Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (4): 831-850.DOI: 10.12211/2096-8280.2024-044
• Invited Review • Previous Articles Next Articles
Rongkai CAO1,2, Jianhua QIN1, Yaqing WANG3,4
Received:
2024-05-30
Revised:
2024-06-25
Online:
2024-09-19
Published:
2024-08-31
Contact:
Yaqing WANG
曹荣凯1,2, 秦建华1, 王亚清3,4
通讯作者:
王亚清
作者简介:
基金资助:
CLC Number:
Rongkai CAO, Jianhua QIN, Yaqing WANG. Advances in placenta-on-a-chip for reproductive medicine research[J]. Synthetic Biology Journal, 2024, 5(4): 831-850.
曹荣凯, 秦建华, 王亚清. 胎盘芯片及其在生殖医学领域的研究进展[J]. 合成生物学, 2024, 5(4): 831-850.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-044
1 | KNÖFLER M, HAIDER S, SALEH L, et al. Human placenta and trophoblast development: key molecular mechanisms and model systems[J]. Cellular and Molecular Life Sciences, 2019, 76(18): 3479-3496. |
2 | ROSENFELD C S. Transcriptomics and other omics approaches to investigate effects of xenobiotics on the placenta[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 723656. |
3 | ANDER S E, DIAMOND M S, COYNE C B. Immune responses at the maternal-fetal interface[J]. Science Immunology, 2019, 4(31): eaat6114. |
4 | BROSENS I, PIJNENBORG R, VERCRUYSSE L, et al. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation[J]. American Journal of Obstetrics and Gynecology, 2011, 204(3): 193-201. |
5 | KRISHNA U, BHALERAO S. Placental insufficiency and fetal growth restriction[J]. Journal of Obstetrics and Gynaecology of India, 2011, 61(5): 505-511. |
6 | SMITH G C S. First-trimester determination of complications of late pregnancy[J]. The Journal of the American Medical Association, 2010, 303(6): 561-562. |
7 | SCHMIDT A, MORALES-PRIETO D M, PASTUSCHEK J, et al. Only humans have human placentas: molecular differences between mice and humans[J]. Journal of Reproductive Immunology, 2015, 108: 65-71. |
8 | CHAOUAT G, CLARK D A. Are animal models useful or confusing in understanding the human feto-maternal relationship? A debate[J]. Journal of Reproductive Immunology, 2015, 108: 56-64. |
9 | AUBUCHON M, SCHULZ L C, SCHUST D J. Preeclampsia: animal models for a human cure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(4): 1197-1198. |
10 | MCCARTHY F P, KINGDOM J C, KENNY L C, et al. Animal models of preeclampsia; uses and limitations[J]. Placenta, 2011, 32(6): 413-419. |
11 | ROTHBAUER M, PATEL N, GONDOLA H, et al. A comparative study of five physiological key parameters between four different human trophoblast-derived cell lines[J]. Scientific Reports, 2017, 7(1): 5892. |
12 | ABBAS Y, TURCO M Y, BURTON G J, et al. Investigation of human trophoblast invasion in vitro [J]. Human Reproduction Update, 2020, 26(4): 501-513. |
13 | CONINGS S, AMANT F, ANNAERT P, et al. Integration and validation of the ex vivo human placenta perfusion model[J]. Journal of Pharmacological and Toxicological Methods, 2017, 88(Pt 1): 25-31. |
14 | MYLLYNEN P, MATHIESEN L, WEIMER M, et al. Preliminary interlaboratory comparison of the ex vivo dual human placental perfusion system[J]. Reproductive Toxicology, 2010, 30(1): 94-102. |
15 | ORENDI K, KIVITY V, SAMMAR M, et al. Placental and trophoblastic in vitro models to study preventive and therapeutic agents for preeclampsia[J]. Placenta, 2011, 32(): S49-S54. |
16 | XIAO Z Y, YAN L, LIANG X Y, et al. Progress in deciphering trophoblast cell differentiation during human placentation[J]. Current Opinion in Cell Biology, 2020, 67: 86-91. |
17 | WONG F, COX B J. Cellular analysis of trophoblast and placenta[J]. Placenta, 2017, 59: S2-S7. |
18 | LI L P, SCHUST D J. Isolation, purification and in vitro differentiation of cytotrophoblast cells from human term placenta[J]. Reproductive Biology and Endocrinology, 2015, 13: 71. |
