Published:
2022-04-30
Contact:
Hua KUANG
胥欣欣1,2, 匡华1,2
通讯作者:
匡华
作者简介:
基金资助:
CLC Number:
Xinxin XU, Hua KUANG. Advances in the biological detection of food contaminants based on synthetic receptors[J]. Synthetic Biology Journal, 2022, 3(2): 399-414.
胥欣欣, 匡华. 基于合成受体的食品污染物生物检测进展[J]. 合成生物学, 2022, 3(2): 399-414.
表达系统 | 优势 | 劣势 |
---|---|---|
原核表达系统 | 操作简单,培养周期短,成本低廉,表达量高 | 无翻译后修饰,易形成包含体 |
酵母表达系统 | 遗传背景清楚,操作简单,培养周期短,成本低廉,表达量高,无内毒素污染,简单的翻译后修饰 | 糖基化修饰与天然蛋白有差异 |
哺乳动物表达系统 | 糖基化修饰完整,蛋白折叠正确、活性高,最接近天然蛋白 | 周期长,产率低,耗费高 |
昆虫表达系统 | 翻译后修饰系统比原核和酵母系统更加完善,生产周期比哺乳动物系统短,重组蛋白产量高 | 病毒侵染导致细胞死亡,可能使得蛋白修饰不完整;糖基化修饰与天然蛋白有差异 |
Tab. 1 Comparison of 4 expression systems
表达系统 | 优势 | 劣势 |
---|---|---|
原核表达系统 | 操作简单,培养周期短,成本低廉,表达量高 | 无翻译后修饰,易形成包含体 |
酵母表达系统 | 遗传背景清楚,操作简单,培养周期短,成本低廉,表达量高,无内毒素污染,简单的翻译后修饰 | 糖基化修饰与天然蛋白有差异 |
哺乳动物表达系统 | 糖基化修饰完整,蛋白折叠正确、活性高,最接近天然蛋白 | 周期长,产率低,耗费高 |
昆虫表达系统 | 翻译后修饰系统比原核和酵母系统更加完善,生产周期比哺乳动物系统短,重组蛋白产量高 | 病毒侵染导致细胞死亡,可能使得蛋白修饰不完整;糖基化修饰与天然蛋白有差异 |
抗生素类型 | 受体蛋白 | 检测方式 | 检测基质 | 可检测种类数 | LOD/(ng/mL) | IC50/(ng/mL) | 参考文献 |
---|---|---|---|---|---|---|---|
β-内酰胺类 | PBP2x* | ELISA | 牛奶 | 15 | 0.08~27.45 | — | [ |
sPBP3* | ELISA | PBS/牛奶 | 27/13 | 0.26~109.46/0.52~27.40 | 2.13~426.02 | [ | |
PBP2x* | ELISA | 牛奶、肉汁、鸡蛋、蜂蜜 | 6 | — | — | [ | |
BlaR-CTD | ELISA | 牛奶、牛肉、鸡肉 | 11 | — | 0.18~170.81 | [ | |
BlaR-CTD | ELISA | 13种食物 | 40 | — | — | [ | |
BlaR-CTD | GICA | 牛奶、鸡肉 | 21 | 低于限量要求 | — | [ | |
PBP-6 | SERS-LFIA | 牛奶 | 1 | 0.01 | 1.77 | [ | |
磺胺类 | DHPS | ELISA | 牛奶 | 28 | — | 426~50 000 | [ |
DHPS-DHPPP | FPA/ELISA | 牛奶 | 29 | 1.6~59/ 1.15~14.91 | <100 | [ | |
DHPS-DHPPP | ELISA | 鸡肉、猪肉、鸡蛋、蜂蜜 | 1 | 5.57~23.22 | — | [ | |
四环素类 | TetR-tetO | ELISA | 牛奶、牛血清 | 8 | 0.1~7.2 | — | [ |
TetR-tetO | 试纸条法 | 牛奶、肉末、牛血清 | 8 | — | — | [ | |
TetR | CL-ELISA | 牛奶 | 5 | 0.005~0.016 | 0.5~2.2 | [ | |
TetR | ELISA | 鸡蛋 | 9 | 0.3~5.8 | 3.1~17.2 | [ | |
TetR-tetO | 化学发光微流控条 | 自来水 | 1 | 0.1 | — | [ | |
大环内酯类 | MphR(A) | 细胞传感器 | — | 1 | — | — | [ |
MphR(A) | 微生物传感器 | — | 1 | — | — | [ | |
MphR(A) | ELISA | 牛奶、牛血清 | 5 | 1.7~5000 | — | [ | |
MphR(A)、MphR(E) | ELISA | 原奶 | 1 | — | — | [ |
Tab. 2 Receptor-based antibiotic screening and analysis method
抗生素类型 | 受体蛋白 | 检测方式 | 检测基质 | 可检测种类数 | LOD/(ng/mL) | IC50/(ng/mL) | 参考文献 |
---|---|---|---|---|---|---|---|
β-内酰胺类 | PBP2x* | ELISA | 牛奶 | 15 | 0.08~27.45 | — | [ |
sPBP3* | ELISA | PBS/牛奶 | 27/13 | 0.26~109.46/0.52~27.40 | 2.13~426.02 | [ | |
PBP2x* | ELISA | 牛奶、肉汁、鸡蛋、蜂蜜 | 6 | — | — | [ | |
BlaR-CTD | ELISA | 牛奶、牛肉、鸡肉 | 11 | — | 0.18~170.81 | [ | |
BlaR-CTD | ELISA | 13种食物 | 40 | — | — | [ | |
BlaR-CTD | GICA | 牛奶、鸡肉 | 21 | 低于限量要求 | — | [ | |
PBP-6 | SERS-LFIA | 牛奶 | 1 | 0.01 | 1.77 | [ | |
磺胺类 | DHPS | ELISA | 牛奶 | 28 | — | 426~50 000 | [ |
DHPS-DHPPP | FPA/ELISA | 牛奶 | 29 | 1.6~59/ 1.15~14.91 | <100 | [ | |
DHPS-DHPPP | ELISA | 鸡肉、猪肉、鸡蛋、蜂蜜 | 1 | 5.57~23.22 | — | [ | |
四环素类 | TetR-tetO | ELISA | 牛奶、牛血清 | 8 | 0.1~7.2 | — | [ |
TetR-tetO | 试纸条法 | 牛奶、肉末、牛血清 | 8 | — | — | [ | |
TetR | CL-ELISA | 牛奶 | 5 | 0.005~0.016 | 0.5~2.2 | [ | |
TetR | ELISA | 鸡蛋 | 9 | 0.3~5.8 | 3.1~17.2 | [ | |
TetR-tetO | 化学发光微流控条 | 自来水 | 1 | 0.1 | — | [ | |
大环内酯类 | MphR(A) | 细胞传感器 | — | 1 | — | — | [ |
MphR(A) | 微生物传感器 | — | 1 | — | — | [ | |
MphR(A) | ELISA | 牛奶、牛血清 | 5 | 1.7~5000 | — | [ | |
MphR(A)、MphR(E) | ELISA | 原奶 | 1 | — | — | [ |