19 | VARDHANA P A, ILLSLEY N P. Transepithelial glucose transport and metabolism in BeWo choriocarcinoma cells[J]. Placenta, 2002, 23(8-9): 653-660. |
20 | FUCHS R, ELLINGER I. Endocytic and transcytotic processes in villous syncytiotrophoblast: role in nutrient transport to the human fetus[J]. Traffic, 2004, 5(10): 725-738. |
21 | MARTINEZ F, OLVERA-SANCHEZ S, ESPARZA-PERUSQUIA M, et al. Multiple functions of syncytiotrophoblast mitochondria[J]. Steroids, 2015, 103: 11-22. |
22 | COSTA M A. The endocrine function of human placenta: an overview[J]. Reproductive BioMedicine Online, 2016, 32(1): 14-43. |
23 | PIJNENBORG R, DIXON G, ROBERTSON W B, et al. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy[J]. Placenta, 1980, 1(1): 3-19. |
24 | HE N N, VAN IPEREN L, JONG D D, et al. Human extravillous trophoblasts penetrate decidual veins and lymphatics before remodeling spiral arteries during early pregnancy[J]. PLoS One, 2017, 12(1): e0169849. |
25 | MORLEY L C, BEECH D J, WALKER J J, et al. Emerging concepts of shear stress in placental development and function[J]. Molecular Human Reproduction, 2019, 25(6): 329-339. |
26 | CHANG C W, WAKELAND A K, PARAST M M. Trophoblast lineage specification, differentiation and their regulation by oxygen tension[J]. The Journal of Endocrinology, 2018, 236(1): R43-R56. |
27 | ROBERTS V H J, MORGAN T K, BEDNAREK P, et al. Early first trimester uteroplacental flow and the progressive disintegration of spiral artery plugs: new insights from contrast-enhanced ultrasound and tissue histopathology[J]. Human Reproduction, 2017, 32(12): 2382-2393. |
28 | WEISS G, SUNDL M, GLASNER A, et al. The trophoblast plug during early pregnancy: a deeper insight[J]. Histochemistry and Cell Biology, 2016, 146(6): 749-756. |
29 | JAMES J L, WHITLEY G S, CARTWRIGHT J E. Shear stress and spiral artery remodelling: the effects of low shear stress on trophoblast-induced endothelial cell apoptosis[J]. Cardiovascular Research, 2011, 90(1): 130-139. |
30 | BURTON G J, CINDROVA-DAVIES T, YUNG H W, et al. Hypoxia and reproductive health: oxygen and development of the human placenta[J]. Reproduction, 2021, 161(1): F53-F65. |
31 | JAMES J L, SAGHIAN R, PERWICK R, et al. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling[J]. Human Reproduction, 2018, 33(8): 1430-1441. |
32 | JAUNIAUX E, WATSON A L, HEMPSTOCK J, et al. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure[J]. The American Journal of Pathology, 2000, 157(6): 2111-2122. |
33 | BURTON G J, WOODS A W, JAUNIAUX E, et al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy[J]. Placenta, 2009, 30(6): 473-482. |
34 | BURTON G J, REDMAN C W, ROBERTS J M, et al. Pre-eclampsia: pathophysiology and clinical implications[J]. British Medical Journal, 2019, 366: l2381. |
35 | ROTH C J, HAEUSSNER E, RUEBELMANN T, et al. Dynamic modeling of uteroplacental blood flow in IUGR indicates vortices and elevated pressure in the intervillous space - a pilot study[J]. Scientific Reports, 2017, 7: 40771. |
36 | AL-NASIRY S, SPITZ B, HANSSENS M, et al. Differential effects of inducers of syncytialization and apoptosis on BeWo and JEG-3 choriocarcinoma cells[J]. Human Reproduction, 2006, 21(1): 193-201. |
37 | KNYAZEV E N, NIKULIN S V, KHRISTICHENKO A Y, et al. Transport and toxicity of 5-fluorouracil, doxorubicin, and cyclophosphamide in in vitro placental barrier model based on BeWo b30 cells[J]. Russian Chemical Bulletin, 2019, 68(12): 2344-2349. |
38 | KLOET S K, WALCZAK A P, LOUISSE J, et al. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model[J]. Toxicology in Vitro, 2015, 29(7): 1701-1710. |
39 | KAWAMURA E, HAMILTON G B, MISKIEWICZ E I, et al. Examination of FERMT1 expression in placental chorionic villi and its role in HTR8-SVneo cell invasion[J]. Histochemistry and Cell Biology, 2021, 155(6): 669-681. |
40 | NONG Y Q, LI S F, LIU W J, et al. Aquaporin 3 promotes human extravillous trophoblast migration and invasion[J]. Reproductive Biology and Endocrinology, 2021, 19(1): 49. |
41 | NURSALIM Y N S, GROOM K M, BLENKIRON C, et al. A simple method to isolate term trophoblasts and maintain them in extended culture[J]. Placenta, 2021, 108: 1-10. |
42 | CASTEL G, MEISTERMANN D, BRETIN B, et al. Induction of human trophoblast stem cells from somatic cells and pluripotent stem cells[J]. Cell Reports, 2020, 33(8): 108419. |
43 | LIU X D, OUYANG J F, ROSSELLO F J, et al. Reprogramming roadmap reveals route to human induced trophoblast stem cells[J]. Nature, 2020, 586(7827): 101-107. |
44 | WEI Y X, WANG T Y, MA L S, et al. Efficient derivation of human trophoblast stem cells from primed pluripotent stem cells[J]. Science Advances, 2021, 7(33): eabf4416. |
45 | NAAMA M, RAHAMIM M, ZAYAT V, et al. Pluripotency-independent induction of human trophoblast stem cells from fibroblasts[J]. Nature Communications, 2023, 14(1): 3359. |
46 | OKAE H, TOH H, SATO T, et al. Derivation of human trophoblast stem cells[J]. Cell Stem Cell, 2018, 22(1): 50-63.e6. |
47 | LEE J S, ROMERO R, HAN Y M, et al. Placenta-on-a-chip: a novel platform to study the biology of the human placenta[J]. The Journal of Maternal-Fetal & Neonatal Medicine, 2016, 29(7): 1046-1054. |
48 | CAO R K, WANG Y Q, LIU J Y, et al. Self-assembled human placental model from trophoblast stem cells in a dynamic organ-on-a-chip system[J]. Cell Proliferation, 2023, 56(5): e13469. |
49 | BLUNDELL C, YI Y S, MA L, et al. Placental drug transport-on-a-chip: a microengineered in vitro model of transporter-mediated drug efflux in the human placental barrier[J]. Advanced Healthcare Materials, 2018, 7(2): 1700786. |
50 | BLUNDELL C, TESS E R, SCHANZER A S, et al. A microphysiological model of the human placental barrier[J]. Lab on a Chip, 2016, 16(16): 3065-3073. |
51 | YIN F C, ZHU Y J, ZHANG M, et al. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier[J]. Toxicology in Vitro, 2019, 54: 105-113. |
52 | ZHU Y J, YIN F C, WANG H, et al. Placental barrier-on-a-chip: modeling placental inflammatory responses to bacterial infection[J]. ACS Biomaterials Science & Engineering, 2018, 4(9): 3356-3363. |
53 | LI Q, SHARKEY A, SHERIDAN M, et al. Human uterine natural killer cells regulate differentiation of extravillous trophoblast early in pregnancy[J]. Cell Stem Cell, 2024, 31(2): 181-195.e9. |
54 | PARK J Y, MANI S, CLAIR G, et al. A microphysiological model of human trophoblast invasion during implantation[J]. Nature Communications, 2022, 13(1): 1252. |
55 | HIGHET A R, KHODA S M, BUCKBERRY S, et al. Hypoxia induced HIF-1/HIF-2 activity alters trophoblast transcriptional regulation and promotes invasion[J]. European Journal of Cell Biology, 2015, 94(12): 589-602. |
56 | WONG M K, LI E W, ADAM M, et al. Establishment of an in vitro placental barrier model cultured under physiologically relevant oxygen levels[J]. Molecular Human Reproduction, 2020, 26(5): 353-365. |
57 | HU X Q, ZHANG L B. Hypoxia and mitochondrial dysfunction in pregnancy complications[J]. Antioxidants, 2021, 10(3): 405. |
58 | WOO J H, LEE I, KIM S M, et al. Recapitulation of trophoblast invasion during pregnancy in a physiological hypoxia induced microfluidic device[C/OL]//ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, July 28–August 1, 2019, San Francisco, California, USA.(2019-11-20)[2024-03-01]. . |
59 | LECARPENTIER E, BHATT M, BERTIN G I, et al. Computational fluid dynamic simulations of maternal circulation: wall shear stress in the human placenta and its biological implications[J]. PLoS One, 2016, 11(1): e0147262. |