非法添加剂类型 | 受体蛋白 | 检测方式 | 检测基质 | LOD/(ng/mL) | IC50/(ng/mL) | 参考文献 |
---|---|---|---|---|---|---|
β兴奋剂 | β兴奋剂受体 | ELISA | 药片 | — | — | [ |
β2-AR | ELRA | 猪尿 | — | 34~63 | [ | |
β2-AR | ELRA | 猪尿 | — | 45.99~78.02 | [ | |
β2-AR | ELRA | 猪尿 | — | 28.36~59.57 | [ | |
β2-AR | ELRA | — | 5.20 | 30.38 | [ | |
PDE5抑制剂 | 磷酸二酯酶PDE5 | 荧光检测方法 | 膳食补充剂 | — | 0.4~4.0 | [ |
Tab. 3 Receptor-based screening and analysis method of illegal additives
非法添加剂类型 | 受体蛋白 | 检测方式 | 检测基质 | LOD/(ng/mL) | IC50/(ng/mL) | 参考文献 |
---|---|---|---|---|---|---|
β兴奋剂 | β兴奋剂受体 | ELISA | 药片 | — | — | [ |
β2-AR | ELRA | 猪尿 | — | 34~63 | [ | |
β2-AR | ELRA | 猪尿 | — | 45.99~78.02 | [ | |
β2-AR | ELRA | 猪尿 | — | 28.36~59.57 | [ | |
β2-AR | ELRA | — | 5.20 | 30.38 | [ | |
PDE5抑制剂 | 磷酸二酯酶PDE5 | 荧光检测方法 | 膳食补充剂 | — | 0.4~4.0 | [ |
1 | 郭培源, 刘硕, 杨昆程, 等. 色谱技术、光谱分析法和生物检测技术在食品安全检测方面的应用进展[J]. 食品安全质量检测学报, 2015, 6(8): 3217-3223. |
GUO P Y, LIU S, YANG K C, et al. Progress in food safety detection using chromatographic techniques, spectroscopic techniques, and biological detection technology[J]. Journal of Food Safety & Quality, 2015, 6(8): 3217-3223. | |
2 | HONG E, LEE S Y, JEONG J Y, et al. Modern analytical methods for the detection of food fraud and adulteration by food category[J]. Journal of the Science of Food and Agriculture, 2017, 97(12): 3877-3896. |
3 | ALI S A, MITTAL D, KAUR G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: Recent advances and outlook[J]. World Journal of Microbiology & Biotechnology, 2021, 37(5): 81. |
4 | RAJA I S, VEDHANAYAGAM M, PREETH D R, et al. Development of two-dimensional nanomaterials based electrochemical biosensors on enhancing the analysis of food toxicants[J]. International Journal of Molecular Sciences, 2021, 22(6): 3277. |
5 | ALSAIARI N S, KATUBI K M M, ALZAHRANI F M, et al. The application of nanomaterials for the electrochemical detection of antibiotics: A review[J]. Micromachines, 2021, 12(3): 308. |
6 | WANG Z H, BEIER R C, SHEN J Z. Immunoassays for the detection of macrocyclic lactones in food matrices - a review[J]. TrAC Trends in Analytical Chemistry, 2017, 92: 42-61. |
7 | AHMED S, NING J N, CHENG G Y, et al. Receptor-based screening assays for the detection of antibiotics residues - a review[J]. Talanta, 2017, 166: 176-186. |
8 | SANKARAN S, PANIGRAHI S, MALLIK S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef[J]. Biosensors and Bioelectronics, 2011, 26(7): 3103-3109. |
9 | GAO M K, GAO Y H, CHEN G, et al. Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples[J]. Frontiers in Chemistry, 2020, 8: 616326. |
10 | MA J, YAN M M, FENG G G, et al. An overview on molecular imprinted polymers combined with surface-enhanced Raman spectroscopy chemical sensors toward analytical applications[J]. Talanta, 2021, 225: 122031. |
11 | CAO Y R, FENG T Y, XU J, et al. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors[J]. Biosensors and Bioelectronics, 2019, 141: 111447. |
12 | SANTILLO M F. Trends using biological target-based assays for drug detection in complex sample matrices[J]. Analytical and Bioanalytical Chemistry, 2020, 412(17): 3975-3982. |
13 | SUBRAHMANYAM S, PILETSKY S A, TURNER A P F. Application of natural receptors in sensors and assays[J]. Analytical Chemistry, 2002, 74(16): 3942-3951. |