60 | BRUGGER B A, GUETTLER J, GAUSTER M. Go with the flow-trophoblasts in flow culture[J]. International Journal of Molecular Sciences, 2020, 21(13): 4666. |
61 | MIURA S, SATO K, KATO-NEGISHI M, et al. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6[J]. Nature Communications, 2015, 6: 8871. |
62 | SANZ G, DANIEL N, AUBRIÈRE M C, et al. Differentiation of derived rabbit trophoblast stem cells under fluid shear stress to mimic the trophoblastic barrier[J]. Biochimica et Biophysica Acta General Subjects, 2019, 1863(10): 1608-1618. |
63 | HOLDER B S, TOWER C L, JONES C J, et al. Heightened pro-inflammatory effect of preeclamptic placental microvesicles on peripheral blood immune cells in humans[J]. Biology of Reproduction, 2012, 86(4): 103. |
64 | JONES C J P, FOX H. An ultrastructural and ultrahistochemical study of the human placenta in maternal pre-eclampsia[J]. Placenta, 1980, 1(1): 61-76. |
65 | RIQUELME G, VALLEJOS C, GREGORIO N D, et al. Lipid rafts and cytoskeletal proteins in placental microvilli membranes from preeclamptic and IUGR pregnancies[J]. The Journal of Membrane Biology, 2011, 241(3): 127-140. |
66 | ARISHE O O, EBEIGBE A B, WEBB R C. Mechanotransduction and uterine blood flow in preeclampsia: the role of mechanosensing Piezo 1 ion channels[J]. American Journal of Hypertension, 2020, 33(1): 1-9. |
67 | MA Z W, SAGRILLO-FAGUNDES L, MOK S, et al. Mechanobiological regulation of placental trophoblast fusion and function through extracellular matrix rigidity[J]. Scientific Reports, 2020, 10(1): 5837. |
68 | NABA A. TenYears of extracellular matrix proteomics: accomplishments, challenges, and future perspectives[J]. Molecular & Cellular Proteomics, 2023, 22(4): 100528. |
69 | NISHIGUCHI A, GILMORE C, SOOD A, et al. In vitro placenta barrier model using primary human trophoblasts, underlying connective tissue and vascular endothelium[J]. Biomaterials, 2019, 192: 140-148. |
70 | ZAMBUTO S G, RATTILA S, DVEKSLER G, et al. Effects of pregnancy-specific glycoproteins on trophoblast motility in three-dimensional gelatin hydrogels[J]. Cellular and Molecular Bioengineering, 2022, 15(2): 175-191. |
71 | MANDT D, GRUBER P, MARKOVIC M, et al. Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization[J]. International Journal of Bioprinting, 2018, 4(2): 144. |
72 | WONG M K, SHAWKY S A, ARYASOMAYAJULA A, et al. Extracellular matrix surface regulates self-assembly of three-dimensional placental trophoblast spheroids[J]. PLoS One, 2018, 13(6): e0199632. |
73 | ABBAS Y, CARNICER-LOMBARTE A, GARDNER L, et al. Tissue stiffness at the human maternal-fetal interface[J]. Human Reproduction, 2019, 34(10): 1999-2008. |
74 | SHOJAEI S, ALI M S, SURESH M, et al. Dynamic placenta-on-a-chip model for fetal risk assessment of nanoparticles intended to treat pregnancy-associated diseases[J]. Biochimica et Biophysica Acta Molecular Basis of Disease, 2021, 1867(7): 166131. |
75 | ARUMUGASAAMY N, ROCK K D, KUO C Y, et al. Microphysiological systems of the placental barrier[J]. Advanced Drug Delivery Reviews, 2020, 161-162: 161-175. |
76 | KAZEMIAN A, HOOSHMANDABBASI R, SCHRANER E M, et al. Evolutionary implications of fetal and maternal microvillous surfaces in epitheliochorial placentae[J]. Journal of Morphology, 2019, 280(4): 615-622. |
77 | TUTAR R, ÇELEBI-SALTIK B. Modeling of artificial 3D human placenta[J]. Cells, Tissues, Organs, 2022, 211(4): 527-536. |
78 | LEACH L. The phenotype of the human materno-fetal endothelial barrier: molecular occupancy of paracellular junctions dictate permeability and angiogenic plasticity[J]. Journal of Anatomy, 2002, 200(6): 599-606. |
79 | MOORE K H, MURPHY H A, CHAPMAN H, et al. Syncytialization alters the extracellular matrix and barrier function of placental trophoblasts[J]. American Journal of Physiology Cell Physiology, 2021, 321(4): C694-C703. |
80 | WALKER N, FILIS P, SOFFIENTINI U, et al. Placental transporter localization and expression in the Human: the importance of species, sex, and gestational age differences[J]. Biology of Reproduction, 2017, 96(4): 733-742. |
81 | EVAIN-BRION D, MALASSINE A. Human placenta as an endocrine organ[J]. Growth Hormone & IGF Research, 2003, 13: S34-S37. |
82 | D’HAUTERIVE S P, CLOSE R, GRIDELET V, et al. Human chorionic gonadotropin and early embryogenesis: review[J]. International Journal of Molecular Sciences, 2022, 23(3): 1380. |
83 | ZHANG N, WANG W S, LI W J, et al. Reduction of progesterone, estradiol and hCG secretion by perfluorooctane sulfonate via induction of apoptosis in human placental syncytiotrophoblasts[J]. Placenta, 2015, 36(5): 575-580. |
84 | ROGERS L M, HUGGINS M, DOSTER R S, et al. Impact of metabolic stress on BeWo syncytiotrophoblast function[J]. ChemBioChem, 2023, 24(24): e202300410. |
85 | BHATIA S N, INGBER D E. Microfluidic organs-on-chips[J]. Nature Biotechnology, 2014, 32: 760-772. |
86 | RENNERT K, STEINBORN S, GRÖGER M, et al. A microfluidically perfused three dimensional human liver model[J]. Biomaterials, 2015, 71: 119-131. |
87 | KIM H J, LI H, COLLINS J J, et al. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(1): E7-E15. |
88 | MAOZ B M, HERLAND A, FITZGERALD E A, et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells[J]. Nature Biotechnology, 2018, 36(9): 865-874. |
89 | HUH D, MATTHEWS B D, MAMMOTO A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986): 1662-1668. |
90 | PU Y, GINGRICH J, VEIGA-LOPEZ A. A 3-dimensional microfluidic platform for modeling human extravillous trophoblast invasion and toxicological screening[J]. Lab on a Chip, 2021, 21(3): 546-557. |
91 | ABBAS Y, OEFNER C M, POLACHECK W J, et al. A microfluidics assay to study invasion of human placental trophoblast cells[J]. Journal of the Royal Society, Interface, 2017, 14(130): 20170131. |
92 | ZHANG W J, LI J W, ZHOU J Q, et al. Translational organoid technology - the convergence of chemical, mechanical, and computational biology[J]. Trends in Biotechnology, 2022, 40(9): 1121-1135. |
93 | TURCO M Y, GARDNER L, KAY R G, et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation[J]. Nature, 2018, 564(7735): 263-267. |
94 | HAIDER S, MEINHARDT G, SALEH L, et al. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta[J]. Stem Cell Reports, 2018, 11(2): 537-551. |
95 | SHERIDAN M A, FERNANDO R C, GARDNER L, et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta[J]. Nature Protocols, 2020, 15(10): 3441-3463. |
96 | YANG L H, LIANG P F, YANG H H, et al. Trophoblast organoids with physiological polarity model placental structure and function[J]. Journal of Cell Science, 2024, 137(5): jcs261528. |
97 | HORI T, OKAE H, SHIBATA S, et al. Trophoblast stem cell-based organoid models of the human placental barrier[J]. Nature Communications, 2024, 15(1): 962. |
98 | IO S, KABATA M, IEMURA Y, et al. Capturing human trophoblast development with naive pluripotent stem cells in vitro [J]. Cell Stem Cell, 2021, 28(6): 1023-1039.e13. |
99 | SONCIN F, MOREY R, BUI T, et al. Derivation of functional trophoblast stem cells from primed human pluripotent stem cells[J]. Stem Cell Reports, 2022, 17(6): 1303-1317. |
100 | HUANG L J, TU Z W, WEI L D, et al. Generating functional multicellular organoids from human placenta villi[J]. Advanced Science, 2023, 10(26): e2301565. |
101 | CUI K L, ZHU Y J, SHI Y, et al. Establishment of trophoblast-like tissue model from human pluripotent stem cells in three-dimensional culture system[J]. Advanced Science, 2022, 9(3): e2100031. |