14 | AHMED S, NING J N, PENG D P, et al. Current advances in immunoassays for the detection of antibiotics residues: a review[J]. Food and Agricultural Immunology, 2020, 31(1): 268-290. |
15 | 吕宝璋. 受体学[M]. 合肥: 安徽科学技术出版社, 2000. |
LYU B Z. Receptor science[M]. LU J, AN M B. Hefei: Anhui Science and Tecnology Press, 2000 | |
16 | AHMED S, NING J N, CHENG G Y, et al. Development and validation of an enzyme-linked receptor assay based on mutant protein I188K/S19C/G24C for 40 beta-lactams antibiotics detection in 13 food samples[J]. Microchemical Journal, 2020, 152: 104354. |
17 | SCHOBORG J A, HODGMAN C E, ANDERSON M J, et al. Substrate replenishment and byproduct removal improve yeast cell-free protein synthesis[J]. Biotechnology Journal, 2014, 9(5): 630-640. |
18 | CARLSON E D, GAN R, HODGMAN C E, et al. Cell-free protein synthesis: applications come of age[J]. Biotechnology Advances, 2012, 30(5): 1185-1194. |
19 | JAROENTOMEECHAI T, TAW M N, LI M J, et al. Cell-free synthetic glycobiology: designing and engineering glycomolecules outside of living cells[J]. Frontiers in Chemistry, 2020, 8: 645. |
20 | LIANG X, WANG Z H, WANG C M, et al. A proof-of-concept receptor-based assay for sulfonamides[J]. Analytical Biochemistry, 2013, 438(2): 110-116. |
21 | ZENG K, ZHANG J, WANG Y, et al. Development of a rapid multi-residue assay for detecting β-lactams using penicillin binding protein 2x[J]. Biomedical and Environmental Sciences, 2013, 26(2): 100-109. |
22 | PENG J, CHENG G Y, HUANG L L, et al. Development of a direct ELISA based on carboxy-terminal of penicillin-binding protein BlaR for the detection of β-lactam antibiotics in foods[J]. Analytical and Bioanalytical Chemistry, 2013, 405(27): 8925-8933. |
23 | WANG J, SHE Y X, WANG M, et al. Multiresidue method for analysis of β agonists in swine urine by enzyme linked receptor assay based on β2 adrenergic receptor expressed in HEK293 cells[J]. PLoS One, 2015, 10(9): e0139176. |
24 | LIU Y, WANG J, LIU Y, et al. Expression of codon optimized beta2-adrenergic receptor in Sf9 insect cells for multianalyte detection of beta-agonist residues in pork [J]. J Microbiol Biotechnol, 2019, 29(9): 1470-1477. |
LIU Y, WANG J, LIU Y, et al. Expression of codon optimized β2-adrenergic receptor in Sf9 insect cells for multianalyte detection of β-agonist residues in pork[J]. Journal of Microbiology and Biotechnology, 2019, 29(9): 1470-1477. | |
25 | WANG J, LIU Y, ZHANG J H, et al. Cell-free expression, purification, and characterization of the functional β2-adrenergic receptor for multianalyte detection of β-agonists[J]. Biochemistry, 2017, 82(11): 1346-1353. |
26 | DOLAH F M VAN, LEIGHFIELD T A, HAYNES B L, et al. A microplate receptor assay for the amnesic shellfish poisoning toxin, domoic acid, utilizing a cloned glutamate receptor[J]. Analytical Biochemistry, 1997, 245(1): 102-105. |
27 | AHN J H, LIM J H, PARK J, et al. Screening of target-specific olfactory receptor and development of olfactory biosensor for the assessment of fungal contamination in grain[J]. Sensors and Actuators B: Chemical, 2015, 210: 9-16. |
28 | HSIEH P C, VAISVILA R. Protein engineering: single or multiple site-directed mutagenesis[M]//Enzyme Engineering, 2013: 173-186. |