102 | DENG P W, CUI K L, SHI Y, et al. Fluidic flow enhances the differentiation of placental trophoblast-like 3D tissue from hiPSCs in a perfused macrofluidic device[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 907104. |
103 | TURCO M Y, GARDNER L, HUGHES J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium[J]. Nature Cell Biology, 2017, 19(5): 568-577. |
104 | MCCONKEY C A, DELORME-AXFORD E, NICKERSON C A, et al. A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance[J]. Science Advances, 2016, 2(3): e1501462. |
105 | LEVKOVITZ R, ZARETSKY U, GORDON Z, et al. In vitro simulation of placental transport: part Ⅰ. Biological model of the placental barrier[J]. Placenta, 2013, 34(8): 699-707. |
106 | LEVKOVITZ R, ZARETSKY U, JAFFA A J, et al. In vitro simulation of placental transport: part Ⅱ. Glucose transfer across the placental barrier model[J]. Placenta, 2013, 34(8): 708-715. |
107 | KUO C Y, ERANKI A, PLACONE J K, et al. Development of a 3D printed, bioengineered placenta model to evaluate the role of trophoblast migration in preeclampsia[J]. ACS Biomaterials Science & Engineering, 2016, 2(10): 1817-1826. |
108 | KUO C Y, GUO T, CABRERA-LUQUE J, et al. Placental basement membrane proteins are required for effective cytotrophoblast invasion in a three-dimensional bioprinted placenta model[J]. Journal of Biomedical Materials Research Part A, 2018, 106(6): 1476-1487. |
109 | KUO C Y, SHEVCHUK M, OPFERMANN J, et al. Trophoblast-endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model[J]. Biotechnology and Bioengineering, 2019, 116(1): 181-192. |
110 | GOLDSTEIN J A, GALLAGHER K, BECK C, et al. Maternal-fetal inflammation in the placenta and the developmental origins of health and disease[J]. Frontiers in Immunology, 2020, 11: 531543. |
111 | HUPPERTZ B. The critical role of abnormal trophoblast development in the etiology of preeclampsia[J]. Current Pharmaceutical Biotechnology, 2018, 19(10): 771-780. |
112 | NIRUPAMA R, DIVYASHREE S, JANHAVI P, et al. Preeclampsia: pathophysiology and management[J]. Journal of Gynecology Obstetrics and Human Reproduction, 2021, 50(2): 101975. |
113 | MELCHIORRE K, GIORGIONE V, THILAGANATHAN B. The placenta and preeclampsia: villain or victim?[J]. American Journal of Obstetrics and Gynecology, 2022, 226(2S): S954-S962. |
114 | GHORBANPOUR S M, RICHARDS C, PIENAAR D, et al. A placenta-on-a-chip model to determine the regulation of FKBPL and galectin-3 in preeclampsia[J]. Cellular and Molecular Life Sciences, 2023, 80(2): 44. |
115 | ROMBERG S I, KREIS N N, FRIEMEL A, et al. Human placental mesenchymal stromal cells are ciliated and their ciliation is compromised in preeclampsia[J]. BMC Medicine, 2022, 20(1): 35. |
116 | ARUMUGASAAMY N, ETTEHADIEH L E, KUO C Y, et al. Biomimetic placenta-fetus model demonstrating maternal-fetal transmission and fetal neural toxicity of zika virus[J]. Annals of Biomedical Engineering, 2018, 46(12): 1963-1974. |
117 | KARVAS R M, KHAN S A, VERMA S, et al. Stem-cell-derived trophoblast organoids model human placental development and susceptibility to emerging pathogens[J]. Cell Stem Cell, 2022, 29(5): 810-825.e8. |
118 | RAGER J E, BANGMA J, CARBERRY C, et al. Review of the environmental prenatal exposome and its relationship to maternal and fetal health[J]. Reproductive Toxicology, 2020, 98: 1-12. |
119 | MANANGAMA G, MIGAULT L, AUDIGNON-DURAND S, et al. Maternal occupational exposures to nanoscale particles and small for gestational age outcome in the French Longitudinal Study of Children[J]. Environment International, 2019, 122: 322-329. |
120 | MUOTH C, WICHSER A, MONOPOLI M, et al. A 3D co-culture microtissue model of the human placenta for nanotoxicity assessment[J]. Nanoscale, 2016, 8(39): 17322-17332. |
121 | SCHULLER P, ROTHBAUER M, KRATZ S R A, et al. A lab-on-a-chip system with an embedded porous membrane-based impedance biosensor array for nanoparticle risk assessment on placental Bewo trophoblast cells[J]. Sensors and Actuators B: Chemical, 2020, 312: 127946. |
122 | GINGRICH J, TICIANI E, VEIGA-LOPEZ A. Placenta disrupted: endocrine disrupting chemicals and pregnancy[J]. Trends in Endocrinology and Metabolism, 2020, 31(7): 508-524. |
123 | TICIANI E, PU Y, GINGRICH J, et al. Bisphenol S impairs invasion and proliferation of extravillous trophoblasts cells by interfering with epidermal growth factor receptor signaling[J]. International Journal of Molecular Sciences, 2022, 23(2): 671. |
124 | XU C K, MA H J, GAO F M, et al. Screening of organophosphate flame retardants with placentation-disrupting effects in human trophoblast organoid model and characterization of adverse pregnancy outcomes in mice[J]. Environmental Health Perspectives, 2022, 130(5): 57002. |
125 | YAMASHITA M, MARKERT U R. Overview of drug transporters in human placenta[J]. International Journal of Molecular Sciences, 2021, 22(23): 13149. |
126 | PEMATHILAKA R L, ALIMORADI N, REYNOLDS D E, et al. Transport of maternally administered pharmaceutical agents across the placental barrier in vitro [J]. ACS Applied Bio Materials, 2022, 5(5): 2273-2284. |
127 | RICHARDSON L S, KAMMALA K A, COSTANTINE M M, et al. Testing of drugs using human feto-maternal interface organ-on-chips provide insights into pharmacokinetics and efficacy[J]. Lab on a Chip, 2022, 22(23): 4574-4592. |
[1] | Xiyue CHEN, Yaqing WANG, Fang BAO, Jianhua QIN. Advances in the application of liver on a chip in biomedical research [J]. Synthetic Biology Journal, 2024, 5(4): 813-830. |
[2] | Yuan HONG, Yan LIU. Research progress of brain organoids in regenerative medicine [J]. Synthetic Biology Journal, 2024, 5(4): 754-769. |
[3] | Qianwen CHEN, Siqi ZHAO, Yaojin PENG. Organoids: technological innovation and ethical controversies [J]. Synthetic Biology Journal, 2024, 5(4): 898-907. |
[4] | Bowen HU, Jiaping TAN, Xiaodong LIU. Advances in the development of human embryo models [J]. Synthetic Biology Journal, 2024, 5(4): 719-733. |
[5] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[6] | Bohang ZHANG, Xiaoxuan QI, Yan YUAN. Advancements in testicular organoids for in vitro spermatogenesis [J]. Synthetic Biology Journal, 2024, 5(4): 770-781. |
[7] | Yizhao HAN, Jia GUO, Yue SHAO. Stem cell-based synthetic development: cellular components, embryonic models, and engineering approaches [J]. Synthetic Biology Journal, 2024, 5(4): 734-753. |
[8] | Shikai LI, Dong′ao ZENG, Fangzhou DU, Jingzhong ZHANG, Shuang YU. The construction approaches and biomaterials for vascularized organoids [J]. Synthetic Biology Journal, 2024, 5(4): 851-866. |
[9] | Ke’er HU, Hanqi WANG, Ruqi HUANG, Canyang ZHANG, Xinhui XING, Shaohua MA. Integrated design strategies for engineered organoids and organ-on-a-chip technologies [J]. Synthetic Biology Journal, 2024, 5(4): 883-897. |
[10] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[11] | Zongyong AI, Chengting ZHANG, Baohua NIU, Yu YIN, Jie YANG, Tianqing LI. Early human embryo development and stem cells [J]. Synthetic Biology Journal, 2024, 5(4): 700-718. |
[12] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[13] | Liyu ZHU, Yulong ZHAO, Wei LI, Libin WANG. Progress in mammalian chromosome engineering [J]. Synthetic Biology Journal, 2023, 4(2): 394-406. |
[14] | Can ZHANG, Liyang SHI, Jianwu DAI. Cultured meat from biomaterials: challenges and prospects [J]. Synthetic Biology Journal, 2022, 3(4): 676-689. |
[15] | Chengzhi SONG, Yang SUN, Yi CAO. Effects of mechanical signals on stem cell fate determination [J]. Synthetic Biology Journal, 2022, 3(4): 781-794. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||