29 | YANG H Q, LI J H, SHIN H D, et al. Molecular engineering of industrial enzymes: recent advances and future prospects[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 23-29. |
30 | NING J N, AHMED S, CHENG G Y, et al. Analysis of the stability and affinity of BlaR-CTD protein to β-lactam antibiotics based on docking and mutagenesis studies[J]. Journal of Biological Engineering, 2019, 13: 27. |
31 | WANG G, XIA W Q, LIU J X, et al. Directional evolution of TetR protein and development of a fluoroimmunoassay for screening of tetracyclines in egg[J]. Microchemical Journal, 2019, 150: 104184. |
32 | LI H, LIU L, NING B A, et al. Selection of an artificial paraquat-specific binding protein from a ribosome display library based on a lipocalin scaffold[J]. Biotechnology and Applied Biochemistry, 2021, 68(6): 1372-1385. |
33 | SMITH G P. Phage display: Simple evolution in a petri dish (Nobel Lecture)[J]. Angewandte Chemie International Edition, 2019, 58(41): 14428-14437. |
34 | ZHANG J, WANG Z H, WEN K, et al. Penicillin-binding protein 3 of Streptococcus pneumoniae and its application in screening of β-lactams in milk[J]. Analytical Biochemistry, 2013, 442(2): 158-165. |
35 | LAMAR J, PETZ M. Development of a receptor-based microplate assay for the detection of beta-lactam antibiotics in different food matrices[J]. Analytica Chimica Acta, 2007, 586(1/2): 296-303. |
36 | LI Y, XU X X, LIU L Q, et al. Rapid detection of 21 β-lactams using an immunochromatographic assay based on the mutant BlaR-CTD protein from Bacillus Licheniformis [J]. The Analyst, 2020, 145(9): 3257-3265. |
37 | FAN R Q, TANG S S, LUO S L, et al. Duplex surface enhanced Raman scattering-based lateral flow immunosensor for the low-level detection of antibiotic residues in milk[J]. Molecules, 2020, 25(22): 5249. |
38 | WANG Z H, LIANG X, WEN K, et al. A highly sensitive and class-specific fluorescence polarisation assay for sulphonamides based on dihydropteroate synthase[J]. Biosensors and Bioelectronics, 2015, 70: 1-4. |
39 | LIANG X, LI C L, ZHU J Y, et al. Dihydropteroate synthase based sensor for screening multi-sulfonamides residue and its comparison with broad-specific antibody based immunoassay by molecular modeling analysis[J]. Analytica Chimica Acta, 2019, 1050: 139-145. |
40 | LIANG X, SONG X L, WANG Z H, et al. Evaluation of different food matrices via a dihydropteroate synthase-based biosensor for the screening of sulfonamide residues[J]. Food and Agricultural Immunology, 2020, 31(1): 352-366. |
41 | WEBER C C, LINK N, FUX C, et al. Broad-spectrum protein biosensors for class-specific detection of antibiotics[J]. Biotechnology and Bioengineering, 2005, 89(1): 9-17. |
42 | LINK N, WEBER W, FUSSENEGGER M. A novel generic dipstick-based technology for rapid and precise detection of tetracycline, streptogramin and macrolide antibiotics in food samples[J]. Journal of Biotechnology, 2007, 128(3): 668-680. |
43 | WANG G, ZHANG H C, LIU J, et al. A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk[J]. Analytical Biochemistry, 2019, 564/565: 40-46. |
44 | MEYER V K, CHATELLE C V, WEBER W, et al. Flow-based regenerable chemiluminescence receptor assay for the detection of tetracyclines[J]. Analytical and Bioanalytical Chemistry, 2020, 412(14): 3467-3476. |
45 | WEBER W, FUX C, DAOUD-EL BABA M, et al. Macrolide-based transgene control in mammalian cells and mice[J]. Nature Biotechnology, 2002, 20(9): 901-907. |
46 | MÖHRLE V, STADLER M, EBERZ G. Biosensor-guided screening for macrolides[J]. Analytical and Bioanalytical Chemistry, 2007, 388(5/6): 1117-1125. |
47 | CHENG Y Y, YANG S M, JIA M, et al. Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system[J]. Analytical and Bioanalytical Chemistry, 2016, 408(6): 1623-1631. |
48 | 程永友. 基于受体蛋白MphR(A和E)的类ELISA构建及在大环内酯类药物残留检测的初步应用[D]. 北京: 中国农业科学院, 2016. |
CHENG Y Y. Construction of ELISA-type systems based on macrolides receptor protein MphR (A and E) and preliminary application in detection of macrolide drugs residue[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
49 | HINRICHS W, KISKER C, DÜVEL M, et al. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance[J]. Science, 1994, 264(5157): 418-420. |
50 | ORTH P, SCHNAPPINGER D, HILLEN W, et al. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system[J]. Nature Structural Biology, 2000, 7(3): 215-219. |
51 | BOVEE T F H, MOL H G J, BIENENMANN-PLOUM M E, et al. Dietary supplement for energy and reduced appetite containing the β-agonist isopropyloctopamine leads to heart problems and hospitalisations[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2016, 33(5): 749-759. |
52 | CHENG G Y, LI F, PENG D P, et al. Development of an enzyme-linked-receptor assay based on Syrian hamster β2-adrenergic receptor for detection of β-agonists[J]. Analytical Biochemistry, 2014, 459: 18-23. |
53 | DORONIN S, LIN F, WANG H Y, et al. The full-length, cytoplasmic C-terminus of the beta 2-adrenergic receptor expressed in E. coli acts as a substrate for phosphorylation by protein kinase A, insulin receptor tyrosine kinase, GRK2, but not protein kinase C and suppresses desensitization when expressed in vivo [J]. Protein Expression and Purification, 2000, 20(3): 451-461. |
54 | DUPORT C, LOEPER J, STROSBERG A D. Comparative expression of the human β2 and β3 adrenergic receptors in Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta, 2003, 1629(1/2/3): 34-43. |
55 | CHELIKANI P, REEVES P J, RAJBHANDARY U L, et al. The synthesis and high-level expression of a β2-adrenergic receptor gene in a tetracycline-inducible stable mammalian cell line[J]. Protein Science, 2006, 15(6): 1433-1440. |
56 | SANTILLO M F, MAPA M S T. Phosphodiesterase (PDE5) inhibition assay for rapid detection of erectile dysfunction drugs and analogs in sexual enhancement products[J]. Drug Testing and Analysis, 2018, 10(8): 1315-1322. |
57 | ZHANG Z Q, NIE D X, FAN K, et al. A systematic review of plant-conjugated masked mycotoxins: occurrence, toxicology, and metabolism[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(9): 1523-1537. |
58 | MARIN S, RAMOS A J, CANO-SANCHO G, et al. Mycotoxins: occurrence, toxicology, and exposure assessment[J]. Food and Chemical Toxicology, 2013, 60: 218-237. |
59 | SOLHAUG A, ERIKSEN G S, HOLME J A. Mechanisms of action and toxicity of the mycotoxin alternariol: A review[J]. Basic & Clinical Pharmacology & Toxicology, 2016, 119(6): 533-539. |
60 | PELTOMAA R, BENITO-PEÑA E, MORENO-BONDI M C. Bioinspired recognition elements for mycotoxin sensors[J]. Analytical and Bioanalytical Chemistry, 2018, 410(3): 747-771. |
61 | ALHAMOUD Y, YANG D T, FIATI KENSTON S S, et al. Advances in biosensors for the detection of ochratoxin A: bio-receptors, nanomaterials, and their applications[J]. Biosensors and Bioelectronics, 2019, 141: 111418. |
62 | BAZIN I, ANDREOTTI N, HASSINE A I H, et al. Peptide binding to ochratoxin A mycotoxin: a new approach in conception of biosensors[J]. Biosensors and Bioelectronics, 2013, 40(1): 240-246. |
63 | SOLERI R, DEMEY H, TRIA S A, et al. Peptide conjugated chitosan foam as a novel approach for capture-purification and rapid detection of hapten - example of ochratoxin A[J]. Biosensors and Bioelectronics, 2015, 67: 634-641. |
64 | TRIA S A, LOPEZ-FERBER D, GONZALEZ C, et al. Microfabricated biosensor for the simultaneous amperometric and luminescence detection and monitoring of Ochratoxin A[J]. Biosensors and Bioelectronics, 2016, 79: 835-842. |
65 | HEURICH M, ALTINTAS Z, TOTHILL I E. Computational design of peptide ligands for ochratoxin A[J]. Toxins, 2013, 5(6): 1202-1218. |
66 | PIDENKO P, ZHANG H Y, LENAIN P, et al. Imprinted proteins as a receptor for detection of Zearalenone[J]. Analytica Chimica Acta, 2018, 1040: 99-104. |
67 | GUTIERREZ R A V, HEDSTRÖM M, MATTIASSON B. Bioimprinting as a tool for the detection of aflatoxin B1 using a capacitive biosensor[J]. Biotechnology Reports, 2016, 11: 12-17. |
68 | REVERTÉ L, SOLIÑO L, CARNICER O, et al. Alternative methods for the detection of emerging marine toxins: Biosensors, biochemical assays and cell-based assays[J]. Marine Drugs, 2014, 12(12): 5719-5763. |
69 | NICOLAS J, HENDRIKSEN P J M, GERSSEN A, et al. Marine neurotoxins: state of the art, bottlenecks, and perspectives for mode of action based methods of detection in seafood[J]. Molecular Nutrition & Food Research, 2014, 58(1): 87-100. |
70 | VILARIÑO N, FONFRÍA E S, MOLGÓ J, et al. Detection of gymnodimine-A and 13-desmethyl C spirolide phycotoxins by fluorescence polarization[J]. Analytical Chemistry, 2009, 81(7): 2708-2714. |
71 | FONFRÍA E S, VILARIÑO N, ESPIÑA B, et al. Feasibility of gymnodimine and 13-desmethyl C spirolide detection by fluorescence polarization using a receptor-based assay in shellfish matrixes[J]. Analytica Chimica Acta, 2010, 657(1): 75-82. |
72 | FONFRÍA E S, VILARIÑO N, MOLGÓ J, et al. Detection of 13,19-didesmethyl C spirolide by fluorescence polarization using Torpedo electrocyte membranes[J]. Analytical Biochemistry, 2010, 403(1/2): 102-107. |
73 | OTERO P, ALFONSO A, ALFONSO C, et al. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples[J]. Analytica Chimica Acta, 2011, 701(2): 200-208. |
74 | RODRÍGUEZ L P, VILARIÑO N, MOLGÓ J, et al. High-throughput receptor-based assay for the detection of spirolides by chemiluminescence[J]. Toxicon, 2013, 75: 35-43. |
75 | ARÁOZ R, RAMOS S, PELISSIER F, et al. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins[J]. Analytical Chemistry, 2012, 84(23): 10445-10453. |
76 | RODRÍGUEZ L P, VILARIÑO N, MOLGÓ J, et al. Development of a solid-phase receptor-based assay for the detection of cyclic imines using a microsphere-flow cytometry system[J]. Analytical Chemistry, 2013, 85(4): 2340-2347. |
77 | RODRÍGUEZ L P, VILARIÑO N, MOLGÓ J, et al. Solid-phase receptor-based assay for the detection of cyclic imines by chemiluminescence, fluorescence, or colorimetry[J]. Analytical Chemistry, 2011, 83(15): 5857-5863. |
78 | DOLAH F M VAN, FIRE S E, LEIGHFIELD T A, et al. Determination of paralytic shellfish toxins in shellfish by receptor binding assay: Collaborative study[J]. Journal of AOAC International, 2019, 95(3): 795-812. |
79 | ALFONSO A, FERNÁNDEZ-ARAUJO A, ALFONSO C, et al. Palytoxin detection and quantification using the fluorescence polarization technique[J]. Analytical Biochemistry, 2012, 424(1): 64-70. |
80 | ALFONSO A, PAZOS M J, FERNÁNDEZ-ARAUJO A, et al. Surface plasmon resonance biosensor method for palytoxin detection based on Na+, K+-ATPase affinity[J]. Toxins, 2013, 6(1): 96-107. |
81 | SON M, PARK T H. The bioelectronic nose and tongue using olfactory and taste receptors: analytical tools for food quality and safety assessment[J]. Biotechnology Advances, 2018, 36(2): 371-379. |
82 | SON M, CHO D G, LIM J H, et al. Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronic nose with human-like performance[J]. Biosensors and Bioelectronics, 2015, 74: 199-206. |
83 | SEO S M, JEON J W, KIM T Y, et al. An innate immune system-mimicking, real-time biosensing of infectious bacteria[J]. The Analyst, 2015, 140(17): 6061-6070. |
84 | ARODOLA O A, KANCHI S, HLOMA P, et al. An in-silico layer-by-layer adsorption study of the interaction between Rebaudioside A and the T1R2 human sweet taste receptor: modelling and biosensing perspectives[J]. Scientific Reports, 2020, 10: 18391. |
85 | BATHINAPATLA A, KANCHI S, SINGH P, et al. An ultrasensitive performance enhanced novel cytochrome c biosensor for the detection of rebaudioside A[J]. Biosensors and Bioelectronics, 2016, 77: 116-123. |
86 | LI N Q, CHOU H, XU Y. Improved cadaverine production from mutant Klebsiella oxytoca lysine decarboxylase[J]. Engineering in Life Sciences, 2016, 16(3): 299-305. |
87 | 徐鉴. 定向进化调控酶的选择性及催化多功能性[D]. 杭州: 浙江大学, 2019. |
XU J. Directed evolution of enzymes for the regulation of selectivity and catalytic promiscuity[D]. Hangzhou: Zhejiang University, 2019. | |
88 | COELHO P S, BRUSTAD E M, KANNAN A, et al. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes[J]. Science, 2013, 339(6117): 307-310. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[3] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[4] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[5] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[7] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[8] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[9] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[10] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[11] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[12] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[13] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[14] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[15] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1481
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 949
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||